
BLAISE PASCAL MAGAZINEBLAISE PASCAL MAGAZINEBLAISE PASCAL MAGAZINE

Howard Page-Clark

Learn to Program
using Lazarus

PUBLISHER

I

Learn to program
using Lazarus

by Howard Page Clark

Pascal

II

Developmental Editor: Detlef Overbeek
Production Editor: Detlef Overbeek
Proofreaders: Peter Bijlsma,

Correctors: Detlef Overbeek

Cover Designer: Detlef Overbeek

Copyright © 2013 by Blaise Pascal Magazine

Copyright © 2012.

All rights reserved by Blaise Pascal Magazine
Email: Office@blaisepascal.eu http://www.blaisepascalmagazine.eu

Blaise Pascal Magazine grants readers limited permission to reuse the code found in this publication so
long as the author(s) are attributed in any application containing the reusable code and the code itself is
never distributed, posted online by electronic transmission, sold, or commercially exploited as a stand-
alone product.
Aside from this specific exception concerning reusable code, no part of this publication may be stored in a
retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy,
photograph, magnetic, or other record, without the prior agreement and written permission of the
publisher.

This edition is registered by the Dutch Royal Library
Nederlandse Koninklijke Bibliotheek

ISBN: 978-94-90968-04-5

Blaise Pascal Magazine and the Blaise Pascal Magazine logo are either registered trademarks or trademarks
of the Pro Pascal Foundation in the Netherlands and/or other countries.

TRADEMARKS: Blaise Pascal Magazine has attempted throughout this book to distinguish proprietary
trademarks from descriptive terms by following the capitalization style used by the manufacturer.

The authors and publisher have used their best efforts in producing this book, whose content is based on
the latest software releases wherever possible. Portions of the manuscript may be based upon pre-release
versions supplied by software manufacturer(s).

The authors and the publisher make no representation or warranties of any kind with regard to the
completeness or accuracy of the contents herein and accept no liability of any kind including but not
limited to performance, merchantability, fitness for any particular purpose, or any losses or damages of any
kind caused or alleged to be caused directly or indirectly from this book.

III

Learn to program using Lazarus

Pascal is enjoying something of a revival, and this is due in no small part to the quality and
success of the Free Pascal Compiler, and the Lazarus project, which depends on it.
That success, in turn, owes much to the skill and dedication of the core team members of the
two projects.
This book is a tribute to the guys (so far there are no significant gals) starting with Florian
Klaempfl who have carried the development of these projects to the significant phase each has
reached.

One measure of the lasting value of open source projects is the quality of the programming
communities that are drawn together through participation in such projects, and both Free
Pascal and Lazarus shine in this respect.
I share the passion of a few in the programming community for good documentation, and
particularly for material which makes programming more accessible to newcomers or those
who (like me) don't have a formal education in information technology or computer science.

The Pascal language came to birth in the imagination of a Swiss software architect, a rare
academic who values clarity and simplicity enough to make both aspects a hallmark of his
designs. Pascal later became a widely available compiler (for CP/M, DOS and then Windows)
largely through a Danish software architect. Borland incorporated that Danish compiler into an
IDE, where Anders Hejlsberg and Chuck Jazdzewski among others oversaw adaptation of the
language and support libraries for GUI programming on Windows.

Part of Free Pascal's achievement has been to liberate Pascal from its attachment principally to
the Windows/.NET platform (which characterised the major years of US-based Object Pascal
Delphi development, since the Kylix fork was not maintained). It was FPC (for a time) that
enabled the Delphi IDE to generate code to run on iOS. A maturing Lazarus has also helped
slowly to convince developers for MacOS, Linux and more recently Android and other
platforms that Pascal can truly serve their needs.

I am grateful to Mattias Gaertner, who encouraged me to write this book during our first
conversation, to Michaël van Canneyt, who saw an early draft of the manuscript and whose
incisive comments helped enormously in shaping the organisation of the material, and to Detlef
Overbeek, whose generous hospitality enabled me to see the obvious enthusiasm for Pascal
development among programmers gathered in Utrecht. He is a friend who is ready to take risks
in publishing.

Mistakes you find in the following pages are, of course, mine alone. I would be grateful for
notification of any needed corrections, so that they can be included in any future printing.
Please direct any comments to me via the publisher's website:

Howard Page-Clark
Christmas 2012

www.blaisepascal.eu

Foreword

IV

Learn to program using Lazarus

V

Learn to program using Lazarus

Contents

CHAPTER 1 STARTING TO PROGRAM
1.a What to expect in this book 1
1.b What is programming? 1
1.c The worlds inside and outside the CPU 2
1.d Not only digital data, but also digital code 3
1.e Different computer languages at different levels 3
1.f Pascal: a universal computer language 4
1.g Lazarus: an IDE for Pascal 5
1.h An open source approach to software 6
1.i Getting help 7
1.j Review Questions 8

CHAPTER 2 LAZARUS AND PASCAL
2.a The layout of the Lazarus IDE 9
2.b Two different sorts of program 10
2.c Writing, compiling and running firstproject 12
2.d The structure of a Pascal program 14
2.e Comments in Pascal code 16
2.f Use of names in Pascal 16
2.g Compiler directives 17
2.h Review Questions 18

CHAPTER 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS
3.a Pascal types 19
3.b Ordinal types 20
3.c The boolean type 21
3.d Enumerated types 22
3.e Type conversion 24
3.f Typecasts 25
3.g Variables 26
3.h Initialised variables 26
3.i Assignment: placing a value in a variable 27
3.j Extended numerical assignment operators 28
3.k Constants and literal values 28
3.l A program example: simple_types 29
3.m Typed constants 31
3.n Pointers 33
3.o Review Questions 35

CHAPTER 4 STRUCTURED TYPES
 4.a Static arrays 36

4.b Unnamed (anonymous) types 37
4.c Pascal shortstrings 38
4.d Dynamic arrays 39
4.e Ansistrings 39
4.f Records 41
4.g The with . . . do statement 42
4.h Set types 44
4.i Binary files 45
4.j Text files 47
4.k Review Questions 48

VI

Learn to program using Lazarus

Contents

CHAPTER 5 EXPRESSIONS AND OPERATORS
5.a Operators: forming Pascal expressions 49
5.b Mathematical operators 49
5.c Boolean operators: not, and, or, xor 50
5.d Comparison (relational) operators 50
5.e Bitwise (logical) operators 51
5.f A program example: simple_expressions 51
5.g Review Questions 52

CHAPTER 6 PASCAL STATEMENTS
6.a Conditional statement: if 54
6.b Conditional statement: case of end 55
6.c Looping statement: for to do 56
6.d Looping statement: for downto do ; Break and Continue 57
6.e Looping statement: for in do 57
6.f Looping statement: while do 58
6.g Looping statement: repeat until 58
6.h Exception statements: raise, on, try 58
6.i Review Exercises 61

CHAPTER 7 ROUTINES: FUNCTIONS AND PROCEDURES
7.a Routines and methods 62
7.b Calling a routine 62
7.c Passing data to a routine: parameters 63
7.d Picking up the value returned from a function 63
7.e Parameter classification: var, const, out 64
7.f Default parameters 65
7.g Declaring procedures and functions 65
7.h A program example: function_procedure 66
7.i The Exit() procedure 66
7.j Review Questions 68

CHAPTER 8 CLASS: AN ELABORATE TYPE
8.a Generations of classes 69
8.b Class data fields 70
8.c Class memory management 71
8.d Exercising simple class methods 73
8.e Properties: special access to class data and events 75
8.f Private, protected, public and published 80
8.g Events 81
8.h Event properties 83
8.i Object oriented design 85
8.j Review Exercises 85

CHAPTER 9 POLYMORPHISM
9.a Cross-platform polymorphism 86
9.b Polymorphic methods in classes 87
9.c Polymorphic graphic classes 89
9.d Overloading 94
9.e Default parameters 95
9.f Review Questions 95

VII

Learn to program using Lazarus

Contents

CHAPTER 10 UNITS, GUI PROGRAMS AND THE IDE
10.a Unit structure and scope 96
10.b The GUI program skeleton 99
10.c Packages 101
10.d Changing the program icon 101
10.e The main form file 102
10.f Editor Auto-completion 103
10.g Using the Designer 106
10.h The Object Inspector 107
10.i OI Favorites and shortcuts 109
10.j The OI Restricted page 110
10.k The Component Palette 111
10.l Finding a Palette component 111
10.m Regular, DB and RTTI component types 112
10.n Non-visual LCL and FCL support classes 113
10.o Review Exercises 113

CHAPTER 11 DISPLAY CONTROLS
11.a Display controls: TLabel 114
11.b Display controls: exploring TLabel properties 115
11.c Display controls: TStaticText 119
11.d Display controls: TBevel and TDividerBevel 120
11.e Display controls: TListBox 121
11.f Display controls: TStatusBar 122
11.g Display controls: further options 123
11.h Review Questions 123

CHAPTER 12 GUI EDIT CONTROLS
12.a Editing short phrases: TEdit and TLabeledEdit 124
12.b Editing or choosing short phrases: TComboBox 126
12.c Editing integers and floating point numbers 126
12.d Multiple-line editors 129
12.e A component browser 130
12.f Getting RTTI information for a component 135
12.g Adding external tools to the IDE 138
12.h Review Questions 140

CHAPTER 13 LAZARUS GUI PROJECTS
13.a Planning a project 141
13.b Creating a project task list 141
13.c ToDo functionality 142
13.d Version control 142
13.e Test-driven software development 142
13.f Naming 143
13.g Project directory structure 143
13.h A template project: SetDemo 144
13.i Encapsulating set interaction within a new class 146
13.j The setdemo UI 149
13.k Review Questions 156

VIII

Learn to program using Lazarus

Contents

CHAPTER 14 COMPONENT CONTAINERS
14.a Non-visual RTL classes 157
14.b Creating new forms 158
14.c Ownership and Parentage 160
14.d Programmatic form creation 160
14.e TGroupBox, TPanel 163
14.f Resizeable children 164
14.g TFrame 166
14.h TDatamodule 167
14.i Review Exercises 167

CHAPTER 15 NON-VISUAL GUI SUPPORT CLASSES
15.a TPersistent descendants 168
15.b A chemical TCollection 169
15.c The TStringList class 172
15.d Sorting lines in a text file 173
15.e Streams 176
15.f TFileStream 177
15.g TMemoryStream, TStringStream and Blowfish 180
15.h Visualising a stream 182
15.i Review Exercises 187

CHAPTER 16 FILES AND ERRORS
16.a File access in Pascal 188
16.b Run-time errors and exceptions 188
16.c An example of string error-handling 189
16.d File name encoding issues 192
16.e User-directed file searching and naming – the Dialogs Palette page 193
16.f Discriminating between text and binary files 196

CHAPTER 17 WORKING WITHIN KNOWN LIMITS
17.a Using recursion to evaluate factorials 200
17.b Catching a specific exception 203
17.c Permutations 204
17.d Time-consuming routines 205
17.e Generating anagrams 206
17.f Review Questions 210

CHAPTER 18 ALGORITHMS AND UNIT TESTS
18.a Collaboration 211
18.b The algorithm – a specific plan 211
18.c A parsing algorithm 212
18.d Testing the ParseToWords function: the FPCUnit Test 215
18.e Example tests 218
18.f Test-driven development 220
18.g Optimising debugged routines 220
18.h Profiling and compiler optimisation 220
18.i Review Questions 221

IX

Learn to program using Lazarus

Contents

CHAPTER 19 DEBUGGING TECHNIQUES
19.a Preventing bugs 222
19.b Unit tests 223
19.c Paying attention to compiler messages 223
19.d Using Assertions 225
19.e Modularising functionality 227
19.f Code Observer 228
19.g Refactoring 232
19.h Watching variable values 234
19.i The {$DEFINE DEBUG} compiler directive 234
19.j Console debug functions 237
19.k Program interruption 238
19.l Logging debug output to a file 239
19.m The debugserver tool 240
19.n Getting the compiler to catch bugs 241
19.o The heaptrc unit 242
19.p The gdb debugger 245

CHAPTER 20 FURTHER RESOURCES
20.a Books about Pascal and Lazarus 248

X

Learn to program using Lazarus

Chapter 1 STARTING TO PROGRAM

1.a What to expect in this book
This is a tutorial guide rather than a reference book. When you've worked your way through
the following chapters you should be able to understand how to use Lazarus to tackle
increasingly complex programming challenges, and have learned not only how to use the
Lazarus IDE and the Pascal language, but how to go about finding out what you still need to
learn.

Learning requires engagement with new ideas, often with a new culture, and in the case of
learning to program you may encounter several new concepts simultaneously. People vary in
their ability to accomplish several tasks at once. Some say that females are better than males in
this regard. Whatever the truth of that, readers of this book will be learning on several levels at
once:
• learning the fundamental principles of good programming
• learning a new language (Object Pascal)
• learning to use complex development software (Lazarus)
• learning technical English vocabulary (if you are not a native English speaker)
Working through this book will also exercise skills such as typing on a computer keyboard;
searching online and offline help resources; thinking through how you would approach finding
solutions to the problems posed; remembering the names of programming routines you will
often need to use; and so on. Perhaps you are not a complete beginner, and consequently have a
head start on some of this.

The approach here is fairly fast-paced, presenting new ideas and topics in every chapter,
together with hands-on exercises accompanying the tutorial text. Chapter 2 is an introduction to
the Pascal language and the Lazarus IDE. From Chapter 3 onwards new aspects of the Pascal
language are introduced one by one. As the topics progress, so various Lazarus features are
also introduced. There is a shift from a focus on learning Pascal to learning about Lazarus and
its support libraries from Chapter 10 onwards.

In addition to the Table of Contents at the beginning of the book the PDF version offers an
Index to help you quickly locate key topics. However, this is not designed as a reference book
– Lazarus (and particularly Free Pascal) already has a great deal of good
documentation, and a growing library of help files.
The help is far from perfect, but perhaps you will soon be able to contribute to its improvement.
Most chapters conclude with a few Review Questions or Review Exercises designed to help
you reflect on what you have been reading, and to apply the principles outlined in that chapter.
The Questions or Exercises section can, of course, be ignored by readers who would rather
press on to the next chapter. However pondering applications of the principles given in the
previous pages is a good way to help them stay with you after the book is closed.

As a beginning programmer you can look forward to satisfaction and opportunities to be
really creative, as well as experiencing frustration and bewilderment or confusion. You will
need to have determination, because you will write code that seems correct but does not have
the desired effect, and you'll puzzle over what could possibly be wrong with it. You will
probably find there are things you cannot figure out, or which seem supremely difficult to
understand, particularly at the first reading.

1.b What is programming?
Computer programming is the art of making a computer do exactly what you want without
errors. Computers have as their brain one or more central processing units (CPUs) containing
numerous miniature electrical circuits in which electrons may or may not be moving, and these
circuits can indicate to the world beyond the CPU whether those particular electrons are
moving or not.

1
Learn to program using Lazarus

This simple difference between a circuit that is switched on (where electrons move), and the same
circuit when it is switched off (when no electrons move) is the basis of the incredible complexity
we know as today’s software. The computer's circuitry, CPUs, disks, memory, screen and so on
are known as hardware.
The programs that run on this hardware are termed software. You can touch hardware, just as
you can touch the human body with its hands and face. Software is more like the plans,
thoughts and words that a human can communicate – the ideas, commands and requests that
cannot be physically touched.

At the lowest level then, a computer can speak a language with two words: On and Off (or
Yes and No, or if we use numbers rather than words to represent the electrical state, 1 and 0). Even the
most advanced multi-processor supercomputers that execute billions of instructions each
second have this fundamental binary design. It is extraordinary in fact how much complexity
has evolved from such a simple building block as a circuit that can communicate just one of two
possible states: On or Off. (Engineers may object that the detected difference is between a High signal
and a Low signal rather than strictly a distinction between On and Off – however oversimplifications of
this sort are par for a beginners' course).

Software complexity is possible because CPU hardware designers and manufacturers have
found ways to pack literally millions of these circuits into very small ‘chips’, and have found
ways to prevent the heat caused by millions of electron movements from melting the chip.
The complexity is also possible because software engineers have devised ways to make streams
of on/off signals (which is all a CPU can process) assume meaningful patterns that correspond to
the world outside a CPU chip. Understanding the world inside the CPU is termed working at a
low level. Understanding the world outside the CPU is termed working at a higher level.

1.c The worlds inside and outside the CPU
Computer processors are designed to handle streams of on/off signals (or 1/0 signals).
Information theory calls a state which can be either On or Off (either 1 or 0) a binary state, and
the knowledge of whether that state is 1 or 0 is a piece of information called a bit. Information
processed as bits is known as binary information, or digital information since the smallest
element of such information, the bit, can be represented by the digits 1 or 0.

There is an unambiguous separation between the two states 1 and 0 (On and Off). Each state
is unique and discrete. The CPU does not ever mistake one for the other (unless it is faulty).
There is no half-On or half-Off.

Information in the wider world is sometimes clearly digital, particularly numerical
information. Numbers other than 0 and 1 can be represented as combinations of 0s and 1s. This
is familiar to people who have studied binary arithmetic. It is possible to count using only the
digits 0 and 1 – rather tedious, but possible. In this severely digit-limited binary system it is
obvious which digits represent zero and one. But by combining 0 and 1 in logical patterns
whose meaning everyone can agree on, we can also represent the numbers beyond 0 and 1 (even
though we deliberately discard the digits 2, 3, 4 etc. which we use in decimal arithmetic, and stick to just
0 and 1). The first few numbers in the binary system are written like this

Decimal 0 1 2 3 4 5 6 7 8

Binary 0 1 10 11 100 101 110 111 1000

Chapter 1 STARTING TO PROGRAM

Patterns of 0s and 1s such as this, then, are the basic language of the computer, which is why
computers are often termed digital devices. We can assign any meaning we want to these
patterns of 0s and 1s. If we regard a pattern of binary digits as integers, then the pattern 1000
means the number 8. If, on the other hand we regard the pattern of binary digits as letter
characters, then one standard meaning of the pattern 1001011 is the capital letter ‘K’.

2

Learn to program using Lazarus

These are examples of treating a binary digit pattern as data, that is, as information that
represents an agreed arithmetic or alphabetic entity. It is straightforward to agree on a mapping
that relates such patterns of bits to numbers, or to characters, each of which is unique and
discrete.

You may know the very old quip: “There are just 10 sorts of people in the world – those
who understand binary and those who don't”.The state of being either-0-or-1 is the minimum
amount of information we can know. Streams of 0s and 1s are termed bit patterns, and when
we combine eight bits of information together that larger amount of information is termed a
byte. You are probably familiar with kilobytes (kB) and megabytes (MB) and gigabytes (GB)
used as measurement units for hard disk and USB memory stick capacity, or memory (RAM)
capacity installed in a computer or a mobile. These quantify the amounts of information that
can be stored on that device, and let you know how big, say, a particular downloaded file is.

With some effort, it has proved possible to represent even analogue data too (which on first
appearance is far from being digital) by unique bit patterns. Consider the colours of the rainbow,
for instance, that in differing intensities and brush strokes make up the work of an
Impressionist painter. Works of art such as Monet's Water Lilies can be represented digitally as
a collection of millions of points of colour, each colour point itself being represented as one of
thousands of possible subtle shades of colour.

The result of such digitisation is that even complex colour images in 2-D or 3-D can be
translated into a form that computers can process. A corresponding process allows music to be
translated into mp3 and other formats that computers can store and process. In this way
information that seemed rather unpromising as grist for the computer mill has proved to be just
that. Provided it can be digitised, the world outside the computer can be represented fairly
faithfully in the internal world of a computer's CPU.

1.d Not only digital data, but also digital code
It is also possible, and immensely useful for controlling computers, to assign instructional
meanings to binary patterns. One pattern might mean “add the next two numbers together”,
another pattern might mean “send the result of the addition to the output”. This means we
have a digital way not only of feeding data to a CPU, but of getting it to process the data in
some way.

Computers are devices designed to process information. They do this by receiving
everything they need to know about as streams of bit patterns which represent either the
(digitised) data to be processed, or instructions about how to process the data, or both.
This is most unfortunate for humans, who find patterns of bits not only tedious and error-
prone to write, but meaningless, because we cannot distinguish at a glance the meaning of
1000110101011 from 1000110101001. Indeed, we might not even notice there was a difference
between these two patterns (whereas most people immediately notice the difference between the two
character patterns ‘dame’ and ‘damn’). CPUs are designed specifically to excel at processing such
bit patterns, whether these bit patterns are machine code (instructions) or data to be processed
(information).

Computer programming means clearly distinguishing what is data and what is code
(instructions) and using the computer's short term memory and long term storage to keep track
of the massive amounts of data flowing in and out of the CPU, while sending the correct
instructions (code) so that processed data then flows to the appropriate place (perhaps to the
display to be viewed, or to an earpiece to be heard, or to a plotter to be printed).

1.e Different computer languages at different levels
The bit patterns (machine code) that instruct the CPU what to do with the data it receives are not
understood by humans. There is a computer language called assembler that maps human-
readable symbolic instructions to each machine code instruction.

Chapter 1 STARTING TO PROGRAM

3

Learn to program using Lazarus

Learning and using assembler means working at a very low level, dealing with the minutiae of
small on-chip memory areas called registers, and paying careful attention to the size of all data
and instructions at the level of individual bits and bytes. This is error-prone, and difficult to
master.

The following is a tiny example of the sort of instructions assembly language uses:
movl (%esp),%eax
addl $5,%eax

Assembler programming has the further disadvantage that it is processor-specific. Instructions
that work on one manufacturer's processor may not work or even have an equivalent on
another make of processor. Just as a car mechanic knows that a VW alternator will not fit as a
replacement for a faulty alternator on an Audi. Little about hardware is standardised to the
extent that different manufacturers' parts are interchangeable or software-compatible. The
situation is complicated further by increasingly rapid technical advances which render the
entire spectrum of IT devices a constantly changing marketplace.

Hardware that was standard yesterday may be almost completely obsolete in just a short
time from now. From the point of view of software developers what is needed is a single
language that is applicable to various different platforms, whatever the underlying CPU,
peripherals and operating system.
What most programmers need is a higher level language (higher than assembler) that uses
meaningful instructional words, whose syntax is closer to the pattern of familiar instructions
such as “draw the phrase Free Pascal Compiler on the screen”. A language which would shield
the programmer from having to deal with low-level, processor-specific interaction with the
CPU's registers and internal clock cycles.

High level languages are designed to be close to natural languages.
They combine mathematical symbols with natural language specifically chosen for
communicating with a computer's CPU and operating system. High level languages provide a
convenient, comprehensible interface between the programmer and the computer, but they
need to interface to the CPU as well. This is achieved by a process called compiling, in which
the meaning of the high level language is translated into the low level instructions that are the
language the CPU can process.

1.f Pascal: a universal computer language
Lazarus is a development tool that uses the Pascal programming language. Niklaus Wirth
designed this computer language to encourage good programming practice, publishing his
work in 1970. Pascal uses a small vocabulary of English words which are all self-descriptive.
Pascal was extended in the 1980s to be object-oriented, and so the Pascal dialect used in Lazarus
is termed Object Pascal.

Object-oriented means that Lazarus uses code constructs called objects – Lazarus actually
calls them classes – which model real-world situations more satisfactorily than the original
plain procedural Pascal, which was designed to teach programming well. (Pascal was not
designed originally for commercial-quality software production, for which it has come to be used since –
but that is the power and potential of a well-designed computer language).

The Oxford English Dictionary lists over 500,000 English word forms, and there are about
the same number of additional unlisted English technical and scientific terms. By contrast,
Object Pascal (as used in Lazarus and Free Pascal) has just over 70 reserved words (or keywords),
and you will use less than half of those regularly. In terms of vocabulary, then, learning to use
Pascal is far easier than learning to speak English! Here is a selection of the most commonly
used words in the Pascal language (notice that one or two like const and var are abbreviations of
longer English words):

Chapter 1 STARTING TO PROGRAM

4

Learn to program using Lazarus

Chapter 1 STARTING TO PROGRAM

and
array
begin
class
const
do
else
end

file
for
function
if
implementation
interface
not
of

then
to
type
unit
uses
var
while

or
procedure
program
property
record
repeat
set
string

Rather than diving into details about the Pascal language at this point, we shall look now more
closely at Lazarus, the main tool you will be using to write Pascal code. Details of Pascal syntax
and usage follow in later chapters.

1.g Lazarus: an IDE for Pascal
High level computer programming languages, including Pascal, allow the programmer to use a
specialised language (nearly always based on English) to give instructions to the computer's CPU.
The CPU does not understand Pascal, so the Pascal code has to be changed into digital
electronic signals that the CPU can accept. This translation process (producing machine code that a
CPU can accept) is called compilation and assembly. Sections of compiled, assembled code then
require linking (that is, joining together appropriately) to produce an executable program file that
the operating system can run. Lazarus uses the Free Pascal Compiler (FPC), which on some
platforms has its own internal linker, to transform Pascal code into an executable program.
Lazarus and similar programming tools such as Eclipse and Visual Studio are termed
Integrated Development Environments or IDEs because they integrate in one toolbox the many
functions that are needed for you to produce an executable program starting with only an idea,
and no written code. The Lazarus IDE provides:

• an exceptionally versatile text editor with numerous features designed for rapidly writing,
modifying and navigating your program source code

• a visual editor for designing your program's user interface (UI)
• three major libraries of ready-to-run code routines and components: the RTL, FCL and LCL
• tools to compile, assemble and link your program's modules into a finished executable
• tools to analyse, test, document and debug the code you write

The Lazarus IDE includes many specialised ancillary components including tools
which aid in:

• setting initial values for individual program components such as typeface, width, colour
• debugging programs
• writing specialised forms such as dialog windows
• preparing programs for internationalisation and translation of included texts
• converting Delphi projects into Lazarus/Free Pascal projects
• customising the formatting of source code
• creating data dictionaries and writing boilerplate code for object-database mapping
• code analysis and review
• testing code modules
• documentation of routines, libraries and programs

The following illustration depicts the process which starts with writing high level Pascal code
in the Lazarus IDE right through to creating and running the final executable application.

5

Learn to program using Lazarus

Figure 1.1 The software and
hardware needed to develop an
application that runs on a computer

1.h An open source approach to software
Since 1998 the phrase 'open source' has been officially sanctioned to designate that category of
software which publishes its source in the public domain. This radical approach to software
development has flourished alongside the long-established closed source, commercially
licensed software typical of the products of many of the IT companies that mushroomed in the
latter part of twentieth century.
Most open source software is free (no payment is charged), and all of the source code is publicly
available. This means that it can be continuously corrected and improved by a large community
of interested people, none of whom may be employees whose wages depend on their work for
the project. Knowledgeable users who find bugs can submit solutions (known as patches) which,
if accepted, improve the software for all subsequent users, often within a matter of days
following the discovery of the bug. Patches might also be improvements or enhancements
adding new functionality, not related to bugs at all.
Open source software usually has many, many versions. Often a new 'bleeding edge' version is
available daily. This is true of both the Free Pascal Compiler (FPC) and the Lazarus IDE that are
principal topics in this book. However, periodically a 'release' version is tagged and numbered.
This is a version that has received extensive testing in the field (including use in commercial
programs developed using Lazarus/FPC), and for which bug fixes have been found and applied for
known bugs identified up to the point of the release.
Screenshots in this book are based on Lazarus 1.0 which was released on 29th August, 2012 and
a bug-fix release Lazarus 1.0.4 dated 3rd December 2012. It uses the Free Pascal Compiler
version 2.6.0 which was released on 1st January 2012. Version 2.6.2 was about to be released as
this book went to press. If you are using a later Lazarus (or Free Pascal) release the code
examples should work identically, but you may find some screenshots do not match your
version exactly. Windows is the most popular Lazarus platform (if SourceForge download
statistics are a reliable guide), and this book's screenshots are based on a 32-bit Windows 7
Lazarus installation. If you are working on Ubuntu or other Linux, or Mac OS X, or on one of
the various other Lazarus-supported platforms you will of course find this book's screenshots
somewhat different from the appearance of Lazarus running on your operating system with
your current theme. However Lazarus is truly cross-platform. Both the IDE itself and the code
examples that come with it compile on all supported platforms, both 32-bit and 64-bit.

Chapter 1 STARTING TO PROGRAM

6

Learn to program using Lazarus

1.i Getting help
Experienced software developers often encounter coding problems. How much more likely is
this for beginners! But your choice of Lazarus to learn programming is a good one for several
reasons.

Lazarus uses Pascal, one of the best languages for a beginning programmer to learn. Moreover
the better open source projects attract and consolidate a community around them. Not only
are there the core developers (in the case of Lazarus this is currently a team of about twenty regular
contributors) but scores of other experienced people who are involved in the project as users,
testers, bug reporters, patch submitters, translators, documenters, contributors to the forums
and mailing lists.

To get help in the Source Editor of the Lazarus IDE you place the cursor somewhere in the word you want
help on and press [F1]. If that is unhelpful you can also consult the wiki:
http://wiki.lazarus.freepascal.org

You can browse the Lazarus and Free Pascal forums and mailing lists where you can pose questions and ask
for (or offer) assistance on specific problems. This is the main Lazarus forum link:
http://www.lazarus.freepascal.org/
index.php?action=forum

Of course you might encounter a lunatic on one of the forums (as you might anywhere on the web), but
generally the Lazarus and Free Pascal online community is a source of help, support and encouragement.
You can also download and consult the documentation. Indeed you would be daft to overlook such a vast
and generally well-organised resource. Most of the information in this book is based on it.
http://sourceforge.net/projects/lazarus/files/Lazarus%20Documentation

Or you can search one of the mailing list archives such as:
http://lists.lazarus.freepascal.org/
pipermail/lazarus

There are several free online tutorials available which offer alternatives to the material presented here. One
of them can be found here: http://wiki.lazarus.freepascal.org/Lazarus_Tutorial

An online book about Pascal and Lazarus by Motaz Azeem can be found here:
http://code.sd/startprog/index.html

Chapter 20 entitled Further Resources at the end of this book lists a number of published Pascal/Lazarus
resources, and authors to look out for. If you have trouble installing Lazarus look in the Installation section
of the main forum here:
http://www.lazarus.freepascal.org/
index.php?action=forum

Chapter 1 STARTING TO PROGRAM

7

Learn to program using Lazarus

Often googling for a related Delphi topic will throw up useful leads, since Lazarus is largely
Delphi-compatible. However you will find that Delphi-based information on the internet is
often rather Windows-centric, because (except for the short-lived Kylix venture) until recently
Delphi was itself Windows-only.
There are a large number of example projects included with Lazarus in the examples folder,
located immediately below the main Lazarus folder in your installation. The IDE provides a
tool to explore this local collection of example programs and code routines. You will find it via
Tools | Example Projects...
There is an excellent and growing repository of example code you can both browse and use in
your own projects (and perhaps contribute to yourself) located at:
http://sourceforge.net/projects/lazarus-ccr/

Last, but not least, you have immediate access to every line of source code. This may not be
supremely helpful to a complete beginner, but you will be surprised how quickly you will
come to value the immense benefit of being able to look up exactly how some routine is coded
in the source in order to better understand its operation.
Another advantage of open source projects is that new (free) resources are contributed all the
time, so when you read this you will almost certainly find that further helpful material has been
added that was unavailable when the above list and Chapter 20 were written. For example the
Brook framework released by Silvio Clécio
http://github.com/silvioprog

just as this book went to press opens up web programming in a wonderful new way for Pascal
programmers.

1.j Review Questions
 1. What would you say are the main differences between low level and high level languages?

Can you give an example of each?
 2. What is the main 'brain' of a computer called?
 3. Who invented the Pascal language, and in which year did he publish his work?
 4. What units are used to measure the size of items of information?
 5. How would you write the (decimal) number 11 in binary arithmetic?
 6. What distinguishes software from hardware?
 7. Why do you need an IDE to develop software?

Chapter 1 STARTING TO PROGRAM

8

Learn to program using Lazarus

2.a The layout of the Lazarus IDE
This book assumes you have downloaded and installed Lazarus and its help system and
companion debugger, gdb. If you're having problems getting Lazarus up and running on your
system, the following wiki link may be helpful:
http://wiki.lazarus.freepascal.org/Installing_Lazarus

The book also assumes you have a basic familiarity with your operating system, and can save
and manage files and folders, navigate standard menus, choose from drop-down lists and use
other common operating system widgets to save preferred settings and so on.

Lazarus always loads an empty project when started (though you can configure it to load the last
edited project if you prefer). A Lazarus project is a collection of files and settings all related to a
particular application. Projects contain the information needed to build that application
(program). This book deals both with console and with GUI applications – the latter being
windowed apps that users interact with via mouse and keyboard, that utilise the components
(edits, labels, file dialogs etc.) provided by the operating system. A project is stored in its own
folder (directory).
Note: Lazarus will not prevent you from storing more than one project in a single folder, but
to do so is asking for trouble.

Chapter 2 LAZARUS AND PASCAL

Figure 2.1 The Lazarus IDE when first installed, with various sections labelled

9

Learn to program using Lazarus

The default project name Lazarus assigns to its opening project is project1. This is
unsatisfactory as a long term name, but will do for now. The project's name is helpfully
displayed in the title bar at the top of the main Lazarus window, and if you save the project
(until you first save a project it only exists in memory) the main program file will be saved using the
project name with an .lpr extension. Actions in Lazarus can often be accomplished in one of

four alternative ways. For instance, to save a project you can:

1. Navigate the main menu to choose your desired action – in this case
Project | Save Project (or the menu item Project | Save Project as...).

2. Click a toolbutton in the toolbar area, in this case
the floppy-disk-icon toolbutton either the 4th or 5th
from the left.

3. Press the shortcut key combination [Ctrl][S]

or [Shift][Ctrl][S].
4. Right-click to open a context menu with selectable options (not applicable in this case of

saving a project). In addition to the title bar, main menu and toolbar area already
mentioned, the IDE includes at its first default showing (see Figure 2.1) the following:

• Component Palette
• Source Editor

• Form Designer (or Form Editor)
• Object Inspector
• Messages Window

The Form Designer may not be visible. It can be hidden by the Source Editor. The convenient
toggle key [F12] brings the Designer forward above the Source Editor, or places it behind the
Editor on the next [F12] key press. This is a quicker alternative to using the main menu option
View | Toggle Form/Unit View.
Note: The shortcut key combinations mentioned in this book are the defaults installed with
Lazarus, which you may want to customise (see Tools | Options... | Editor, Key Mappings).

To save undue verbosity this book will refer to the Component Palette as the Palette, the Source
Editor as the Editor, the Form Designer as the Designer, the Object Inspector as the OI, and the
Messages Window as Messages. There are a multitude of further dialogs and windows in the
IDE which you will use in due course, but the above-mentioned items are (by default) always on
display, and usually needed in developing any project. Any window can be closed by clicking
on the [X] Close icon in its title bar; or by using the [Ctrl][F4] shortcut; or by right-clicking on its
title bar and choosing Close. Windows (whether hidden or not) are listed in the Window menu,
and if you cannot find a particular window you can locate it in the Window menu list and click
on its name to focus it in the IDE. You can use the View menu to open many IDE windows if
the one you want is not yet listed under the Window menu. Note: Versions of Lazarus after 1.0
may have introduced bug-free support for window docking. If so, you may prefer to move to a
docked window layout.

2.b Two different sorts of program
Lazarus enables you to produce two rather different styles of program, either console or GUI
programs. Console programs run in the Linux Terminal (or equivalent) or in a console window
under Windows. Console programs have a text-only interface, and typically you pass data to a
console program when it runs initially via parameters given on a command-line such as

dir /w/s/p (Windows)
man -t ascii (Linux)

Chapter 2 LAZARUS AND PASCAL

10

Learn to program using Lazarus

Console programs tend to be designed to do one particular task well, and are often lightning fast
in execution because of their text-based, lightweight user interface. They were the only kinds of
programs possible when Wirth first designed Pascal.
The later sections of this book will focus mainly on GUI programs which are nearly always much
larger in executable size (from approximately 10MB upwards). The size increase over console
programs arises mainly because of the much more complicated user interface code (graphical
rather than character-based) that GUI programs link in, and the event-based paradigm GUI
programs require; whereas most console programs are purely procedural.
 The following seven chapters teach Pascal using console program examples since that is
slightly easier for beginners. There is a focus on GUI programs from Chapter 10 onwards.
Lazarus loads an empty GUI project by default when first started. However, it is simple enough
to discard this and choose to develop a console project. Select Project | New Project... from the
main menu, which opens the Create a new project dialog (see Figure 2.2).

Figure 2.2 Choosing the type of Lazarus project to create

If you click on Program, not on Application or Console application (which looks promising but is
too complex for us at this stage) and then click on [OK], Lazarus will display a skeleton Pascal
console program in the Editor. The code will look like this:
program Project1;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes

 { you can add units after this };

begin
end.

Chapter 2 LAZARUS AND PASCAL

You'll see that Lazarus has named this program Project1, and given it the filename
project1.lpr which is shown both in the tab at the top of the Editor, and in the statusbar at the
base of the Editor. However, the program only exists in memory at this point. In order to save
the program to disk create a new folder called Chapter 2 in an area where you have file write
permission, and choose Project | Save Project As... In the save-dialog give the project the name

firstproject.lpi (.lpi will be stipulated as the default file extension).

Note: It is recommended to name all programming files in lowercase. This avoids later cross-
platform problems arising when you share or publish your code, and will help prevent you
loading and working on firstProject.lpi later thinking it is the same project (if you are
currently working under Linux or working on a Mac). On Windows, of course, it would indeed be
the very same project. If you use your system's file browser to examine the contents of the
Chapter 2 folder you'll see that although you only appeared to save one file
(firstproject.lpi) Lazarus has in fact saved three files:

11

Learn to program using Lazarus

firstproject.lpi
firstproject.lpr
firstproject.lps

The .lpr file is the Pascal program file, the text file whose contents are displayed in the Editor.

The initial “l” of the three filename extensions stands for Lazarus
• “pr” stands for “program” (it could stand for “project” - in Lazarus the two terms effectively

mean the same for simple projects). If you come from a Delphi background you will find
Lazarus projects more limited than Delphi projects in that they cannot contain sub-projects,
and there are no project groups.

• “pi” stands for “program information”
• “ps” stands for “project settings”

The .lpi and .lps files are quietly created by Lazarus for every new project. They are XML

text-format files used internally by Lazarus to store information about this named project, and
to store details about your particular setup so that when you next edit this project Lazarus can
restore your programming environment as it was, with IDE windows in the positions they
were, various files you may have had opened now reopened at the same place etc.

Note: The firstproject.lpi file is maintained by Lazarus specifically for this project. If your
operating system supports association of file extensions with program executables, you can
double-click on an lpi file using your system file browser to start Lazarus and load that

particular project. The same project can also be loaded by double-clicking on the project's lpr

file.

2.c Writing, compiling and running firstproject
Whatever sort of project you create in Lazarus (console or GUI) the IDE starts you off with some
basic Pascal code. The code Lazarus writes for you is a skeleton – a template, if you like,
provided with the intention that you will flesh it out with further valid Pascal statements so
that the program is complete. Then, when it is compiled, it will do something useful.
Accordingly, let us add a few lines of Pascal code to the provided skeleton (which is already a
valid Pascal program, save for the fact that it “does nothing”). In the Editor add lines between begin
and end so that your program looks like this:

Chapter 2 LAZARUS AND PASCAL

program firstproject;

{$mode objfpc}{$H+}
uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

begin
 writeln('A Free Pascal program');
 {$IFDEF WINDOWS}
 readln;
 {$ENDIF}
end.

12

Learn to program using Lazarus

Note that the statusbar at the bottom of the Editor now shows the full path to firstproject,
and there is an asterisk (*) by the project name in the tab at the top of the Editor, and Modified
appears in the Editor statusbar. The asterisk has the same meaning as the Modified notification.
It indicates that you have typed text to change the contents of the Editor, and not yet saved
what you have written. The act of compiling this code will automatically save your changes.
Once saved the asterisk and Modified will disappear (until you edit the code further).
Choose Run | Run (or click the green arrow toolbutton 3rd from the left on the second row, or press the
shortcut key [F9]) to compile and run firstproject. You will see several messages flash by in the
Messages Window, and then a console window (with the full path to the firstproject executable as
its title) will appear in the foreground. The last message left in the Messages window: Project
"firstproject" successfully built confirms what you see in the Terminal or console
window (see Figure 2.3).

Figure 2.3 The firstproject executable running

Note: If you have ticked the Show compile dialog checkbox on the Environment, Files page of
the Tools | Options... dialog you will see a Compile Project dialog which tracks compilation
progress and gives a statistical summary of number of lines compiled, errors encountered and
suchlike.

The Terminal or console window displays the text A Free Pascal program, which corresponds
to the Pascal statement you inserted: writeln('A Free Pascal program');

In Windows you can close the program by pressing the [Enter] key, or clicking the [X] close icon
to return to the Lazarus IDE.

Figure 2.4 Firstproject's files and folders

Chapter 2 LAZARUS AND PASCAL

13

Learn to program using Lazarus

If you check the contents of your project folder you will find a new file named firstproject
(Linux) or firstproject.exe (Windows) which will be the largest of the four firstproject.*

files. You will also find two new sub-folders named lib and back-up.

These are created in every project folder for you by Lazarus (see Figure 2.4).
The backup folder, as you would expect, contains backup copies of the three text-format

firstproject files. They are named by default with an additional .bak extension

(e.g. firstproject.lpr becomes firstproject.lpr.bak). You can customise this naming

scheme if the default does not suit you via Tools | Options... | Environment, Back-up.
You can turn off the backup feature altogether if you wish.
The lib folder contains a sub-folder named according to the platform you are working on,

and this sub-folder contains intermediate binary files resulting from the compilation and
linking process. You can safely ignore the contents of the lib sub-folder. The Pascal language

shields us from needing to be concerned with the low-level processes that require the
production of these files. If any of them is deleted accidentally, they will be regenerated as
necessary, and all this happens largely unseen in the background.

2.d The structure of a Pascal program
A Pascal program has a strict grammar and syntax, and the rules are few and simple.
• A Pascal program begins with a program heading. This consists of the reserved word
program followed by the name you give the program followed by a semicolon separator.

• An (optional) uses clause. This consists of the reserved word uses followed by a comma-

separated list of unit names ending with a semicolon separator. A Pascal program is built
from source code modules called units. Each unit is stored in its own file and compiled
separately. The compiled units are linked to create the final executable program.

• A program block containing statements which begins with the reserved word begin and

ends with the reserved word end. The program block is closed with a final dot

(period, or full stop).

To summarise, a Pascal program has this structure:

program ProgramName;
uses unitA, unitB, ..., unitN;
begin
 {statements go here}
end.

If you look at the firstproject.lpr program file in the Editor you can see it takes the form
above, but it includes comments, which make it look rather more complex than the simple
skeleton code outline presented above. Here is that code again:

program firstproject;

{$mode objfpc}{$H+}
uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

begin
 writeln('A Free Pascal program');
 {$IFDEF WINDOWS}
 readln;
 {$ENDIF}
end.

Chapter 2 LAZARUS AND PASCAL

14

Learn to program using Lazarus

The remaining parts of the code are Pascal statements. Bold indicates a reserved word,
or keyword, i.e. a word with a special meaning in Pascal such as begin, or text strings.

Normal typeface indicates a Pascal name (the above code contains a program name, two unit names
and the names of two Pascal routines declared in the hidden system unit).
Removing the comments strips the program to its essentials, when it looks like this:

program firstproject;

uses
 cthreads, Classes;

begin
 WriteLn('A Free Pascal program');
 ReadLn;
end.

Lazarus has helpfully included two units (cthreads and Classes) assuming we would need

them. In fact, for this simple first program neither unit is needed (unnecessary units are ignored
by the compiler, so it does not cause an error to leave them in the source). The only unit needed is the

system unit which is included by default in every Lazarus/FPC program (and does not need to
be – indeed should not be – declared explicitly). The system unit contains the WriteLn and ReadLn

routines we use here. So the bare bones of our working firstproject program is in fact this
code:
program firstproject;

begin
 WriteLn('A Free Pascal program');
 ReadLn;
end.

We have a program heading, no uses clause (this is not always required), and a program block
with two statements calling predefined Pascal code routines found in the implicit system unit.
The first, WriteLn('. . .'), displays a string of text on the console, and the second, ReadLn,

waits for an [Enter] keypress.
The second statement is not required on Unix systems. However it is required on a

Windows console, which behaves differently from the Unix Terminal. Windows will scroll
screen text away and close the console unless explicitly instructed to wait by using a ReadLn

statement. Lazarus is a cross-platform development environment. It minimises or hides the
differences between supported platforms as much as possible, but cannot shield us from the
more glaring differences. So we sometimes have to wrap Pascal code in a conditional
compiler directive to take account of platform differences, which is what the

directives do here.

{$IFDEF }

Notice how each statement ends with a semicolon to separate it from the
next statement, and how the final end is followed by a dot (not a semicolon) to indicate the end
of all Pascal code.

Note also how the code is laid out with indentation to set off the statements between the
begin and end, and a blank line between the program heading and the main code block.

You are free to style your code in a way that is comfortable for you. However,
the recommended style is to follow the example of the FPC/Lazarus code itself.
The idea is to make the code as easy to read and understand as possible. Extra white space to
set statements off or to emphasise program logic goes a long way to enhance the readability of
code, and costs nothing in terms of the final program output (since the compiler discards all tabs,
spaces and newline characters used for formatting). It is perfectly valid Pascal to write the above
program like this:

program firstproject;begin writeln('A Free Pascal program');readln;end.

Chapter 2 LAZARUS AND PASCAL

15

Learn to program using Lazarus

The compiler can read and process this just as easily (perhaps even a microsecond faster).
However, it would be insane to write code like that. Since Pascal allows you to set out code in a
way that enhances its readability, take advantage of this facility, and exploit it to the full.
Everyone who reads your code (including yourself returning to your code much later)
will be grateful to you.

2.f Use of names in Pascal
A Pascal program is built from units which are self-contained code modules containing
ancillary code used by the main program. Rather than stuffing all needed code into a single
huge file, Pascal program code is modular in design. This aids both in the reuse and sharing of
code among projects and between programmers, and it also speeds compilation (since pre-
compiled units that have not been changed do not need to be compiled again before linking).
You are free to give your program (application) and the new units you create for it whatever
names you like, subject to certain naming restrictions and recommendations:

• Pascal names can contain only alphanumeric characters or the underscore _ character (no
punctuation symbols, or characters such as %, #, etc. are allowed in names).

• The first character of a name must be an underscore or alphabetical (it cannot be a digit, so
project1 is OK, whereas 1stProject is not allowed).

• Although it is not a Pascal restriction it is recommended to use only lowercase names for
the names of Pascal files (pas and .lpr and inc filenames).

2.e
Some
{$mode objfpc} and { you can add units after this }. The literal text (which in Pascal code is always
surrounded by single quote marks) is 'A Free Pascal program'.
As far as the compiler is concerned, comments come in two flavours:
• compiler directives starting with {$, which Lazarus colours red.
• plain comments starting with { or (* or //, which Lazarus colours blue.
The Editor colours comments appropriately on-the-fly as you type them. (You can customise these
colours in the IDE Options dialog, accessed via Tools | Options...).
{Plain comments} have to be surrounded by { } curly brackets. They are not Pascal code,
and are completely ignored by the compiler. They are inserted only to be helpful to the
programmer, perhaps to document a feature of the code, or (as here, inserted by Lazarus itself)
to remind you where further units you might need are to be placed: { you can add units after this }.

A comment has to be enclosed within curly brackets to signify that it is a comment (not code),
and comments can span more than one line if they are too long to fit on a single line. There is an
alternative C-style one-line comment which opens with a double forward-slash

// this comment cannot be longer than one line
Such comments close with a carriage return or newline character (the normally hidden character(s)
that are inserted when you press [Enter] in the Editor to start a new line of code).
{$ Compiler directives} are likewise comments enclosed by curly brackets. However they all start
with a $ symbol to indicate their nature as compiler instructions. These are comments that are
not ignored by the compiler. However, they are not Pascal code. They don't get compiled into
code that ends up in your program, but they do influence how the compiler treats your code.
So, when required, they are essential.

Note: There is a third type of comment, the {ToDo comment item}. The compiler ignores these
comments (as it does all comments that are not compiler directives). However the IDE knows about
ToDo comments, and can help you organise ToDo tasks based on the location and content of
{ToDo comments} you insert in your code. There is more about this in Chapter 13, Section c.

Comments in Pascal code
 parts of code are comments or literal text. Comments in the above code include

. .

Chapter 2 LAZARUS AND PASCAL

16

Learn to program using Lazarus

This is because of the risk of ambiguity or confusion on case-sensitive operating systems where
unit1 pas is a different file from Unit as. This is an unavoidable issue when a case-

insensitive language (Pascal) meets a case-sensitive OS (all Unixes).
• The best Pascal names are self-descriptive and self-documenting. The names encountered

above (Classes and firstproject) are good examples of descriptive Pascal names.
If you choose the names you introduce carefully, you may not need comments or other
documentation for simple programs. You will also be very thankful for the care you took
over naming when you come to re-read your code months later – it will then be far easier
for you to understand it yourself!

• A common convention is to use camel-casing for names within code (not for filenames).
For example: LoopCounter, DialogBackgroundColor. A readable alternative is to use
underscores (Loop_counter, Dialog_background_color) since spaces are not allowed
within names.

• Pascal names are not case-sensitive. The identifiers classes, Classes, cLaSsEs, CLASSES,
ClAsSeS and so on are all identical in Pascal. If you come from a C-derived language such
as C# or Java this will take some getting used to, and possibly be a great relief, saving you
from (some) hard-to-spot spelling mistake bugs.

• When Lazarus writes code for you it supplies default names such as project1 and unit1
and Form1 because some name has to be given. These names should be changed to
something more meaningful as soon as possible. No one names their children: child1,
child2, and child3. Likewise you should give your variables and code routines descriptive
and meaningful names. This also makes the code more interesting to read, just as a play
about Character1, Character2 and Character3 seems very dull compared to one about
Romeo, Juliet and Friar Laurence. A program with variables of type ex1 named a, b and c
gives few clues about its nature compared to a program with variables of type TCar named
Volvo, Opel and Skoda.

• It does not matter in the slightest whether you call a new variable aColor or aColour.
However because Lazarus is largely Delphi-compatible, and Delphi was developed in
American (US) English, many existing names in the LCL and FCL follow Delphi and use
American rather than British spelling. Note that though you could name a variable aGirl,
you could not name it einMädchen since accented characters are not allowed, but uneFille
would be OK, just as unGarçon would not be.

The program heading (program firstproject;) names the program and the name chosen has

to be a valid Pascal name.

2.g Compiler directives
Fortunately beginners rarely need to worry about compiler directives (the comments beginning
with {$ that we encountered earlier). This is because the really essential directives are inserted
automatically by Lazarus in the template code written by the IDE. So you can safely learn
about Pascal and write many programs without needing to learn any more about compiler
directives, and without needing to use one yourself.
Nevertheless, it is worth looking briefly at the directives Lazarus has inserted (and the one we
inserted ourselves), so you can be familiar with the general principles governing the need for
them, and not regard them as mysterious or arcane.
Compiler directives are mostly either:
• general instructions required to cover every part of your project's code.
• specific instructions relating to a particular platform.
• instructions you define and insert to enable you to produce different executables for

different circumstances, such as 'debug' and 'release' versions of a program.
If we examine the directives encountered so far in firstproject, you will see:

. 1.p

Chapter 2 LAZARUS AND PASCAL

17

Learn to program using Lazarus

{$mode objfpc}{$H+} immediately after the program heading.
{$mode objfpc} sets the dialect of Pascal we use (strict Object Pascal with support for classes, and
not the looser Delphi dialect).
{$H+} sets the type of string variable support required (H+ indicates we will use ansistrings).

{$IFDEF WINDOWS}
 ReadLn;

{$ENDIF}

Here are two linked directives wrapping a Pascal routine. A $IFDEF must always be followed
by a corresponding $ENDIF. The {$IFDEF WINDOWS} means “If Windows is defined then ...”
Lazarus defines WINDOWS automatically on Windows machines. So this instruction tells the
compiler to include code for ReadLn at that point in the program, but only if the program is
compiled for Windows. If the program is compiled on Unix, that code is not needed and not
wanted, and so is not included in the program.
Such directives enable Lazarus to deal cleanly with all manner of platform differences where
different code routines are needed because of local variation between operating systems.
Needing the occasional $IFDEF is a consequence of using such a versatile IDE as Lazarus that
runs on Windows, Mac, Linux and elsewhere.
The first compiler directive which wraps one of the unit names is more complicated because it
is nested (i.e. one directive is wrapped inside another one). However the effect is similar to the
$IFDEF WINDOWS example – it provides specifically for one particular family of platforms (Unix)
that needs the cthreads unit if UseCThreads is defined (which it usually is). Here it is again:

{$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,

{$ENDIF}{$ENDIF}

 2.h Review Questions
 1. Why is Ides-Of-March not a valid Pascal identifier?
 2. What are the two main categories of program Lazarus can produce?
 3. Why should you not name a Lazarus project Begin?
 4. What is wrong with the following code?

{$IFDEF DARWIN}
DoDarwinSpecificRoutine;

 5. Is 1stProgram a valid Pascal name?

Chapter 2 LAZARUS AND PASCAL

18

Learn to program using Lazarus

 Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

3.a Pascal types
You will recall that there are two sorts of entities in a computer program: code and data.
The data are the chunks of information that the program deals with (such as the colour of the
typeface used, or the first line of a business address the user enters, or the current date).
Code, on the other hand, represents instructions to the computer's CPU (and via the operating
system to its display, disk drives and so on) about how to process that data.
A program is a complex combination of code and data, designed for a particular application
purpose.This chapter is largely to do with data. Pascal helps you to organise your data by using
three concepts, those of

• type (declaration: type)
• variable (declaration: var)
• constant (declaration: const)

Of the three concepts the fundamental, governing idea is that of type.
Pascal is known as a strongly-typed language. This is a Good Thing, which will help you avoid
one source of sloppy programming by forcing you to consider the types you employ at every
stage of writing code. Data used in programs is routinely broken down to small elements of
known size (which after breakdown can always be recombined). This is partly because a computer's
memory is a limited resource, and memory usage needs to be planned carefully.
Memory can be squandered but – however much is installed – it is a finite resource that
eventually cannot accept any further code or data. If your program attempts to use more
memory than is physically available then it suddenly becomes very sluggish. Other running
programs are also affected, and (if it also runs out of virtual memory) the computer will freeze or
crash. Memory should be conserved and used prudently.

In Pascal all data is categorised by type. Each data type has a known size (even variable-size data
types have a current size that is known, otherwise their memory usage could not be managed).
Data and type sizes are measured in bytes or multiples of bytes: kilobytes(kB), megabytes(MB)
and gigabytes(GB).
There are a number of simple types which occupy at most a few bytes, and from which larger
structured types are built. All types must be declared before they can be used.
A number of common types are predeclared (effectively they become part of the Pascal language)
and so have names which you should not reuse for other purposes (even though in some cases you
can do so). These types are declared in the libraries (RTL, FCL and LCL) that Lazarus uses.

It is possible to redefine many of the identifiers from the libraries used by Lazarus
programmers. However to do so would be very confusing, not only to you, but to anyone else
reading your code. Unless you enjoy managing chaos these names are best left alone.
So although many of the types you will encounter and use are not actually part of the Pascal
language definition (they are simply declared in various units of the RTL/FCL/LCL, just as you will be
declaring types of your own before long), it is safest to think of these predeclared types as if they
were somehow set in stone, and immutably part of Pascal.

Floating point types include single, double and extended in Pascal. They are often referred to
generically as real types, though in the FPC implementation of Pascal, real is also a platform-
dependent type which equates either to single or to double. Nevertheless the term real is
often used as a generic description equivalent to “floating point” in many articles and books
about Pascal. A few of the predeclared simple types available to programmers are listed below
in Table 3.1.

19

Learn to program using Lazarus

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

All types must be declared somewhere before use. A declaration defines an identifier to be
used in Pascal expressions and statements, and in appropriate cases will allocate memory for
the identifier. The above predeclared types can be found in the FPC sources (or internally within
the compiler).

A Pascal type declaration has the format:
type TypeName = definition_of_the_type;

Here is an example:
type integer = longint;

This example defines an alias type – we can refer to the longint type either as longint or as
integer. The two names refer to an identical type on 32-bit computers which can contain values
such as -78 or 2,341 or 0. Here is another example:

type TDaysInTheMonth = 1..31;

This defines a subrange type, which limits numeric data of that type to values between 1 and
31 inclusive. You can define a subrange of any ordinal type (see the following section).

Note: Since this last subrange example is a type we have made up ourselves (not a predefined
Pascal type) we started the type name with a capital T (for Type). This is just a convention,
 which Lazarus will not force you to follow. However, it is helpful for readers of your code to
mark simply, in a visually distinctive way, the difference between the names of types and the
names of variables.

The Editor, and this book, uses a bold mono-spaced font to mark Pascal keywords like end.

Other Pascal identifiers are in a normal mono-spaced font such as WriteLn.
Keywords should not be used for anything other than the meaning reserved for them in the
Pascal language. Although you can reuse identifiers like WriteLn for purposes other than the
normal RTL usage of the procedure so named, it is very unwise (and most confusing) to do so.

Data to be stored Size in bytes Predefined Pascal type

ASCII character 1 Char (ansichar)

Boolean value (True or False) 1 boolean

Integer between 0 and 255 1 byte

Integer between -128 and +127 1 shortint

Integer between 0 and 65,535 2 word

Integer between -32,768 and +32,767 2 smallint

Integer between 0 and +4,294,967,295 4 longword (cardinal)

Integer between -2,147,483,648 and
+2,147,483,647

4 longint

Real value between 1.5E-45 and 3.4E38 4 single
Integer between -9,223,372,036,854,775,808
and +9,223,372,036,854,775,807

8 int64

Real value between 5.0E-324 and 1.7E308 Double

Dates and times between 01.01.0001 and
31.12.9999

8 TDateTime

Real value between 1.9E-4923 and 1.1E4932 10 extended

Table 3.1 Some predeclared simple types commonly used in Pascal

3.b Ordinal types
Ordinal types exhibit order. They have a limited set of values that can be ordered exactly.
Each value in the value set (except the first) has a unique predecessor, and each value in the set
(except the last) has a unique successor. For integer types the order (or ordinality) of the value is
the value itself.

20

Learn to program using Lazarus

Routine Parameter Return value Comment

Ord() ordinal expression ordinality of parameter Can be used in case selectors

Succ() ordinal expression successor of parameter Can be used only with directly
read ordinal class properties

Pred() ordinal expression predecessor of parameter Can be used only with directly
read ordinal class properties

Low() ordinal type or variable lowest possible value of
the given type

Also applicable to arrays and
strings

High() ordinal type or variable highest possible value of
the given type

Also applicable to arrays and
strings

Inc() ordinal variable incremented variable is
passed as a var
parameter

Use a 2nd parameter with
integers for an increment other
than 1. Also applicable to
pointer types.

Dec() ordinal variable decremented variable is
passed as a var
parameter

Use a 2nd parameter with
integers for a decrement other
than 1. Also applicable to
pointer types.

Table 3.2 Commonly used routines which take ordinal parameters

3.c The boolean type
The boolean type is a fundamental feature of all programming languages, and provides exactly
the right type for uncomplicated Yes/No, Black/White, Present/Absent sort of data.
The boolean type is part of the Pascal language, predefined ready for use. It can hold one of
two mutually exclusive predefined values: True or False. A boolean variable is sometimes
called a 'flag' in programming jargon, since its value flags up which one of these two mutually
exclusive states currently applies to that variable.
The comparison and logical operators always produce boolean expression results (see Chapter 5
for more about Pascal expressions), and conditions in conditional statements (if, while, repeat)
must resolve to a boolean expression (see Chapter 6 for more about Pascal statements).
Here is an example of declaration and use of a boolean variable named finished:

var finished: boolean = False;
begin
 repeat
 {some action that eventually sets finished to True};
 until (finished = True);
end;

Note that the final condition could be written more compactly as until finished;

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

For other ordinal types (Char, boolean, subrange and enumerated types) the ordinality of the
first value is 0, of the second is 1, of the third is 2 and so on. See Section 3.d for more about
enumerated types. All the single and dual byte types in the above table (Table 3.1)
of simple types are ordinal, as are the four byte longint and longword types. However floating
point types (single, double, and TDateTime which is based on a float type) are not ordinal.

It is impossible to say what number comes immediately before or after any floating point value.
For instance what value comes after 3.4? Is it 3.41, or 3.401, or …? Also the eight byte int64
integer is not a true ordinal type. Pascal provides several predefined functions that operate on
all ordinal types. They include the routines listed in Table 3.2

21

Learn to program using Lazarus

In addition to the one-byte boolean type which has been part of Pascal since 1970 there are
several newer 'boolean' types (byteBool, wordBool, longBool of type byte, word and
longint) which are assignment-compatible with boolean. They allow straightforward
interfacing with routines from C and C++, where any non-zero integer is regarded as True
when cast as a boolean. Thus longBool is useful as a return type for many Windows API
functions which return zero for failure and any non-zero integer for success. If bool is a boolean
variable which is True, then Ord(bool) returns +1 if bool is boolean, while Ord(bool) returns
-1 if bool is byteBool, wordBool, or longBool.

3.d Enumerated types
Suppose you are writing a program to record membership in your local singing group.
Each person's data includes a boolean value to indicate whether they have paid or not. You call
it HasPaid, and declare it thus:

Once the member pays their annual membership fee their HasPaid value is changed from
False to True. However, it turns out that some members have paid a lifetime subscription, and
so don't need to be sent subscription reminders. Do you introduce another boolean variable
LifetimeMember?
Then a probationary membership is introduced after which new members have an audition and
can be accepted long term (if they opt to continue), or they can opt to leave; or perhaps they fail
the audition. In that case any fee they have paid is refunded. So the actual possibilities are more
complicated than merely a HasPaid (True) and HasPaid (False) situation. In fact you need a

variable that can track the following situations that could describe a member's payment:

• Has not (yet) paid
• Has paid a lifetime subscription and should not ever be sent a subscription reminder
• Has paid the current year's subscription
• Has paid a subscription and had it refunded

Where one option from a range of more than two options is to be stored in a variable you need
an enumerated type, rather than a boolean type.
Subrange types were mentioned earlier, which are simply a limited range of values taken from
an already available base type. For instance:

type TLiquidCelsiusRange = 0..100; // a subrange of integer
TLowercaseChar = 'a'..'z'; // a subrange of Char

Enumerated types are similar, in that they are ordinal types in which each value in the type is
in a specific order, and has a next value (except the last one) and a previous value
(except the first one). Enumerated types differ from subrange types in that they explicitly declare
the name of every possible value, as well as its fixed order in the sequence.
The above membership payment situation would be covered by an enumerated type declared
as follows:

var HasPaid: boolean = False;

type TPaymentKind = (Unpaid, LifetimePaid, CurrentYearPaid, Refunded);

Likewise we could declare a TCelestialBody type like this:

type TCelestialBody = (planet, moon, asteroid, comet, meteor, star,
blackHole, darkMatter);

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

22

Learn to program using Lazarus

Notice the use of brackets () to delineate the list of elements in the type, commas to separate the
elements in the list and the = sign used in the declaration. We also stick with the convention of
starting our own type names with a “T”. In fact the boolean type can be thought of as an
enumerated type containing only two values defined as follows:

type boolean = (False, True);

The LCL makes extensive use of enumerated types to give meaningful names to frequently
used properties. (See Chapter 8 for more information about classes and properties).
For example, the TForm class has a property called BorderStyle of type TFormBorderStyle which
is declared thus:

type TFormBorderStyle = (bsNone, bsSingle, bsSizeable, bsDialog,
bsToolWindow, bsSizeToolWin);

giving you a choice of six border styles for windows in your programs. There are exactly six
border styles to choose from – no more, and no less. By contrast some controls (widgets) you can
drop on to a form have a slightly different BorderStyle property which is of type
TBorderStyle (note the slightly different name), which is declared thus:

type TBorderStyle = bsNone..bsSingle;

Here TBorderStyle is a subrange of TFormBorderStyle, in this case having only two elements.
The TPanel component has such a BorderStyle property. It gives panels the option of having
no border, or a single line border. It does not offer a sizeable border built in to its functionality
as the TForm class has.

FPC lets you assign an ordinal value to some or all of the named enumerations, provided you
declare them in ascending order. For instance, the following declaration is legal in Free Pascal:

type TLowPrimes = (two=2, three=3, five=5, seven=7, eleven=11,
thirteen=13, seventeen=17);

This declares an enumerated type where the Pascal name of each possible value in the type
corresponds exactly to its ordinal value. If the TLowPrimes type were declared like this:

type TLowPrimes = (two, three, five, seven, eleven, thirteen, seventeen);

then, though the names of the type elements are identical with the earlier declaration, the
ordinal values would be as for any default enumerated type, starting at zero and incrementing
steadily one by one (Ord(two)=0, Ord(three)=1, Ord(five)=2, etc.).

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

23

Learn to program using Lazarus

3.e Type conversion
Because Pascal is a strongly typed language, there is often a need to convert one type into
another type. It is very convenient to have an integer type such as byte for holding small
positive integer values on which you can perform arithmetic:

var a: byte = 14; b: byte = 2;
begin

 WriteLn('The value of a x b = ', a * b,'; a minus b = ',a - b);
end;

However you cannot directly display a byte value – first it has to be converted to a string to be
displayed. The WriteLn() procedure does this conversion for us implicitly. The Write/WriteLn
and Read/ReadLn procedures are in fact quite complex routines in order to handle all these
implicit type conversions (in addition to their ability to handle a varying number of arguments).
Most Pascal routines are not so versatile, and are designed to deal with a more limited
range of types, often being defined only for one type. This is both an aid in avoiding bugs
(since the compiler will notify you if you try to pass data of the wrong type to a type-specific routine),
and a nuisance when Pascal's type checking seems overly restrictive.

In Chapter 9 the Section d dealing with overloading discusses ways to circumvent this
type-limitation imposed on parameters passed to Pascal routines.
There are several ways to work with such a strictly type-checked language as Pascal when you
find the compiler's type checking too restrictive. Here are three of them:
Ÿ use a type conversion routine (the subject of this section).
Ÿ use a typecast (the subject of the next section).
Ÿ use the variant type (a topic not treated in this book, but particularly useful for COM/OLE

programming, for which the variant type was introduced into Pascal; and to a lesser extent useful in
database applications, if performance is not critical).

Pascal provides numerous functions to convert values explicitly from one type to another as
WriteLn and ReadLn do implicitly. The following table (Table 3.3) lists some of the most
commonly used routines, though there are a great many more than those listed here.

Chr(b: byte): Char Byte Char Equivalent to the typecast Char(b)

Ord(x: ordinal): integer any ordinal typepositive Mainly useful for characters and
enumerated values

Val(s: string; var V; var
code: integer)

string numeric The numeric V parameter can be
integer, int64 or a real value

Trunc(r: realvalue): int64 floating point int64 If r is infinite or NaN Trunc gives a
runtime error

Round(r: realvalue): int64 floating point int64 Rounds r to the nearest integer
value, using banker's
rounding for .5

Int(r: realvalue): realvalue floating point floating
point

Int returns a floating point value
with its fractional part set to zero

IntToStr(value:integer):
string

integer, int64,
QWord

string The resulting string has the
minimum number of characters

DateToStr(aDate:
TDateTime): string

TDateTime string The resulting string has the short
date format

StrPas(p: PChar):
shortstring

PChar shortstring The resulting string is truncated at
character 255 if longer than this

Name of routine Type Result type Comment

Table 3.3 Some commonly used Pascal type conversion routines

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

24

Learn to program using Lazarus

3.f Typecasts
The FPC expects the left hand side and right hand side of assignment statements to be
type compatible, and if they are not will give an error in the Messages window something like
“Expecting ansistring and got longint”. If the offending expression is the same size as the
incompatible type it is possible to cast it (or typecast it) using the name of the type and
parentheses. For instance:

var i: integer;
 b: boolean;
 c: Char;

begin
 i:= integer('A');
 b:= boolean(0);
 c:= Char(43);

end;

You can cast between ordinal types freely even when they are of different sizes, and you can
freely cast between real types such as from single to double or between integer types.
In fact the compiler does this for you, and often no explicit casting is required.
Bear in mind that casting between different sized integer types, even if allowed by the
compiler, may lead to loss of data if you cast from a larger to a smaller type. For instance,
consider this program snippet:

var b:byte;
 i:integer = 2000;

begin
 b:= byte(i);
 WriteLn('The value of b is ',b);
 ReadLn;

end.

The display will show that b is equal to 208 (not 2000), since part of the binary data in the

integer variable i has been discarded in making the cast to the smaller byte variable.

Casting is generally a risky undertaking because you are accessing a value as if it were
something other than what it actually is. If you know the underlying storage layout of the types
involved you will probably understand what you are doing, and perhaps feel safer.
Nevertheless typecasts can lead to hard-to-locate bugs, and it is better to look for a way to code
that does not require casting if possible, since casting is a way of circumventing compiler
checks that are usually helpful. A compiler range or overflow check is defeated by a typecast
like the above

b:= byte(i);

since the cast specifically tells the compiler that it is OK to treat this integer as a byte
(when it might not be).

Pascal allows casting between ansistring and PChar types – see Chapter 4 for more about
strings and character arrays.

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

25

Learn to program using Lazarus

3.g Variables
Types only become useful when we have an actual data item of that type, a variable.
A variable is a named memory location which holds a specific type. Its value can change at
runtime, and indeed it is this potential for variation that gives variables their name.
Memory is involved because the computer has to put its data somewhere, and be able to refer
to it. Computers store all data (whether or not it will eventually be stored more persistently in a disk
file or on a network server in the Cloud) in short term memory (also called RAM for Random Access
Memory).

Naming each variable you use gives you a handle on all uses of that variable.
The compiler associates each program variable with a specific place (an address) in memory
where that variable's data is stored. When your program has finished using the variable, the
compiler arranges for that particular memory location to be released, and made available for
potential reuse by another program. A later section on pointers (3.n) gives details of a Pascal
type that can be used to refer to specific memory addresses without knowledge of the name of
the variable stored there. Like types, variables have to be declared before they can be used,
and all variables must be of some known type (i.e. a type that has been declared somewhere earlier
in the program or unit, or in a unit listed in the uses clause, or declared in one of the required
packages/libraries listed in the Project Inspector as a dependency).
A variable declaration has the format:

var VariableName: VariableType;

Here are some examples:
var height, width, length: integer;

daysInApril: TDaysInTheMonth; // this uses a type declared in Section a
keyJustPressed: Char;
CurrentAccountBalance: double;
OnlyUseCapitalLetters: boolean;

You can declare several variables of the same type all together by placing them in a comma-
separated list, as above with height, width, length.

3.h Initialised variables
A variable (i.e. a memory location) contains an unknown (random, rubbish) value at the start of a
program until the programmer makes some assignment that puts a known value into the
variable. Some languages initialise variables for you to a known initial value such as zero,
but Pascal does not. This is one cause of bugs which arise when a careless programmer omits to
give a variable an initial value. However, FPC provides for variables to be initialised at the
time they are declared. Global variables are initialised once when they first come into scope at
the start of the program to the value zero.
For local variables (used in routines) instead of writing:

var counter: integer;
 begin
 counter:= 0;
 ...
you can write the more concise code:

var counter: integer = 0;
begin

 ...
This is a very handy FPC feature (borrowed from C), enabling you to initialise variables when
you first find the need for them, helping you to avoid the uninitialised-variable bugs that
happen all too easily since local variables are not initialised automatically for you.

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

26

Learn to program using Lazarus

3.i Assignment: placing a value in a variable
Once a variable has been declared it is used in a program by means of the assignment operator
:= which is a dual-symbol operator made up of a colon followed immediately by an equals sign.
Given the following type and variable declarations, the assignments below are valid Pascal
statements:

type TDayOfWeek = 1..7;
var active: boolean;

dayOfWeek: TDayOfWeek;
golden_section: single;

begin
 active:= True;
 dayOfWeek:= 5;
 golden_section:= 1.618;

end;

Notice how the = equals sign alone is used in a type definition,
and the combination := in assignments.
The above three assignments (between begin and end) are all valid. However the following
assignment would produce a Warning:

 dayOfWeek:= 9;

active:= True;

active = True

The message would be Warning: range check error while evaluating constants since we have
defined dayOfWeek to be of a type that is limited to values between 1 and 7.
So trying to assign the value 9 to dayOfWeek is a programming error.

The FPC checks the code you write when you attempt to build or compile a project.
Any warning or error message is shown in the Messages window.
A warning will not stop compilation, but you should definitely pay attention to it – ignoring
warnings stores up trouble. An error means that the code as written is not compilable without
correcting the error.
When reading code (whether aloud or in your head) the assignment operator can be read as
“becomes equal to” so that

is read as “active becomes equal to True” (or “assign the value True to active”).
In algebra (and C) assignments are made using the equals = sign.
In Pascal this is not the case.
You can write

in Pascal (without a closing semicolon). This is a valid Pascal expression.
However it does not assign the value True to active, it compares the two values, and the result
of the comparison is a boolean value (True if the values are equal, False if not).
Chapter 4 has fuller details about Pascal operators and expressions.
Note that the variable has to be on the left hand side of this assignment. It is not possible to
execute the Pascal statement:

This will not compile. The Editor cursor will be placed at the beginning of True,
and the message will be: Error: Variable identifier expected. This is because True is a predefined
Pascal constant, not a variable, so no new value can be assigned to it. By contrast the operand
comparison (True = active) can be made with the operands in either order.

True:= active;

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

27

Learn to program using Lazarus

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

Assignment Outcome of the assignment Type of left hand side, A

A := expression The expression result is stored in A Any type

A += expression Adds expression result to A,
storing it in A

Numeric, string, set, pointer

A -= expression Subtracts expression result from A,
storing it in A

Numeric, set, pointer types

A *= expression Multiplies expression result by A,
storing it in A

Numeric, set types

A /= expression Divides A by expression result, storing
it in A

Real type

Table 3.4 Free Pascal assignment operators

3.j Extended numerical assignment operators
FPC has borrowed the shortcut numerical assignment operators familiar to C users, meaning
that a complete list of available assignment operators is as given in Table 3.4 below.

3.k Constants and literal values
A constant declaration has the format:

Constants are entities whose value stays constant, allowing you to give meaningful names to
values that do not change as the program executes. They are given a value in your code
('hardwired' at compilation) and keep that value throughout the program. You cannot change
them. Unlike variables, constants do not need to be explicitly given a type, since the compiler
can determine from the value given to the constant what is the most appropriate type for it.
All constants do have a type assigned to them by the compiler, but it is implicit.
Any ordinal, real, character or string value can be declared in a program as a constant.
Numeric constants are written simply as the digits of the desired number. For instance:

By default it is assumed that integer and float (real) constants are decimal (base 10) values.
You can specify unsigned integer constants as hexadecimal (base 16) values by prepending the
number with a $. Likewise you can specify a constant as octal (base 8) by prepending it with &,
or specify it as binary (base 2) by prepending it with %. The following are alternative ways of
declaring a constant of decimal value 10:

const ConstantName = value;

const DaysInTheWeek = 7;
e = 2.718281;

const tenDecimal = 10;
 tenDecimalDefinedInBinary = %1010;
 tenDecimalDefinedInOctal = &12;
 tenDecimalDefinedInHex = $A;

Note: This binary and octal notation only operates if {$mode objfpc} has been specified.

Floating point constants can also be specified using engineering notation, which is essential for
very large numbers.

const Avogadro = 6.022141E+23;

Character and string constants are written as text enclosed in single quotes. The quote marks
are not part of the value – they merely signal to the compiler that this is a character or string
constant. You cannot use double quotes “ “ to indicate a string value, only single quotes ' '
(apostrophes). For instance:

const Space = ' ';
 IDEName = 'Lazarus';

EmptyChar = '';
DoubleQuoteChar = '"';

28
Learn to program using Lazarus

If the string itself contains a single quote, that quote character has to be doubled when written
to inform the compiler that it is an actual quote character, and not yet the end of the text string.
So the phrase Reader's Digest has to be written in Pascal as:

const MagazineName = 'Reader''s Digest';

Here are some further examples:

Most control characters cannot be typed on a keyboard as printable characters.
To specify such characters in code the symbol # is given the special meaning that when
followed immediately by a number it specifies that numbered ASCII character.
So the following commonly encountered control characters can be inserted in code as follows:

#8 backspace
#9 horizontal tab character
#10 newline character (linefeed)
#12 form feed character
#13 carriage return character
#27 escape key

In fact any ASCII character can be represented in this way ('A' is #65 for instance).

However for readability it is far better to use normal quoted strings for alphanumeric and
symbol characters rather than using 'magic numbers' which may merely appear mysterious to
future readers of your code.

You can also specify control characters using the older Turbo Pascal notation which combines
the ^ character with an alphabetical letter (so that #10 = ^J, and #13 = ^M).

ANSI characters are not Unicode characters. However, the first 256 Unicode characters
correspond exactly to the 256 one-byte ANSI characters.

const CardsInAPack = 52;
pi = 3.1415;
hidden = False;
QuestionMarkChar = '?';
OriginalPascalDesigner = 'Niklaus Wirth';

3.l A program example: simple_types
This is a good moment to use Lazarus to write a short example program which exercises some
of the ideas encountered so far.

Start Lazarus, and use the main menu to choose Project | New Project... selecting Program from
the list at the left of the Create a new project dialog to create a console application as you did
previously. Save this project (Project | Save Project As …) in a new folder, giving the project
the name simple_types. As you know, Lazarus will save this project in a main program file
called simple_types.lpr, with a project file called simple_types.lpi.
Lazarus will also write the following code for you:

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

29
Learn to program using Lazarus

program simple_types;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}

cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

begin
end.

Delete the uses line and the five lines which follow it because they are not needed for this
program (the default Editor shortcut for deleting lines is [Ctrl]Y). We will use the versatile
WriteLn() function to display successive lines on the console showing the values of a constant
and two variables of different types.

Copy the following code into the Editor so that your program matches what follows, and then
press [F9] to save, compile and run it.

program simple_types;

{$mode objfpc}{$H+}

var smallInteger: SmallInt= -37;
 started: boolean= False;

const pName= 'simple_types';
 tab= #9;

begin
 WriteLn('This program is called ',tab,tab,'"',pName,'"',sLineBreak);

 WriteLn('When initialised smallInteger has the value: ',smallInteger);
 WriteLn('When initialised started has the value: ',started, sLineBreak);

 smallInteger += 100;
 WriteLn('After adding 100 to smallInteger its value is: ',smallInteger);
 started:= not started;
 WriteLn('Negating started gives it the new value: ',started, sLineBreak);

 WriteLn('The highest value a SmallInt can store is: ',High(SmallInt));
 WriteLn('The lowest value a SmallInt can store is: ',Low(SmallInt));
 {$IFDEF WINDOWS}
 ReadLn;
 {$ENDIF}

end.

We declare two initialised variables, a SmallInt and a boolean; and a string. The global
variable sLineBreak is declared in the system unit which is always available even with no uses

clause. When Writeln(sLineBreak) is executed a blank line is inserted in the display (whatever
platform or OS you use). The same effect can be achieved by calling WriteLn with no parameters
(either WriteLn; or WriteLn();).

The display output of the program should look similar to this:

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

30

Learn to program using Lazarus

This program is called "simple_types"

When initialised smallInteger has the value: -37
When initialised started has the value: FALSE

After adding 100 to smallInteger its value is: 63
Negating started gives it the new value: TRUE

The highest value a SmallInt can store is: 32767
The lowest value a SmallInt can store is: -32768

3.m Typed constants
You can also specify the type of a constant in its declaration. This sort of constant is known as a
typed constant. So you can define the speed of light either like this:

const SpeedOfLight = 299792458; // an ordinary constant

or like this:

const SpeedOfLight: double = 299792458.0; // a typed constant

Typed constants are initialised once dynamically at the start of the program.
Their advantage is that they allow you to declare record, array and pointer constants,
declarations which are not possible with ordinary untyped constants
(though it is may be better to use an initialised variable for this purpose, see above at Section 3.h).

The disadvantage of typed constants is that they are not constant, or rather that their value can
be changed. The term const is confusing in this case, because you can change the value of
typed constants. Whereas ordinary untyped constants cannot have their values altered
(which is the intuitively assumed meaning of const).

Typed constants are useful for what some languages term static variables within subroutines,
that is variables that keep the value they last had before the subroutine finished when it was
last called. Ordinary local variables are volatile – they are erased at the end of a subroutine,
and their value at subroutine exit cannot be recovered if it has not specifically been saved
somewhere else in the program.

On the other hand a local typed constant's value (it is effectively a sort of initialised variable)
will persist after a routine exits, and retain that value when the routine is next called.
This is because local typed constants are not stored on the transient stack as other local
variables are which are declared within a routine. By contrast a local initialised variable will
always keep its one constant initial value, since it is re-initialised to that value whenever the
routine is called.

As an example of how local typed constants and local initialised variables can be used,
try the following short program (or you may prefer to wait until you've read Chapter 7 which
explains more about functions). Create a new console project in Lazarus, and save it as
typed_const. Then adapt the skeleton code Lazarus writes to look like the following:

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

31

Learn to program using Lazarus

program typed_const;

{$mode objfpc}{$H+}

 Function GetAName: string;
 const lastName: string = '';
 var constName: string = 'Lazarus';
 begin
 WriteLn('[Last name entered was "', lastName,'"]');
 WriteLn('[Value of constName is "',

constName,'"]');
 Write('Enter a new name: ');
 ReadLn(Result);
 lastName:= Result;
 end;

begin
 WriteLn('First invocation of GetAName');
 WriteLn(GetAName);
 WriteLn;
 WriteLn('Second invocation of GetAName');
 WriteLn(GetAName);
 WriteLn;
 WriteLn('[finished]');
 {$IFDEF WINDOWS}
 ReadLn;
 {$ENDIF}
end.

Although we have not looked in detail at functions, and how they are declared and used (see
Chapter 7 for more on this), the program is simple enough to follow. The function GetAName is

called twice as part of two WriteLn calls, which display the value of this function each time.

Each invocation of the function asks for user input. A typical program output display is the
following:

First invocation of GetAName
[Last name entered was ""]
[Value of constName is "Lazarus"]
Enter a new name: Blaise
Blaise

Second invocation of GetAName
[Last name entered was "Blaise"]
[Value of constName is "Lazarus"]
Enter a new name: Pascal
Pascal

[finished]

Ironically, in this particular local function, GetAName, it is the initialised variable that is

initialised to its unvarying value, and the typed constant that varies!

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

32

Learn to program using Lazarus

3.n Pointers
A pointer is a variable that denotes a memory address. There is a generic pointer type that

can be used to point to any memory address. A memory address is found by use of
the @ operator. The pointer type is compatible with any other (generic or typed) pointer.
You can also define typed pointers to indicate the kind of data stored at the addresses these
pointers point to. These are somewhat safer to use, since the compiler will prevent you from
assigning a typed pointer to a typed pointer of a different type.
Pointers allow fairly low level access to the way the compiler uses a computer's memory to
store data and sections of code instructions. A pointer is a fixed-size type (4 bytes on a 32-bit
computer). When it holds the address of another variable we say it points to the location of that
variable in memory (i.e. to the data stored there) – hence the name of this type.
Your business address might be something like

33 Avenue des Champs Élysées, Paris

This enables anyone who knows your address to visit your shop. Likewise a pointer with a
valid memory address gives a programmer access to the data or code stored at that specific
memory location, even without knowing the name of the variable.
Type checking for pointers in Pascal is looser than for other types, which makes them more
dangerous to use, since you are deliberately employing a type for which the compiler cannot
put in place some of the checks that apply to other types. So although pointers are particularly
useful for certain situations, giving immediate access to memory that might be difficult or
impossible to access in any other way, use of pointers means abandoning certain safeguards
simply in order to use them at all. In particular they facilitate the allocation of memory
dynamically in situations where the amount of memory required is not known at the time of
compilation.

Typed pointers indicate the type of the data stored at the memory address they point to. You
use the caret (circumflex) character ^ to declare a pointer type rather than using a keyword to do
this.
The ^ operator is used in two ways. Placed immediately before a typename the ^ symbol
denotes a type that represents pointers to variables of that type. Placed immediately after a
typed pointer variable the caret dereferences the pointer, that is it returns the value the typed
pointer is pointing to – the value being the data that is stored at the location the typed pointer
points to. The value should be of the type indicated by the name of the typed pointer variable.
It is good programming practice to use typed pointers as much as possible
(rather than generic pointers). This not only helps to prevent you from making errors, but
provides built-in documentation to people reading and maintaining your code later
(assuming you have named the typed pointers you use intelligently).
A pointer is declared explicitly in one of two ways. Either you can write:

var p: pointer; // p is a generic pointer variable

or you can use the ^ (circumflex or caret) pointer operator as follows:
var PByte: ^Byte; // a typed pointer which can only point to bytes

In addition to pointer, FPC defines several useful typed pointer types including:
type PInteger = ^integer;

 PChar = ^char;

Note the use of a leading 'P' here. This is a helpful convention, because when using pointers it
always helps to be able to distinguish them immediately from non-pointer variables.

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

33
Learn to program using Lazarus

Correct use of pointers is one of the more advanced aspects of Pascal. There is lots of code in the
libraries that come with Lazarus that uses pointers extensively. For instance the TList class

declared in the RTL maintains a list of pointers. This versatile class is used extensively
elsewhere, and is a template for many other list and collection classes.
Many complex data structures make heavy use of pointers both to build and to navigate the
data structure.
Pascal allows you to treat a pointer to any type as an array of that type (as C does).
Such an array has an undefined length, and is not reserved simply by declaring the pointer.
The array memory needs to be reserved by explicit declaration of a variable to which the
pointer is made to point, perhaps by calling the GetMem() or New() routines.

The pointer points to the first (zero-indexed) element of the array.
(See Chapter 4 for more about array types).

Pascal has built in support for the PChar type which is not only a pointer to a Char,
but a pointer to a null-terminated, zero-indexed character array (the classic C structure for
handling strings). This facilitates interfacing with libraries written in C or C++ which expect
string parameters to be null terminated character arrays. This is true, for instance,
for all the DLLs that make up the Windows OS. Use of PChar variables and typecasts makes

interfacing directly with the Windows API much easier for Pascal users. Likewise ansistring
variables are really pointers to arrays of characters (which also hold additional string metadata).
If you come from a C background you will feel at home with the PChar type.

Otherwise it is probably best to get familiar with the traditional Pascal string types (shortstrings
and ansistrings) before trying to use PChar. Pascal strings are treated in Chapter 4.

Here is an example of a program that makes use of a typed pointer (a user-defined pointer to a
longint), and manipulates the data the pointer points to both using the pointer, and using the
name of the data variable. In the following program the two references intPtr^ and anInt

are aliases to the same data value. Only one memory location is involved in storing the data.

program pointer_project;

{$mode objfpc}{$H+}

type
 Plongint = ^longint;

// this declares a typed pointer
var

 anInt: longint = 243;
 intPtr: Plongint;

begin
 intPtr:= @anInt; // this points intPtr to a specific integer variable
 WriteLn('The value of intPtr^ is: ',intPtr^); // dereferencing intPtr
 Inc(intPtr^, 4); // this alters the data of the dereferenced value
 WriteLn('The value of anInt after Inc(intPtr^,4) is: ',anInt);
 {$IFDEF WINDOWS}
 ReadLn;
 {$ENDIF}

end.

Begin a new console project in Lazarus named pointer_project and adapt the skeleton code
Lazarus provides to read as above. Compile and run the program, and check if the output is as
you expect.

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

34

Learn to program using Lazarus

The keyword nil is a special constant that can be assigned to any pointer to indicate that the

pointer is not pointing to any known memory address, i.e. the pointer is unassigned.
const nil = pointer(0);

The nil keyword is a special pointer value that is guaranteed to be distinct from any valid
pointer.

Pascal provides a boolean function named Assigned() which accepts any pointer variable as

a parameter, returning True as long as that pointer parameter is not nil. Assigned() can be

used on any pointer-type variable (pointer, class, dynamic array, string) to check that it is non-nil.

You can perform arithmetic on pointers using the + and – operators, or (preferably) using the
Inc() and Dec() procedures. These two procedures always increment or decrement a typed

pointer by the size of the type to which it points, and so are safer than using
the + and – operators with numeric offset values.
It is very easy when programming pointer routines to inadvertently access protected memory
and cause a protection fault.
This may just trigger an exception, or (if you're unlucky) crash your entire program.
Memory addresses can be invalid. The OS allocates certain memory region(s) to the process
running your program.

If you try to access memory outside that permitted memory, a fault or exception is thrown.
This is a severe error in programming terms. It only takes one stray pointer somewhere in your
code to precipitate this situation, which is why beginners often avoid pointers altogether.
However, if used sensibly, pointers are a powerful weapon in the programming arsenal.
Pointers let you shoot yourself in the foot in many ways. A good rule of thumb is:
“Only use pointers when you have to”.
Of course, you can shoot yourself in the foot without the help of pointers.

3.o Review Questions

 1. How many bytes does a longint occupy?

 2. What is the difference between a variable and a type?
 3. What types could you use to hold the value 13?
 4. How would you declare a constant named LeapYearDays so that it had the value 366?

 5. What is the value of Succ('a')?

 6. Consider this code:

Is there a problem?

 7. Write and test a program that displays the highest and lowest values an int64 type can

 hold.

var smallInteger: SmallInt;
begin

 smallInteger:= Pred(Low(SmallInt));
end;

Chapter 3 TYPES, VARIABLES, CONSTANTS AND ASSIGNMENTS

35

Learn to program using Lazarus

var crossword: TCrossword;
begin
 FillChar(crossword, SizeOf(crossword), '.');
 crossword[1, 1] := 'B';
 crossword[2, 1] := 'o';
 crossword[3, 1] := 'n';
 crossword[4, 1] := 'n';
 crossword[1, 2] := 'e';
 crossword[1, 3] := 'r';
 crossword[1, 4] := 'n';
 crossword[1, 5] := 'e';
end;

If crossword represents a 5x5 grid of letters the code above would fill the grid as follows:
Bonn.
e....
r....
n....
e....

Notice that we had to initialise the variable crossword using the FillChar() procedure.

The first parameter passed to this procedure is the name of the variable to initialise.
The second parameter is the size of the variable to be initialised (for which we used a further
function, SizeOf() which accurately determines the size of any type in bytes); and the third

parameter is the character used to fill each character in the array (a Char occupies one byte).
The crossword variable, when first created, is not empty (or full of space ' ' characters).

4.a Static arrays
Arrays have a base type which is the type of the repeating element. The declaration of a static
array states the dimensions of the array. The simplest array is a one-dimensional (linear) array
declared as follows:

Arrays can have more than one dimension. Each dimension is specified by a different
indexRange value, separated from the next dimension by a comma. For example:

type TCrossword = array[1..5, 1..5] of Char;

Individual elements of an array are accessed by index, using values within the declared
dimension range(s). Given a variable crossword of the above type we could write:

type arrayTypeName =
array[indexRange] of baseType;

The baseType can be almost any type, though arrays cannot contain files. An example is

type T100IntegerArray =
array[1..100] of integer;

The previous chapter which introduced the type concept indicated that Pascal provides for
structured types in addition to simple types such as Char, integer, and single. Structured
types combine simpler types into constructs that come closer to modelling the complexity of
much real-world data. This chapter introduces several of Pascal's most useful structured
types.
First we consider a type that provides for a number of elements all of the same type to be
treated either as a single entity or as an indexed collection of multiple elements: the array.
The memory required by an array can be allocated statically (determined completely when the
program is compiled) or dynamically (in this case the compiler inserts code to allocate and
deallocate memory as needed at runtime as the size of the array varies with use).

 Chapter 4 STRUCTURED TYPES

36

Learn to program using Lazarus

Writing
crossword[1,6]:= 'd';

gives a Warning on compilation: range check error while evaluating constants since the index 6

is outside the declared index range of 1..5. This code will compile, but (as always) it is dangerous
to ignore Warnings. Memory outside that reserved for crossword will have a 'd' written to it,
possibly corrupting data in a running program. The effect is unpredictable. Nothing untoward
may happen. Or we may see strange characters appear on screen. Or the program may crash, or
some other unforeseen outcome may ensue. It pays to attend carefully to Messages when you
build or compile a program, and take corrective action as needed.
Array constants are declared as a comma-separated list of values enclosed in parentheses, with
one value for each element in the declared range. Array constants have to be declared as typed
constants because it is not possible to declare them as ordinary untyped constants (this facility
is available only for simple types). As an alternative you can declare an array as an initialised
variable, and if you want it to remain constant simply avoid your code changing that variable
in any way. When using arrays you should pay careful attention to the origin of the index.
Many arrays are declared zero-based like this:

type TDaysOfWeek = array[0..6] of string;
const daysOfWeek: TDaysOfWeek = ('Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri',

'Sat');

Notice that this zero-based indexing scheme makes the first array element ('Sun') to be
daysOfWeek[0], and not daysOfWeek[1] as you might otherwise assume.

4.b Unnamed (anonymous) types
It is possible to construct a new type on-the-fly in a var declaration where new variables are
being declared without in the process needing to give such a type a name. Here is an example:
var uppercaseCounts: array['A'..'Z'] of integer;

Here we are declaring an array variable of what type exactly? This is a valid Pascal construct,
but the type used is never given a name. Internally the compiler does name the type, but we do
not know what that type name is, so we cannot refer to it. This means that you can never pass
the variable uppercaseCounts to a procedure or function as a parameter, because all routines
which take parameters require the parameters to have named types (types you can refer to). This
lets the compiler know – by stating what the parameter type is – how much space to reserve for
the parameter in the routine's stack memory.
For this reason alone it is unwise to use anonymous types, even though they are allowed (since
you are restricting your future coding options unnecessarily). In fact there is no compelling reason to
use anonymous types at all. Just because “you can” does not mean “you should”. It is better to
name every new type you create (even if you don't need to pass variables of that type as
parameters to any functions or procedures). A better programming practice is to rewrite the
above variable declaration in this fashion:
type TUppercaseCounts =
array['A'..'Z'] of integer;

var uppercaseCounts: TUppercaseCounts;

It is just a chunk of memory, recently set aside for our program to use. It will contain random
bytes, perhaps left over by a previous program, or (if ours is the first program to use that memory)
just whatever the initial power surge in the computer happened to leave in that memory
location. If we want crossword to contain all space characters (or all dot characters as here) we have
to deliberately write code to make that happen, overwriting whatever junk happened to
occupy the memory crossword occupies before that memory was reserved for our program
use.

 Chapter 4 STRUCTURED TYPES

37

Learn to program using Lazarus

4.c Pascal shortstrings
The oldest and simplest string type in Pascal is a zero-based array of Char, and it is called
shortstring. Lazarus programs use the ansistring type as the default string type by
specifying the compiler directive {$H+} which is usually exactly what we want.
However, we can use the original shortstring type simply by specifying shortstring rather
than string as the type of a variable.
In the shortstring scheme the first character element (the zeroth element) is used to store a
character that represents the actual length of the string that is currently stored in the shortstring.
So aShortStringVariable[0] holds the length of the shortstring. Shortstrings have a formal
maximum length, set when they are first declared, perhaps like this

var testString: string[10];

The testString variable has a maximum length of 10 characters. It can hold words such as
'learning' and 'Pascal' but not'programming' since it is too long. Test this out by starting a
new console project in Lazarus (Project | New Project... select Program and then click on the [OK]
button in the Create a new project dialog). Save the new project as shortstrings.lpr. Adapt the
skeleton program, and delete unneeded lines so it looks like the following

program shortstrings;

{$mode objfpc}

var testStr: string[10] = 'programming';
begin

 WriteLn('This shows testStr enclosed by square brackets [',testStr,']');
 WriteLn('testStr''s length is ', Length(testStr),' characters');
 {$IFDEF WINDOWS}
 ReadLn;
 {$ENDIF}

end.

Compile and run the program. Notice both the Warning message (Warning: string
"programming" is longer than "10"), and what gets displayed on the console or Terminal.

The word programming has a character length of 11. Notice what our program reports. The

discrepancy is simply because we have used a shortstring variable to hold it that is too
short. FPC can only stuff „programming“ into the undersized variable testStr by truncating
the last character (which is what the Warning was all about). Before leaving this program,
substitute other words for „programming“, such as

testStr := 'Lazarus';

Rerun the program. Notice that the Length function reports the current length of the string,
not its declared length of 10 (unless the two are coincidentally identical). This is a drawback of
shortstrings: you have to know in advance the maximum length a string is likely to be in order
to declare a shortstring length long enough to fit the anticipated string.
Suppose you write a program whose first task is to accept the name of the user, which is
stored in a shortstring variable. If users were all named something like 'Angela Merkel' (13
characters including the space in the middle) we could declare a variable to hold the name as

var userName: string[15];

without having to worry about truncation of surplus characters. However if the president of
Iran (Mahmoud Ahmadinejad) were to use the program, we would come unstuck. If we then
changed the declaration to string[20] to accommodate him, we would have to alter the
declaration again to accommodate the president of Qatar (Hamad bin Jassim bin Jaber bin
Muhammad Al Thani).
This is why Lazarus defaults to use ansistring rather than shortstring (this is what Lazarus
sets up via the {$H+} compiler directive which it inserts into every project), and why dynamic
arrays are important. The two following sections focus on these two types.

 Chapter 4 STRUCTURED TYPES

38

Learn to program using Lazarus

4.d Dynamic arrays
We considered the difficulty of declaring a shortstring to receive user-name input from a user
when the length of her name is not known in advance. If only there were a string type that
could automatically be set to the required length! This is such a common programming
requirement that modern Pascal provides exactly such a string type: the ansistring, and
provided the compiler directive {$H+} is included in your program, then ansistrings are the
default string type, used whenever you declare a string type with the generic type name string.
To introduce the (ansistring) string type we shall first explore the more general dynamic
array. This flexible type is declared thus:

 type dynamicArrayName = array of typeName;

and it is used by first setting the array length using the SetLength procedure. For example:

type TDynamicIntegerArray = array of integer;
var dynIntArray: TDynamicIntegerArray;
begin

 SetLength(dynIntArray, 3);
 dynIntArray[0] := 39;
 dynIntArray[1] := 102;
 dynIntArray[2] := -7;

end;

This creates an array of three integers, filling the array with the values 39, 102, and -7.
The advantage of this dynamic array over a static array of integers declared as

var staticIntArray = array[0..2] of integer;

is that we can expand the dynamic array in code if we need the array to be larger for some
reason, by a further call to SetLength:

SetLength(dynIntArray, 10);

This adds a further 7 empty 'slots' in the array, ready to have 7 integers assigned to them. Note
that the value of each of the 7 new slots is undefined. If you want the value to be zero, you have
to explicitly assign zero to each array element:

dynIntArray[3]:= 0; dynIntArray[4]:= 0; etc.

The static array is fixed: it can never have more than three integer elements. To work with a
larger static array we have to rewrite the code that declares the array, giving it a larger original
dimension.
The memory allocated for a dynamic array is automatically freed when the procedure or
function using the array exits. However, you can do this manually as well using the call

SetLength(dynIntArray, 0);

This ensures that the memory the compiler allocated for the dynamic array is released
immediately.

4.e Ansistrings
Variables declared as string in units or programs containing {$H+} are ansistrings. These strings
behave like dynamic arrays of characters, and can contain as many or as few characters as
needed for text data. Moreover, the compiler manages string variables for us, so the varying
memory they require is allocated as needed, and automatically freed after use to release that
memory for other uses. Ansistrings are guaranteed to be empty when first created by the
compiler, so they do not require a specific

aString:= ‘’;

assignment to initialise them. This all happens transparently, and the programmer can just
enjoy and benefit from Pascal ansistring behaviour without having to worry about managing
strings herself.

 Chapter 4 STRUCTURED TYPES

39

Learn to program using Lazarus

By default the Lazarus Editor encodes all text as utf8 (a convenient one-byte Unicode encoding
scheme, widespread in the Unix world, but not the default encoding for most Windows applications).
The utf8 default encoding for characters in Lazarus strings means the programmer can
(using default Editor settings) freely deal with and mix standard European alphabetical
characters (s, ü, β) and ligatures (ӕ), mathematical and currency symbols (±, £, ¥) and most
non-European characters (Ћ, , א(without anxiety.

The main places where care has to be taken over string encoding issues is the passing of
'unusual' characters to system routines such as procedures to open files which may recognise
only characters from the system codepage encoding, or retrieving strings from, or posting
strings to (mainly older) databases.
If you find that RTL system routines you use are not behaving correctly with filenames, add the
units lazutf8 and fileutil to your project, and use a UTF8xxx routine that corresponds to the
system routine. Eventually, when a robust Unicode string implementation is fully implemented
throughout the RTL, FCL and LCL these codepage-related issues will be a thing of the past.
A string variable can be indexed just as if it were an array. If st is a string then st[j] is the jth
character in st, provided that j is positive and no larger than Length(st). Each character in

st is of type ansiChar. Assignments can be made to individual characters, or to the entire
string. Here are some examples:

var st: string;
 st:= ''; // empty string, Length(st) is 0
 st:= ' '; // space character, Length(st) is 1
 st:= 'lazarus ' + 'and ' + ' Free Pascal'; // Length(st) is 24
 st[1]:= 'L'; // overwrites 'l' with 'L', length is unchanged

To introduce yourself to some of the many string functions available, start a new console project
in Lazarus as you have done earlier, named string_functions. Change the uses clause so it
includes strutils and sysutils, add a string variable st, and insert lines into the body of the
program so it looks like the following:

program string_functions;
{$mode objfpc}{$H+}

uses strutils, sysutils;
var st: string;
begin

 WriteLn('Enter a word or phrase ([Enter]completes the entry)');
 readln(st);
 WriteLn('You typed: ',st);
 WriteLn('Your text converted to uppercase: ', UpperCase(st));
 WriteLn('Your text converted to lowercase: ', LowerCase(st));
 WriteLn('Your text converted to proper case: ',
 AnsiProperCase(st, StdWordDelims));
 WriteLn('Your text reversed: ', ReverseString(st));
 {$IFDEF WINDOWS}
 ReadLn;
 {$ENDIF}

end.

Here we are using predefined functions that are not in the system unit, and so we need to
explicitly refer to those units in a formal uses clause. The functions UpperCase() and
LowerCase() are found in the sysutils unit, and the functions AnsiProperCase() and
ReverseString() are found in the strutils unit. How do you know what unit a function is
found in when you come to write the uses clause? If you have an idea of the routine's name (but
can't remember which unit contains its declaration) one way to discover this information is to type
the name of the routine in the Lazarus Editor, and then with the cursor located somewhere in
the word press the [F1] key.

 Chapter 4 STRUCTURED TYPES

40

Learn to program using Lazarus

Some structured types only combine data elements that are of identical type. Arrays are like
this. Each array element is the same type as every other array element. Other structured types
are more versatile, with the ability to combine either identical or disparate types in one entity.
One such structured Pascal type is the record. Here is an example of a record declaration which
stores an X and a Y coordinate value in a single point entity:

4.f Records

Often the help system will locate the routine, and load help information which includes details
of which unit contains that routine. Provided the spelling of the routine's name is correct the
capitalisation does not matter.

type TPoint = record
X: longint;
Y: longint;

end;

Here is a record declaration which combines a string and an integer, thus keeping a string and
an integer always associated together:

type TCountry = record
Name: string;
Area: longint;

 end;

Records cannot contain files, and should not be used for pointers (or pointer-based types such as
ansistrings) if the record is to be saved, say to a disk file, and reloaded for use later, since these
saved references will no longer be valid. Shortstrings can be used to persist string values in
records which are to be retrieved later. Record typed constants are written in parentheses with
the individual elements (called fields) introduced each time by the field name and a colon
followed by the value, separated by a semicolon (just as in their declaration). So a TCountry
record constant named Germany would be declared like this:

const Germany: TCountry = (Name:'Germany'; Area:356734);

We access specific sub-sections of a record (which are called record fields) using the “dot notation”
RecordName.FieldName. For instance we could write:

var: country: TCountry;
begin
 country:= Germany;
 WriteLn('The country''s name is: ',country.Name);
 WriteLn('The country''s area is: ',country.Area);
end;

Let's write a small application that demonstrates how these versatile types can be used. Start a
new console project in Lazarus named countries, saving it in a new folder called Countries.
Delete the content of the uses clause Lazarus provides, and type the following content for the
program.

program countries;
{$mode objfpc}{$H+}

uses strutils;

type
 TCountry = record

 Name: string;
 Area: longint;

 end;

const Belgium: TCountry = (Name:'Belgium'; Area:30513);
 Austria: TCountry = (Name:'Austria'; Area:83851);
 Finland: TCountry = (Name:'Finland'; Area:337032);

 Chapter 4 STRUCTURED TYPES

41

Learn to program using Lazarus

procedure DisplayInfo(aCountry: TCountry);
var barLength: integer;
begin
 barLength:= aCountry.Area div 30000;
 writeln(aCountry.Name:8, aCountry.Area:7, ' ', DupeString('*', barLength));
end;

begin
 WriteLn(' Country Area Relative area');
 WriteLn(' ------- ---- -------------');
 DisplayInfo(Belgium);
 DisplayInfo(Austria);
 DisplayInfo(Finland);
 {$IFDEF WINDOWS}
 ReadLn;
 {$ENDIF}
end.

Having declared the TCountry record type we define three constants of that type, and then write
a small helper procedure to display information from each constant. The data needed by the
procedure is passed to it as a parameter named aCountry of TCountry type.
We use a formatting facility of WriteLn(), which will display data in a field N characters wide
if you place the specifier :N after the data, enabling us to show the country's Name in an 8-

character field, and its Area in a 7-character field. The final part of the display line is a string of *
characters designed to give a rough indication of the relative sizes of the displayed countries.
It uses the DupeString function found in strutils (which is why we needed a uses clause specifying
strutils) which forms a string of duplicated characters. The length of the character string
required is passed as the second parameter to this function. We calculate its value by a simple
integer division of the Area field.
If you compile and run the program, you should see output something like the following:

 Country Area Relative area
 ------- ------ -------------
 Belgium 30513 *
 Austria 83851 **
 Finland 337032 ***********

4.g The with . . . do statement
An alternative to the “dot notation” for referring to a specific field within a record is the with
statement. Given the record definition used above:

type
 TCountry = record

 Name: string;
 Area: longint;

 end;

the compiler knows of two field names, Name and Area.

Given a record variable aCountry, the with aCountry do statement marks out a block of code
within which use of those field names is assumed to refer to aCountry without needing to
repeat the record name explicitly every time.
In other words, the DisplayInfo(aCountry: TCountry) procedure shown above as

procedure DisplayInfo(aCountry: TCountry);
var barLength: integer;
begin
 barLength:= aCountry.Area div 30000;
 writeln(aCountry.Name:8, aCountry.Area:7, ' ',
DupeString('*', barLength));
end;

 Chapter 4 STRUCTURED TYPES

42

Learn to program using Lazarus

procedure DisplayInfo(aCountry: TCountry);
var barLength: integer;
begin
 with aCountry do
 begin
 barLength:= Area div 30000;
 writeln(Name:8, Area:7, ' ',

DupeString('*', barLength));
 end;
end;

Used judiciously the with statement can reduce the verbosity of code, but it is best avoided
when it leads to ambiguity in understanding the correct referent of a name.
Although the compiler is not confused by with (the rules for determining the scope and resolving
name references correctly are clearly stated in the FPC documentation) in writing complex statements
using with you can mislead yourself about the true referent of a name used. Thus a bug creeps
in because a field is altered which you did not expect.

The with . . . do construct can also be used in referring to class and interface and object

fields and properties as an alternative to using the explicit dot notation. It is frequently used to
avoid inserting a temporary variable that is otherwise needed for a newly constructed class.
The following example will be understood better after reading Chapter 8 about classes, but is
typical of the sort of constructs you will encounter in the LCL:

procedure Form1.Button1Click(Sender: TObject);
begin
 with TreeView1.Items.AddFirst(aNode,

'First Node') do
 ShowMessageFmt(

'This new node is at level %d', [Level]);
end;

Here the new node inserted into TreeView1 is anonymous. The with construct allows you to

refer to it nevertheless and access its Level property. Without the with construct you would

have to create a temporary TTreeNode variable and use dot notation to access the Level

property:

procedure Form1.Button1Click(Sender: TObject);
var tmpNode: TTreeNode;
begin
 tmpNode:= TreeView1.Items.AddFirst(aNode, 'First Node');
 ShowMessageFmt('This new node is at level %d', [tmpNode.Level]);
end;

 Chapter 4 STRUCTURED TYPES

can also be written using a "with" statement as follows:

43

Learn to program using Lazarus

type TCharSet = set of Char;
const vowels: TCharSet = ['a','e','i','o','u'];

A further example comes from a very commonly used LCL class: TFont. This class includes a
Style property of type TFontStyles which is a set of values based on the enumerated type
TFontStyle. It is a common naming convention for a base enumerated type to be a singular
word, and the set type which uses it as a base type to be the same word in the plural.
Here are the declarations of these types:

If you are familiar with a language that uses bitmasks (because it lacks sets) you will find that sets
provide similar functionality, but are often easier to read.
The FPC compiler allocates 32 bytes of actual storage for set types, unless there are less than 32
elements in the base type, when a longint is used. So small sets are handled very efficiently,
as well as having full language support. A set is constructed using [] to delimit the range of
base type elements in the set. For example:

Some examples of how to employ this useful set type follow. (Note that any property of a class is
accessed using the “dot notation” class.property, which we saw used earlier to specify a field of a record).

Font.Style:= [];
Font.Style:= [fsBold]; // font is bold
Font.Style:= [fsBold, fsItalic]; // bold + italic font
Font.Style:= [fsItalic, fsUnderline]; // italic + underlined font

 //an empty set property - a 'normal' font style

type TFontStyle = (fsBold, fsItalic, fsStrikeOut, fsUnderline); //enumerated type
 TFontStyles = set of TFontStyle; //set of enumerated type

 Chapter 4 STRUCTURED TYPES

4.h Set types
A further type encountered frequently in the LCL is the set type, which is based on some

ordinal type, often an enumerated or subrange type, though it can be a Char or integer.

Sets contain zero, one or more values of their base type. They are simple collections containing
elements all of one base ordinal type, and they are written between square brackets
[{set elements go here}]. Sets are declared in this way:
type TSetName = set of TBaseType;

Pascal sets are quite limited in size, and can contain no more than 256 elements.
The elements in a set have no order, and any given set element is either present in the set, or
absent. There is no meaning to a set element being present more than once in a set.
The only numbers associated with a set are
• its possible maximum capacity (which depends on the range of its base type),

that is, the potential number of elements, if all possible elements are present.
• the number of current members of the set (from which you can always determine the

of elements that are not currently members of the set).
number

You see that the Style property (which is a set property) is simply written as a comma-separated

list of the elements in the set, enclosed by square brackets
f the set is empty the square brackets enclose nothing. Notice the convention (used throughout

the LCL) of a two-character prefix prepended to each set element to indicate that it is a
Font.Style set member (the fs is for Font Style).
There is built-in support in Pascal for handling various operations on sets.
This support includes:
• The in operator which tests for the presence of a base type element in a set. (anElement in

aSet) is a boolean expression returning True or False depending on whether anElement is
present in aSet or not.

• The operators + and – for adding element(s) to a set, or subtracting element(s) from a set.

 [element1, element2, ...].
I

44

Learn to program using Lazarus

type TByteSet = set of byte;
var lowPrimes: TByteSet = [2, 3, 5, 7, 11, 13];
begin
 Include(lowPrimes, 17);
end;

The * operator which with two set operands yields the union of the two sets, i.e. a set which
contains only elements which are present in both operands (which may yield an empty set).

type TByteSet = set of byte;
var setA, setB, setC: TByteSet;
begin
 setA:= [0, 1, 2, 3, 4];
 setB:= [3, 4, 5, 6, 7];
 setC:= setA*setB; // setC is [3, 4]
end;

• The = operator tests two sets for exact equality (they contain exactly the same elements)

and the <> operator tests two sets for inequality (they differ by at least one element).

The expression (setA <> setB) is True for the two sets as defined above.

• The >= operator which tests whether all members of the right hand set are also members of

the left hand set. The <= operator tests whether all members of the left hand set are also

members of the right hand set. The expression (setC <= setA) is True for the sets as
defined above. Whereas the in operator tests inclusion of a single element within a set,

these comparison operators test for the inclusion of an entire set within another set.
So the expression (setC <= setA) can be read as “setC is completely included within setA”.

For these two sets as defined above this statement
(and thus the expression in parentheses) is True.

 Chapter 4 STRUCTURED TYPES

For example:
Font.Style:= Font.Style + [fsBold];
Font.Style:= Font.Style – [fsUnderline];
Font.Style:= Font.Style - [fsBold] + [fsItalic, fsStrikeOut];

• The procedures Include() and Exclude() which add or remove a single element of the
base type of a set to (or from) a set. Because class properties cannot be passed as var

parameters these two procedures cannot be used for set properties.
Here is an example of their use:

 4.i Binary files
File types represent physical disk files, or files stored on some non-disk persistent medium.
A file is a binary sequence of a known type, the base type of the file (which cannot be a pointer,
dynamic array, ansistring, file or variant). Binary files are usually based either on a simple type,
an array type or a record type (which can include shortstrings). The compiler represents files
internally as records.
Text files differ from binary files in that they are not based on a fixed-size base type,
but rather on lines of text of variable length. Pascal does not provide support for random access
to individual lines of text. Text files must be read sequentially. You must use the TextFile type
for text files (see the next Section).
RTL file routines use the system encoding for file and pathnames, based on current system
codepage settings, whereas the LCL uses UTF8 encoding throughout. This means encoding
conversion routines are often needed when dealing with file and path names when calling RTL
file routines from Lazarus programs. See Chapter 16, Section d for more details. The LCL/FCL
also provides LoadFromFile and SaveToFile methods for many commonly used classes,
and offers easy access to system file Open and file Save dialogs for GUI programs, which saves
the programmer having to deal with encoding issues. Later chapters enlarge on this.

45
Learn to program using Lazarus

There are two ways of declaring binary files:
var aTypedFile: file of {base type};
 aBinaryFile: file;

Typed files declared as file of {base type} are often based on byte or a record type.
Specifying the base type determines the size of data transferred during file reads and writes.
Several standard routines and the global variable FileMode apply to binary files.
The global system variable FileMode specifies whether files are opened only for reading (0),
only for writing (1), or for both reading and writing (2).
The default value is 2 which means all files are opened for both reading and writing.
Commonly used file-related routines include:

Append, AssignFile, CloseFile, Eof,
FileSize, IOResult, Read, Rename, Reset, Rewrite, Seek, Write.

You use AssignFile to associate a file variable with the name of a disk file, and Reset to open

an existing file, or Rewrite to create a new file. Programs should be protected in the event that

file operations fail. The original Pascal method for this was to check the value of the IOResult

function. A more modern approach to ensuring robust handling of file-related errors is to wrap
file operations in a try...finally...end block (See Chapter 6.h and Chapter 17.b for more about
exception handling).

Untyped files are declared as
var anUntypedFile: file;

No base type is specified in this declaration, and it is treated as a sequence of fixed-size records.
The record size is determined from the opening call to one of the file functions Rewrite

or Reset. The default record size is assumed to be 128 bytes unless specified otherwise.
All typed-file routines also apply to untyped files except for Read and Write.
These are replaced by BlockRead and BlockWrite, used for fast data transfer between untyped
files and a memory buffer. For untyped files Reset and Rewrite allow an additional parameter
specifying the size of the record used in data transfers (e.g. Reset(f, 1)).

Note that there are two FileSize functions. Sysutils.FileSize() returns the size of a file in
bytes (as you would probably expect), whereas System.FileSize() returns the size in record
units. For a file of byte the result is identical, but for a file of records or a file of double the

result will differ.

A simple example of a program that stores customer data locally, and uses a procedure
ProcessCustomer() to report on currently outstanding customer invoices (declared in another
unit processing) is given here. It uses a while statement (covered in the following chapter) to loop
though every record stored in the customer file.

Erase, FilePos, FileExists,

 Chapter 4 STRUCTURED TYPES

46
Learn to program using Lazarus

program binary_file;
{$mode objfpc}{$H+}

uses processing;

type TCustomerRecord = record
 ID: int64;
 Name: shortstring;
 BalanceOwed: currency;
 LastTransactionDate: TDateTime;
 end;

 TCustomerFile = file of TCustomerRecord;

var f: TCustomerFile;
 c: TCustomerRecord;
begin
 AssignFile(f, 'customer.dta');
 Reset(f);
 try
 while not EOF(f) do
 begin
 Read(f, c);
 ProcessCustomer(c);
 end;
 finally
 CloseFile(f);
 end;
end.

4.j Text files
Text files differ from binary files in that text files contain only lines of text where the length of
each line can vary, and can consist only of ansichars. They are not formed from a repeating
sequence of binary records as are binary files. Text files are declared as

In addition to the typed file routines given above, text files have a few specialised routines
including

Line endings differ between OSs, with Windows using #13#10, Unix using #10 and Mac using
#13. Consequently you should always use the predefined LineEnding constant which takes
care of these differences for you, rather than hard-coding values, which will make your code
non-portable.
Pascal text files are not limited to data transfers to and from storage media.
Predefined text files Input (read-only), StdErr and Output (write-only) are defined in the system

unit and refer to the standard input/output device which is normally the console, automatically
opened under Unix. The Input, Output and StdErr textfiles are opened in the system unit's file
initialization code.
Using ReadLn and WriteLn without specifying a TextFile variable will then read text from
(and write text to) the console, as we have done in all console program examples so far.
To avoid errors under Windows you have to set console mode via the
compiler directive, placed in the main program file, if the Program project type has not been set
at the time the project was created.
The following short console program demonstrates simple text file access.
It depends on you naming your console project text_file.lpr. Create a new console project in
Lazarus, saving it with the program name text_file. Adapt the skeleton code to look like the
following, and then compile and run the program.

var aTextFile: TextFile;

EOLn, ReadLn, SeekEOLn, SeekEOF, SetTextBuf, SetTextLineEnding, WriteLn

 {$apptype console}

 Chapter 4 STRUCTURED TYPES

47

Learn to program using Lazarus

program text_file;
{$mode objfpc}{$H+}

uses sysutils;

var txtF: TextFile;
 s: String;

 procedure ReadTenLines;
 const lineNo: integer = 0;
 var linesRead: integer = 0;
 begin
 while not EOF(txtf) and (linesRead < 10) do
 begin
 ReadLn(txtF, s);
 Inc(linesRead);
 Inc(lineNo);
 s:= Format('Line %d: %s',[lineNo, s]);
 WriteLn(s);
 end;
 end;

begin
 AssignFile(txtF, 'text_file.lpr');
 Reset(txtF);
 WriteLn('Lines from text_file.lpr will be displayed 10 at a time');
 WriteLn;
 try
 while not EOF(txtF) do
 begin
 ReadTenLines;
 WriteLn;
 WriteLn('Press [Enter] to continue');
 ReadLn;
 end;
 finally
 CloseFile(txtF);
 end;
 Write('End of file reached. Press [Enter]

 to finish');
 ReadLn;
end.

As well as the while statement discussed in the next chapter this program uses the Format()

function (from the sysutils unit) which takes a string value followed by an array of parameters.
Each occurrence of the format specifiers %d or %s in the string is replaced by successive

parameters from the array which follows it. For example:
aString:= Format('This string has the number %d inserted into it',[7]);

The variable aString will now contain This string has the number 7 inserted into it.
This is a useful way of formatting non-text-variable's data so it is converted correctly to a string
fragment that is inserted at the correct place in the string. The Free Pascal documentation gives
full details on possible format specifiers and their corresponding parameter types. The program
also illustrates how a local typed constant in a procedure (or function) will act as a 'static
variable', retaining its value when the procedure is called repeatedly.

 Chapter 4 STRUCTURED TYPES

4.k Review Questions
1. What are the main differences between a static data structure and a dynamic one?
2. Write a record structure that would be suitable for recording information about books you

refer to.
3. Write a program that cleans a text file, replacing any tab, double or triple space by a single

space character.

48

Learn to program using Lazarus

 Chapter 5 EXPRESSIONS AND OPERATORS

5.a Operators: forming Pascal expressions
In addition to assigning single values to a variable, you can use expressions to combine several
values into a single assignment using operators to make those combinations. The values
operated on are often given the mathematical description of operand.
An expression is any valid combination of literal value, constant, variable, or function result
using appropriate operator(s). Functions are dealt with more fully in the following chapter.
Operators include both symbols familiar from school arithmetic such as +, = and -, and
combination symbols such as << and <> that may be less familiar, as well as short words such
as div, mod, and, not, and or. The list of possible operators available for all possible types
is quite long. Most operators are applicable to just a few Pascal types, though many are
overloaded. This means that the same operator can be used in analogous ways on quite
different types. For instance, it is no surprise that the addition operator + is used to add two
numerical values together. If newCount and count are longint variables we can assign a new
value to newCount like this:
 newCount:= 37 + count;

The addition operator can also be applied to characters and strings. So a string variable
newWord can be assigned a value like this:
 newWord:= 'O' + 'K'; // newWord now holds the string 'OK'

Operator Operation Valid operands Result type Example expression
+ addition integer, real integer, real m + n

- subtraction integer, real integer, real Result - m

* multiplication integer, real integer, real n * Pi

/ real division integer, real real m/3

div integer division integer integer count div 10

mod integer remainder integer integer m mod 17

+ sign identity integer, real integer, real +645

- sign inversion integer, real integer, real -m

** exponentiation int64, float int64, float 2**3 (needs math unit)

Table 5.1 Mathematical operators applicable to numerical operands

Brackets () are used just as in algebra to group items within a numeric expression, or to
override the normal rules of operator precedence, or simply to avoid ambiguity in evaluating
an expression. For instance:
 sum:= 2 + 3 * 4; // 14 is assigned to sum since * precedes + when evaluated
 sum:= (2 + 3) * 4; // operator precedence overridden by (), 20 is assigned to sum

Used with set types the + operator can also be used to add two sets together. The + operator can
also be used to perform arithmetic on pointers. Pascal operators are powerful and versatile.
'Addition' in Pascal covers mathematical addition, string concatenation, set addition and
pointer manipulation, all using the one + symbol for ease of recognition.
Free Pascal also allows user-defined operators, though we shall not explore that in a book
designed for beginners. This allows you to use the + operator to correctly combine vectors,
matrices and imaginary numbers, for instance.

5.b Mathematical operators
Mathematical operators that apply to numerical values are listed in the Table 5.1.

49

Learn to program using Lazarus

Binary operators combine two operands in an expression. The three binary boolean operators
are listed in the last three columns of Table 5.2, together with the result of evaluating the
boolean expressions each operator performs, given two boolean variables A and B. The table
gives outcomes for all permutations of possible values for A and B. Although you can write
boolean expressions using xor, it is clearer for most readers to write the same expression using
the “not equal to” operator, <>.

Boolean variables are often used to monitor the state of some condition. For instance a boolean
variable named Finished can be used to monitor a process in this way:

 var Finished: boolean = False;
 begin
 while not Finished do
 begin {some action that will eventually set Finished to True} end;
 end;

Operator: and or xor

Operation: Logical and Logical or Logical exclusive or

A B A and B A or B A xor B {same as A <> B}

True True True True False

False False False False False

True False False True True

False True False True True

Table 5.2 Boolean operators and their effects

5.c Boolean operators: not, and, or, xor
The not operator is unary, meaning it works on only one boolean operand which it negates,

reversing the value of that operand. Thus not True is equal to False, and not False is equal

to True.
Here is an example of the not operator in use:
 var active: boolean;
 begin

 active:= not True; // this is equivalent to False
 end;

5.d Comparison (relational) operators
Relational operators are all binary, used to compare two operands. Their principal use is for
comparison of ordinal types, but some relational operators also operate on strings, sets, class
references and pointers. It is not recommended to use these operators on strings, however. This
is because they make a crude comparison based on the character code representation, taking no
account of case sensitivity or encoding. There are more sophisticated routines offering finer
control when making string comparisons (located in the sysutils and strutils and lazutils

units) which are preferred in nearly all situations.
When you compare ordinal operands they must be of compatible types, except that integer and
real types can be mixed in comparisons. Most of the comparison operators available in Free
Pascal are listed in Table 5.3.

Operator Comparison operation Result type Example expression and its value

 = equality boolean True=False // False

<> inequality boolean True<>False // True

< strictly less than boolean 10 < 2.0 // False

> strictly more than boolean 10 > 2.0 // True

<= less than or equal to boolean 10 <= 10 // True

>= more than or equal to boolean 10 >= 11 // False

Table 5.3 Relational operators applicable to ordinal types

 Chapter 5 EXPRESSIONS AND OPERATORS

50

Learn to program using Lazarus

5.e Bitwise (logical) operators
Even the smallest integer types (byte and shortint) contain 8 bits of sub-byte information.

The bitwise operators operate at a low level within these types allowing the programmer to
alter individual bits within that type, giving the same access to the individual bits within a
variable that is otherwise restricted to assembly language constructs.
The not operator is unary, and reverses the bits of its operand – any bit that was 0 becomes 1,

and any bit that was 1 becomes 0. The other bitwise operators require two operands. Unless
you are accustomed to thinking in terms of the underlying bit representation of integers, these
operators are not immediately useful, and can lead to mysterious-looking results, because there
is a clear distinction between signed and unsigned integers at the bit-storage level which is not
apparent to the casual observer. For instance the expression not 0 (correctly) yields the value

-1, which to many people is not the obvious outcome of the operation.
Some programmers encourage the use of the shift operators shr and shl as a faster alternative
to regular division and multiplication when powers of two are involved. However this is not
always a good idea. If there is a speed differential it is usually insignificant, and these operators
do not check for overflow errors. Any bits shifted outside the storage allocated for the variable
are lost, which does not matter for right shifts, but usually indicates a programming error if it
occurs during left shifts. If you use ordinary division and multiplication operators (and range
checking is turned on) the compiler will make sure errors of this sort are picked up. Of course if
you understand what you are doing these low level bitwise operators are another useful
weapon in your programming armoury.
The available binary bitwise operators are listed in Table 5.4

Operator Operation Type of operand and result Example expression
and Bitwise and integer 0 and 1 // 0

or Bitwise or integer 0 or 1 // 1

xor Bitwise exclusive or integer 0 xor 1 // 1

shr, >> Bit shift to the right integer 16 >> 2; 16 shr 2 // 4

shl, << Bit shift to the left integer 3 << 2; 3 shl 2 // 12

Table 5.4 Binary bitwise (logical) operators

5.f A program example: simple_expressions
Create a new console project in Lazarus as you did at the end of Chapter 3, naming it
simple_expressions. Again, delete the uses clause entirely, and enter code so that your program
source matches the following listing:
program simple_expressions;

{$mode objfpc}{$H+}

var b: Byte = 4; c: Byte = 3;
begin
 writeln('Initial value of b is ',b,'; intial value of c is ',c, sLineBreak);
 b:= b shr 1;
 c:= c shl 4;
 WriteLn('After b shr 1, b is ',b,'; after c shl 4, c is ',c, sLineBreak);
 WriteLn('c xor b = ',c xor b,'; c and b = ',c and b,'; c or b = ',c or b);
 WriteLn('not c is ',not c,'; not b is ',not b);
 WriteLn;
 WriteLn('c>b is ',c>b,'; c<b is ',c<b,'; c<>b is ',c<>b,'; c=b is ',c=b);
 WriteLn();
 WriteLn('c div b is ',c div b,'; c mod b is ',c mod b);
 {$IFDEF WINDOWS}
 ReadLn;
 {$ENDIF}
end.

Check the values displayed by the expressions used in the above program.
Are they what you would have predicted?

 Chapter 5 EXPRESSIONS AND OPERATORS

51

Learn to program using Lazarus

 5.g Review Questions
 1. If sugar has the value $00 and spice has the value $FF, what is the value of sugar or spice?
 2. What would be the value of the expression

((24 div 3) shr (5-3) = 27 mod 5)?
 3. In Pascal what is the difference between a=b and a:=b ?

 Chapter 5 EXPRESSIONS AND OPERATORS

52

Learn to program using Lazarus

Chapter 6 PASCAL STATEMENTS

A Pascal statement prescribes some algorithmic action to be carried out.
Statements are of two kinds:
• simple statements (which do not contain other statements)
• structured statements (which are built from simpler statements)

The following simple statements have already been introduced:
• assignments, such as anInteger:= -3;

• function calls, such as aDate:= Date();

• procedure calls, such as WriteLn('This is a procedure call');

We have also introduced the idea of structured statements occurring in the main block of a
Pascal program where the statements are structured by being enclosed within the keywords
begin . . . end.

Program ProgramName;
begin
 {a sequence of statements goes here}
end.

Statement blocks more frequently terminate with a semicolon (rather than the dot which ends a
Pascal program) and are part of subroutines or subsidiary units used by the main program:

begin
 aFahrenheit:= 9*aCelsius/5 + 32;
 lastWeeksDate:= Date() - 7;
 WriteLn('This block of Pascal statements is executed sequentially');
end;

The with {record/class/interface/object variable} do statement was introduced in
Chapter 4 at Section g.
Two types of statement (Goto and asm statements) are not considered in this book for the sake of
brevity, since it is possible to write almost any Pascal program without their use,
and they occur only infrequently in the sources.
The FPC documentation covers them in full if you wish to learn about them and use them.
The structured statements considered in this chapter are:

• conditional statements
if then else;

• case of else end;

• looping (repetitive) statements
• for to do ;

• for downto do ;

• for in do ;

• while do ;

• repeat until ;

• exception statements
• raise ;

• on do ;

• try except end;

• try finally end;

•

53

Learn to program using Lazarus

Note: You can refer to the Free Pascal documentation for fuller details about all aspects
of the Object Pascal dialect Lazarus uses. A simplified view of the basic ideas is given here,
often leaving out more advanced aspects of the syntax, further options available and so on.
The online documentation is continually updated to reflect the latest improvements in the FPC.
The documentation often includes example code which you can try out.
You can obtain the Language Reference documentation from these and other mirror sites
ftp://ftp.freepascal.org/pub/fpc/docs-pdf/ref.pdf
http://www.freepascal.org/docs-html/ref/ref.html
http://sourceforge.net/projects/freepascal/files/Documentation/2.6.0/

6.a Conditional statement: if
The order in which statements are executed in a program is termed the flow of control. Unless
told otherwise the CPU will process the statements you write one by one in the order they are
written, i.e. in a linear sequence.

Statement 1 → Statement 2 → Statement 3 → Statement 4 → Statement 5 → etc.

For the computer to choose between different paths of execution you must use a branching
control structure in which a condition (a boolean variable or expression) is interposed which forces
a selection between alternative paths of execution.

Here the flow of control is interrupted for a condition to be tested. Which statement is executed
thereafter depends on the outcome of the condition. If the condition tests True Statement 3 is
executed, otherwise Statement 4 is executed. The syntax of the if statement is

if (boolean expression)
 then statementA
else statementB;

The computer chooses just one of the two alternatives statementA or statementB, according to the
value of the (boolean expression) which does not have to be placed in parentheses, though
in some cases that can aid readability. Here is a simple example:

if OvertimeApplies
 then pay:= hours*overtimeRate
else pay:= hours*normalRate;

Chapter 6 PASCAL STATEMENTS

Statement 1

Statement 2

Statement 3

True False

Statement 4

Condition

54

Learn to program using Lazarus

Note that no semicolon is allowed except at the very end of the if statement.
The else part is optional.
If statements can be nested one inside another. For instance:

However, it soon becomes a maze to sort out which conditions apply to which parts of a
complex sequence of if statements. In particular it can be hard to figure out when there are
several else sections which if each else refers to.
The indentation used in the example above helps a lot. However, many programs that use
multiple nested ifs don't provide such helpful formatting (or it may have become messed up).

Where you need to test several conditions it is usually better to use the following conditional
statement, designed for selection between several cases.

6.b Conditional statement: case of end
The case statement is a control structure that allows you to list any number of branches. It is

similar to a series of nested if statements, but usually easier to read, and shorter to write. Each
possible branch of code execution has a case label.
The case selector (the initial expression which is tested) must match one of the case labels in order
for the labelled statement to be executed. It has the syntax
case {ordinal expression, or string expression} of
 label1: statement1;
 label2: statement2;
 . . .
 else/otherwise statementElse;
end;

if day=1
then writeln('Sunday')
else if day=2
 then writeln('Monday')
 else if day=3
 then writeln('Tuesday')
 else if day=4
 then writeln('Wednesday')
 else if day=5
 then writeln('Thursday')
 else if day=6
 then writeln('Friday')
 else writeln('Saturday')

In the running program the case selector expression is evaluated and compared with each label
in turn. If there is an exact match, the corresponding labelled statement is executed.
If no label matches the selector expression, and an else (or otherwise) statement is present,
then the else is executed. If there is no else section, and no matching label, then none of the

case statement's execution pathways is followed, and execution continues with the statement
following the case construct.
As with the if . . then . . else statement, the else part in a case statement is optional.

Every label constant's type must match the type of the selector expression. The label can be a
range of values, which do not have to be contiguous. However no label value can be repeated

 within another label (nor implicitly because the label is included within the range of
another label).
The statement corresponding to each case label can be a compound statement (such as a
statement sequence bounded by begin . . . end;). Unlike in the if then else construct where
no semicolon separator is allowed between the various parts, in the case statement semicolons

are required to separate each labelled statement from the next one.
The recent FPC extension allowing strings (not just single characters) as case labels is a welcome
innovation, making the case statement more versatile than ever.

explicitly

Chapter 6 PASCAL STATEMENTS

55

Learn to program using Lazarus

program keypress;

{$mode objfpc}{$H+}

procedure KeyPress(Key: Char);
begin
 case upCase(Key) of
 '0'..'9': WriteLn('Key ',Key,' is numeric');
 'A','E','I','O','U': WriteLn('Key ',Key,' is a vowel');
 'B'..'D','F'..'H','J'..'N','P'..'T','V'..'Z':
 WriteLn('Key ',Key,' is a consonant');
 else WriteLn('Key ',Key,' is not alphanumeric');
 end;
end;

var s: string;
begin
 WriteLn('Press a key, then [Enter], (or [Enter] alone to finish)');
 repeat
 ReadLn(s);
 if s<>'' then KeyPress(s[1]);
 until s='';
end.

Notice how we test not Key (as typed by the user), but upCase(Key), capitalising all characters
before testing. This means we don't have to include tests for 'a', 'b', 'c' etc. in the case
labels of the KeyPress() routine, and tests for 'A', 'B', 'C' etc. are sufficient.

6.c Looping statement: for to do
Commonly there is a need to perform an operation repeatedly a known number of times.
To repeat code instructions a specified number of times in Pascal you use the for loop.
This requires an integer counter which is given a range from a starting value start to an
ending value finish, and which is automatically incremented each time the loop executes.
The for loop is declared like this
var i, start, finish: integer;
begin
 start := 1; // assign a starting value
 finish := 10; // assign a finishing value
 for i := start to finish do
 begin
 {some action we want performed ten times}
 end;
end;

The control variable (i in the above example) must be an ordinal type, and the compiler will not
allow you to assign any value to it during the execution of the loop (you can read it, but not
change it). This is because the compiler controls its value, incrementing it by one during each
iteration of the loop, until it reaches the value of the upper finish bound.
In a for to do loop start must be less than finish if the loop is to execute at all; and the
control variable is incremented at the end of each iteration.

The possibility of using otherwise as a synonym for else aligns FPC with ISO Pascal.
However, the term otherwise is not found in the Lazarus sources (except in comments). After all,
who would write a 9-character word when the 4-character else suffices nicely?

Here is a short example which also demonstrates the repeat . . . until statement (discussed
more fully later in Section g).
Begin a new console project in Lazarus, saving it as keypress.

Adapt the skeleton code Lazarus writes to look like the following:

56

Learn to program using Lazarus

program last_word;

{$mode objfpc}{$H+}

type TCharSet = set of Char;

function LastWord(const aPhrase: string; separators: TCharSet): string;
var L, p: integer;
begin
 L:= Length(aPhrase);
 if (L=0) or (separators=[]) then Exit('');
 for p:= L downto 1 do
 if not (aPhrase[p] in separators)
 then Result:= aPhrase[p] + Result
 else Break;
end;

var s: string;
begin
 repeat
 Write(
 'Enter a phrase (or nothing to Quit): ');
 ReadLn(s);
 WriteLn('The last word of "',s,'" is: "',LastWord(s, [' ']),'"');
 until (s='');
end.

The compiler does not allow you to alter the value of the control variable in a for loop (p in the
program above), but Free Pascal provides two useful procedures that allow you to skip some of
the statements in a loop (Continue), or to exit completely from the loop prematurely (Break).
These two procedures can be used inside all loop constructs (for, repeat and while).
In the above program the Break instruction causes program execution to jump out of the for
loop whatever the value of the control variable p.

6.e Looping statement: for in do
The for to do loop is limited to use of ordinal control variables. The for in do loop
allows you to enumerate a number of varied types providing they have a fixed number of
elements, including ordinals, arrays, sets, strings and enumerable classes. The control variable
has to correspond appropriately to the base element of the type being enumerated. The
following short program illustrates the for in do statement used with an enumerated type.

6.d Looping statement: for downto do ; Break and Continue
In a for downto do loop start must be greater than finish for the loop to execute at all,
and the control variable is decremented by one after each loop iteration.
Suppose you need a function that will return just the last word of a text string.
Such a function could be coded using a for downto do loop as in the following short test
program which exercises such a function. Begin a new Lazarus console project named
last_word, and adapt the program skeleton to look like the following.

program religions;

{$mode objfpc}{$H+}

Type
TReligion = (Bahai, Buddhism, Christianity, Confucianism, Hinduism, Islam,

Jainism, Judaism, Shinto, Sikhism, Taoism);
Var r : TReligion;
begin
 WriteLn('Major world religions include the following:',LineEnding);
 for r in TReligion do
 WriteLn(r);
 {$IFDEF WINDOWS}
 ReadLn;
 {$ENDIF}
end.

Chapter 6 PASCAL STATEMENTS

57

Learn to program using Lazarus

6.f Looping statement: while do
Whereas the for loop executes a fixed number of times, the while and repeat loops execute a
variable number of times, according to a boolean control expression. In the while statement the
loop control expression is tested before entering the loop (so the while loop might not run even
once). In the repeat statement the control expression is tested at the end of each loop (so repeat

statements execute at least once). The syntax for the while statement is
 while {boolean expression} do {statement};

Usually the part of the construct is a compound statement bounded by begin...end.

For example, the number of lines in a newly opened text file can only be known by reading the
file from beginning to end, incrementing a line count as each new line is encountered, and
checking before reading another line that the end of the file has not been reached yet. Given a
newly opened text file, txt, and two procedures ReadAFileLine() and ProcessAFileLine()
then a while loop to read and process the entire contents of the file would be as follows:

{statement}

 try
 while not EOF(txt) do
 begin

 ReadAFileLine();
 ProcessAFileLine()
 end;
 finally

 CloseFile(txt);
 end;

The text file function EOF(txt) returns a boolean value which indicates whether the
file-read-cursor has reached the end of the file or not.

6.g Looping statement: repeat until
The repeat statement is analogous to the while statement, except the test for loop repetition is
done at the end of the repeating loop, not at the beginning. While statements usually require
begin end delimiters to mark which sequence of statements the while loop should process.
The syntax for repeat until encloses the repeated statements, so no additional begin end is
needed. The statement is written in the form

 repeat

 {statements}
 until (booleanExpression);

The last_word.lpr program given above in Section 6.d demonstrates use of the repeat
loop.

6.h Exception statements: raise, on, try
Exceptions let you interrupt the normal flow of control in a program, and can be raised in any
routine or method. The exception causes control to jump to an earlier point in the routine, or
perhaps to an earlier routine further back in the call chain. Where a try statement is found the
compiler causes that code to execute, processing the exception.
The try . . except construct is used to deal with errors, and the try . . finally construct
is used to properly clean up resources (usually allocated memory or opened files) no matter what
errors might occur. If no try constructs are found anywhere in the call stack, in GUI programs
the Application instance handles the exception.
Most beginners do not need to consider raising exceptions, only how to respond to exceptions
arising, say from divide-by-zero errors. Generally it is only low level code and utilities that
need to communicate an exceptional state by raising an exception, and usually you will find
that such code is already part of the RTL, FCL and LCL.

Chapter 6 PASCAL STATEMENTS

58

Learn to program using Lazarus

The higher level code most programmers write to do with the UI will use try statements (rather
than raise statements), or perhaps an Application.OnException handler to catch and handle
exceptions. Because raising and handling exceptions takes time and processor resources, they
should be used only for truly exceptional conditions (system file not found, for instance). Rather
than give lots of detail about the syntax of the exception statements (which are covered in full in the
FPC documentation) an example follows illustrating their use.
To demonstrate the concepts involved, imagine you have a weather station that records data at
hourly intervals, logging recorded measurements to a text file wind_data.txt where each line
contains wind speed readings recorded that day. You write a function

type TIntegerArray = array of integer;
function WindSpeedArray(const aLine: string; var aDay:TDateTime):TIntegerArray;

that parses each line in the file, storing the date of the readings in the aDay variable, and
returning an array containing the actual readings for that day. To make the processing of the file
robust, you might code the procedure that does the processing something like this over-simple
console program named windspeed.lpi:

program windspeed;

{$mode objfpc}{$H+}

uses sysutils;

type TIntegerArray = array of integer;

 function WindSpeedArray(const aLine: string;
 var aDay: TDate): TIntegerArray;
 begin
 // actual line parsing code should go here - instead we return dummy data
 aDay:=Now;
 SetLength(Result, 3);
 Result[0]:=25; Result[1]:= 23; Result[2]:=17;
 end;

 procedure DisplayAverageWindSpeed(anArray:
 TIntegerArray; aDay: TDate);
 var sum: integer=0; i, avg: integer;
 begin
 for i:= Low(anArray) to High(anArray) do Inc(sum, anArray[i]);
 avg:= sum div Length(anArray);
 writeln('Average wind speed for ',DateToStr(aDay),' is ',avg);
 SetLength(anArray, 0);
 end;

var windData: TextFile; d: TDate;
 s: string; wsa: TIntegerArray;
begin
 AssignFile(windData, 'wind_data.txt');
 Reset(windData);
 try
 while not EOF(windData) do
 begin
 ReadLn(windData, s);
 wsa:= WindSpeedArray(s, d);
 if Length(wsa) = 0 then
 raise Exception.CreateFmt('No data for %s: average cannot be computed',
 [DateToStr(d)])
 else DisplayAverageWindSpeed(wsa, d);
 end;
 finally
 CloseFile(windData);
 end;
 {$IFDEF WINDOWS}
 ReadLn;
 {$ENDIF}
end.

Chapter 6 PASCAL STATEMENTS

59

Learn to program using Lazarus

If you compile and run this program in Lazarus (with the debugger enabled) you should get an
exception “File not found” (see Figure 6.1).
Without the debugger the outcome depends on your platform.

To avoid the exception, create a new text file in the same directory as the project
(File|New|Text), and save the file as wind_data.txt, typing a few characters in the first line of
the file in the Lazarus Editor so there is a fragment of text there for the ReadLn() to read. It does
not matter what you type since the actual data read is discarded in this simple example, but the
file can now be found.
The DisplayAverageWindSpeed() routine calculates an average from the array of integers
passed as a parameter to the routine. If the array is empty, the routine would attempt to divide
by zero. To prevent that we test the length of the array in the main program block, raising an
exception if it is zero. This is to provide an (admittedly rather artificial) example of using the
raise statement. An alternative (better) way to catch such an exception would be to wrap the
calculation of the average in the DisplayAverageWindSpeed() routine in a try except

statement that is designed to catch the specific exception we anticipate might arise, like this:

 try
 avg:= sum div Length(anArray);
 except on EDivByZero do
 avg:= 0;
 end;

The EDivByZero exception is an exception class defined in a sysutils include file, along with a
number of other exceptions that have self-explanatory names. Using the higher level try
except statement rather than the lower level raise statement is usually a better way of
working with exceptions.

The try except alternative, if used here, would not even cause a pause in the program, or
show an error dialog. It will simply report an (unexpected) value of 0 for the average. This is
much more user-friendly.

Figure 6.1 The Lazarus debugger catching
an exception in windspeed.lpr

Chapter 6 PASCAL STATEMENTS

60

Learn to program using Lazarus

6.i Review Exercises
1. Write a function using a for loop that returns the location of the first space character
 function PositionOfFirstSpace(s: string): integer;

in a string, or 0 if no space is found.

2. Write a routine that deletes a file
 procedure DeleteFile(aFilename: string);

which raises an exception if the file is not deleted
(you could use the system Erase() procedure).

Chapter 6 PASCAL STATEMENTS

61

Learn to program using Lazarus

Just as Chapter 3 introducing types was mainly about data, so this chapter introducing routines
is mainly about code.

7.a Routines and methods
Following the modular design philosophy of Pascal, procedures and functions are named
sections of code that can be used (or called) simply by inserting their name at the appropriate
point in your code. Collectively procedures and functions are known as routines. The simple
statement of the named routine invokes all the code associated with that routine. It does not
have to be rewritten at that point in your program. Citing the name alone is sufficient to invoke
the entire code routine. Where procedures and functions occur within classes they are known
collectively as methods.
The many predefined Pascal routines have been written by experts and debugged over many
years of use. It is far more reliable (and quite likely faster) than any code we might write
ourselves, which means that a large part of learning to program is learning the names and
capabilities of the routines provided in the libraries that accompany the language you are
learning. It is usually both more productive and faster to learn how to use reliable routines
written by experts than to stumble through attempts at reinventing the same wheel ourselves
that others have already crafted and placed in one of the three libraries that come with Lazarus
(RTL, FCL, LCL).
Procedures (and functions also) may have local declarations of variables, constants or nested
procedures (and/or functions) that are private to that procedure.
Here the terms local and private mean that the declared variables (or other locally declared items)
are used only within the procedure itself. They are not visible to the rest of the program, i.e.
cannot be accessed from outside of the procedure. This is the meaning of privacy generally in
Pascal. Nothing outside is allowed to interfere with the inner working of code that is private.
From the perspective of the rest of the program a procedure is a black box. It does its named
thing, but the program does not care how. The only interface the procedure exposes to the
program is its name and parameter list.

7.b Calling a routine
A function is a self-contained block of Pascal statements that returns a value at the end of its
execution, and consequently all functions have a defined type which appears at the end of their
declaration, following a semicolon. Since it returns a value, a function can be used as part of an
expression in assignments, but can only appear on the right hand side of an assignment
statement. For example:

aVariable:= SomeFunction();

It is also possible to invoke a function without assigning its value to a variable. In this case the
value is thrown away:

SomeFunction();

A procedure is analogous to a function, with the difference that it does not return a value, so its
name cannot be assigned to a variable, since it does not represent a value, only a sequence of
code that is being executed. A procedure is called just as a function is called:

SomeProcedure();

Both procedures and functions can call themselves recursively, though in real life surprisingly
few actually do (which may help beginners for whom the idea of recursion can be confusing when first
encountered).

 Chapter 7 ROUTINES: FUNCTIONS AND PROCEDURES

62

Learn to program using Lazarus

7.c Passing data to a routine: parameters
Both functions and procedures may have parameter(s), that is, data which is processed in the
course of their execution. Parameters are sometimes given the alternative designation of
arguments. Any such required data is passed to the routine when it is called, and the data is
given in a fixed sequence of parameters shown in parentheses (brackets) following the name of
the routine.
The simplest routines have no parameters. For example, the Pi function which is declared

(almost) like this
function Pi: double;

needs no parameters. You can call it (use it) in your code simply by writing its name, Pi, like
this:
 var r, circumference: double;
 begin
 circumference:= 2 * Pi * r;
 end;

Or you can call it by writing Pi() as a function name followed by an empty parameter list ().

The empty parameter list () emphasises the fact that Pi is a function (not a predefined constant).
Most routines require parameters. Consider the need to discover the square root of a number.
Rather than writing out the complex code required to determine the square root of a number
repeatedly each time you need a square root, Pascal provides a routine which you can call, a
function that returns the needed value. Such a function requires some input data, namely the
number for which the square root is to be calculated. Accordingly the function definition
includes a parameter which is a placeholder for this bit of data. The Sqrt function is declared
(almost) like this:
 function Sqrt(d: double): double;

A square root is meaningless without specifying what number we want the square root of,
which is the number passed to the function as a parameter. The availability of the Sqrt function
allows us to write the following:
 var golden_section: double;
 begin
 golden_section:= (1 + Sqrt(5))/2;
 end;

7.d Picking up the value returned from a function
There are literally thousands of useful functions ready to be used in the LCL, FCL and RTL.
However, you will always come across a situation where there is no pre-existing function that
does what you want (or perhaps there is, but you cannot find it). Suppose we need to calculate the
volume of a sphere. We could write our own function VolumeOfSphere() which would look

like this:
function VolumeOfSphere(aRadius: double): double;
begin
 VolumeOfSphere:= 4*Pi()*aRadius*aRadius*aRadius/3;
end;

Notice how the expression evaluating the volume is assigned to the function name to give it
its final value. An alternative is to use the predefined Result value, which FPC provides for
any function you write (it is automatically of the right type). Result behaves as if it were a
hidden var parameter which is undefined before entry to the function. The following
this one provides more details about var parameters.
So the same function could also be written as:

function VolumeOfSphere(aRadius: double): double;
begin
 Result := 4 * Pi * aRadius * aRadius * aRadius / 3;
end;

section

 Chapter 7 ROUTINES: FUNCTIONS AND PROCEDURES

63

Learn to program using Lazarus

The very slight differences in coding style are a matter of personal preference. Both styles are
valid Pascal (and of course there are other stylistic variations which are also valid).
If a function requires more than one parameter, then each parameter is separated from its
successor by – you guessed it – a semicolon. There is an “a” prepended to ”Radius” to make the
parameter name aRadius. This is a common convention which enables you, as you read
through the code, to distinguish very easily the parameters supplied to a function from other
variables used in the function body.

7.e Parameter classification: var, const, out
Parameters passed to functions and procedures are either value, variable, constant, or out
parameters. The reserved words var, const and out indicate variable, constant and out
parameters and, if used, come immediately before the name of the parameter.
Value parameters are the default and have no special specification. Parameters are assumed to
be value parameters unless specified otherwise (this is the meaning of “default”). Value
parameters transfer a copy of an actual value to a routine. Such as in this declaration of the
power function:
 function power(base, exponent: float): float;

Here the two parameters required are passed as value parameters. The values could be passed
as literal numbers. However, let's assume that we have two float variables in our program
named bas and exp. They acquire values and are then passed to the power function which is

used to assign a new value to a third floating point variable floatVar as follows:
 floatVar:= power(bas, exp);

Inside the power function the two parameters bas and exp (since they are value parameters) are

copied to temporary variables. Inside the function these copies of the parameters may or may
not be changed. However, when the function completes and returns its value (which is assigned
to floatVar), the temporary copies of bas and exp are lost. The original variables bas and exp
passed as parameters remain unchanged. This is the meaning of value parameters. Within the
called routine the parameters can be changed, but if any such changes are made they actually
happen to copies of the original parameters (created inside the routine by the compiler), so the
value parameters themselves are always unchanged after the function call.

Var (or variable) parameters are passed by reference, meaning that no copy is made but the
routine acts on the original value which might be changed by the routine as it executes. This
allows a procedure to return value(s) as existing variables that the procedure might alter, and it
allows a function to return value(s) in addition to its Result.
Consider the function OffsetRect which moves a rectangular area of type TRect (specified by
the var parameter ARect) by an X delta dx, and a Y delta dy. Its declaration is as follows:
 function OffsetRect(var ARect: TRect; dx, dy: Integer): Boolean;

After the function call ARect has changed – it is now in the new position (unless the function
result is False, which means you used a dx or a dy value that would have moved it to negative

coordinates).

Constant, const, parameters are like value parameters with the restriction that they cannot be
assigned a value in the body of the routine (or passed as var parameters to another routine). This
sometimes allows for certain compiler optimisations to be performed on code using const

parameters. For large structured types such as strings this can save time-consuming copies
from being made.

Out parameters, out, are var parameters passed only as output containers, i.e. they can be
uninitialised variables. Their purpose is to pass information out of a procedure (like the Result

variable of a function) rather than to pass information in to a procedure.

 Chapter 7 ROUTINES: FUNCTIONS AND PROCEDURES

64

Learn to program using Lazarus

7.f Default parameters
Pascal allows you to declare default parameter values for simple types (and also for string types)
by appending a =value phrase to the parameter type. If you call the routine without giving the
parameter a value, the compiler then supplies the default value provided in the declaration.
This means you can declare an apparently overloaded procedure such as the following:
uses Dialogs, SysUtils;

procedure Show3Msg(s1: string; s2: string=''; s3: string='');

implementation

procedure Show3Msg(s1: string; s2: string; s3: string);
begin
 case s3=EmptyStr of
 True : case s2=EmptyStr of
 True : ShowMessage(s1);
 False: ShowMessage(s1+LineEnding+s2);
 end;
 False: ShowMessage(s1+LineEnding+s2+LineEnding+s3);
 end;
end;

You can then call the procedure with one, two or three string parameters, e.g.:

Show3Msg('one', 'two', 'three');
Show3Msg('one', 'two');
Show3Msg('one');

Without default parameters the last two calls would be disallowed by the compiler, giving the
message Error: Wrong number of parameters specified for call to "Show3Msg".

Chapter 9 gives more details about true overloading which refers to different routines which
share the same name.

7.g Declaring procedures and functions
The format of a procedure declaration is as follows:

 procedure ProcedureName(parameterList);
 localDeclarations;
 begin
 statements;
 end;

For example there is a procedure in the LCL called ShowMessage which is declared thus:
 procedure ShowMessage(const aMsg: string);

This takes a single string parameter, which it displays in a modal dialog (a modal dialog is
displayed on top of other windows, keeping the focus until it is dismissed with a key press or mouse click).
The format of a function declaration is very similar:

 function FunctionName(parameterList): returnType;
 localDeclarations;
 begin
 statements;
 Result:= {a returnType value calculated by the foregoing statements};
 end;

 Chapter 7 ROUTINES: FUNCTIONS AND PROCEDURES

65

Learn to program using Lazarus

An alternative to the Result:= assignment as the last statement of a function is a
FunctionName:= assignment. Here is an example from the SysUtils unit:
 Function RenameFile(const OldName, NewName : String): Boolean;

This function lets you rename a file. If the renaming succeeds, the function returns True. If for
some reason the file could not be renamed (perhaps the file never existed, or has recently been
deleted, or is a protected system file) the function returns False.

7.h A program example: function_procedure
Here is a short program example of declaring and using functions and procedures. Create a
new console project in Lazarus, and save it with the program name function_procedure.

Change the program code to the following, which includes writing a short procedure called
DisplayMessage(). The program uses two string functions from the strutils unit, so that
must be included in a uses clause.

program function_procedure;

{$mode objfpc}{$H+}

uses strutils;

procedure DisplayMessage(const aMsg: string);
begin
 WriteLn(DupeString('-', Length(aMsg)));
 WriteLn(aMsg);
 WriteLn(DupeString('=', Length(aMsg)));
 WriteLn;
end;

const LazDescription = 'Lazarus is a very powerful IDE';
begin
 DisplayMessage(LazDescription);
 DisplayMessage('The message above will now be shown backwards');
 DisplayMessage(ReverseString(LazDescription));

 {$IFDEF WINDOWS}
 ReadLn;

 {$ENDIF}
end.

To reverse the characters in our string LazDescription we use the ReverseString() function
found in the RTL strutils unit, and to form a crude border to the message display we use the
DupeString() function from the same unit. Their names should give you an idea of the
functionality you can expect them to provide, which the result of compiling and running the
program probably confirmed. Notice how one procedure or function can call another function
directly as in the line:
 DisplayMessage(ReverseString(LazDescription));

7.i The Exit() procedure
Free Pascal supports the Exit procedure which allows you to leave a routine at any point. It is
equivalent to jumping directly to the last end in the routine, skipping any intervening

statements. If the routine is a function, Exit can take a single optional parameter (of any
appropriate type) which sets the return value of the function. For example, a function
NumericCharCount() that counts the number of numeric characters in a string could be coded
as in the following program:

 Chapter 7 ROUTINES: FUNCTIONS AND PROCEDURES

66

Learn to program using Lazarus

program char_count;

{$mode objfpc}{$H+}

function NumericCharCount(const s: string): integer;
var
 c: Char;
begin
if (s = '') then Exit(0)
else
 begin
 Result:= 0;
 for c in s do
 if c in ['0'..'9'] then Inc(Result);
 end;
end;

var st: string;
begin
 Write('Enter text for a character count: ');
 readln(st);
 WriteLn('The text "',st,'" has ',NumericCharCount(st), ' numeric characters');
 {$IFDEF WINDOWS}
 ReadLn;
 {$ENDIF}
end.

 Chapter 7 ROUTINES: FUNCTIONS AND PROCEDURES

67

Learn to program using Lazarus

7.j Review Questions

1. What does the following procedure do?

procedure WhatDoesThisProcedureDo(var i1, i2: integer);
 var h: Integer;
 begin if (i1>i2) then begin
 h:=i1;
 i1:=i2;
 i2:=h;
 end;
 end;

2. Write the body of a function declared as follows
 function Fahrenheit(aCelsiusTemp: single): single;

that converts a temperature in Celsius (centigrade) to Fahrenheit.

3. Suggest what is wrong with this procedure declaration:

procedure CalculateCircleArea(radius: integer; area: single);

Amend it, and write a working implementation.

4. Write a conversion function
function BooleanToString(aBool: boolean): string;

which takes a boolean value and returns its string representation.

 Chapter 7 ROUTINES: FUNCTIONS AND PROCEDURES

68

Learn to program using Lazarus

It is time to consider GUI programming, and to do that we must first look at the elaborate type
called a class that in Pascal is a sort of record-on-steroids, combining both disparate data
types (as the record type does) and procedure and function code (which traditional records do not).

Procedures and functions embedded in a class are known as methods to distinguish them from
non-class procedures and functions which are known collectively as routines (though not all
authors maintain this distinction). Additionally the Pascal class introduces various object
oriented concepts, including
• inheritance
• data hiding
• polymorphism
all of which are important for the robust versatility and reusability of the class type. These
ideas are discussed briefly in the sections which follow. Use of classes requires the presence of
the compiler directive {$mode objfpc} or $mode Delphi} or $mode Macpas}.

8.a Generations of classes
Classes exhibit a hierarchy, starting with a simple base class, from which descendant classes
can inherit, so becoming ever larger. The child class contains everything in its parent class.
Parental features do not need to be redeclared – they are present by definition from the
declaration
uses parentClass; // parentClass contains the TParent declaration
type TChild = class(TParent)

 {all the extra features of the TChild class are put here}
 end;

TParent is a class which here is declared in the separate unit called parentClass (which
therefore has to be mentioned in its child's uses clause).
The simple syntax of citing (TParent) in parentheses after the keyword class gives TChild
every single feature declared in TParent. The declaration of TChild declares additional
features beyond those in TParent. A TChild cannot remove any features it inherits from its
TParent.

All classes inherit eventually from an ultimate pre-declared parent called TObject which
provides certain basic class functionality – TObject's properties and methods are available to
all classes everywhere (because every class inherits them).
Declaring a class like this:

type TNewClass = class
 end;

is the same as if you had declared TNewClass like this:
type TNewClass = class(TObject)
 end;

The declared class is identical in the two cases. (In MacPas mode the keyword class is replaced by
the keyword object, activated using the compiler directive {$MODE MACPAS}).

Note: This inconsistent naming scheme is a Delphi legacy retained for compatibility (since
TObject would have been better called TClass).

{ {

 Chapter 8 CLASS: AN ELABORATE TYPE

69

Learn to program using Lazarus

8.b Class data fields
Like records, classes can contain data fields. (By convention private fields are named FSomething
with an initial F for Field. Beginning a private field name with F... is merely a convention. You are not
forced to name class fields like this).
Here is a class that could almost pass as a record (though it is not a record, and is not type-
compatible with a record):

type TMultiClass = class(TObject)
 Name: string;
 ID: integer;
 Date: TDateTime;
 Euros: double;
 InUse: boolean;
 end;

This looks almost like an analogous record type:

type TMultiRecord = record
 Name: string;
 ID: integer;
 Date: TDateTime;
 Euros: double;
 InUse: boolean;
 end;

If we had two variables:

var multiClass: TMultiClass;
 multiRecord: TMultiRecord;

we can access the Date field of by writing multiClass.Date:= Now;

just as we can access the Date field of MultiRecord by writing multiRecord.Date:= Now;

Note that field access is also possible using the with do construct that also applies to records:

with multiClass do
 begin
 Date:= Now;
 end;

However, although the above code assigning the result of the Now() function to the Date field
of multiClass is valid Pascal, as written it would produce a severe error when the program
containing it runs (see Figure 8.1) because of its attempt to access unallocated memory.

MultiClass

Figure 8.1 Trying to use a class before it has been constructed

 Chapter 8 CLASS: AN ELABORATE TYPE

70

Learn to program using Lazarus

The memory management of classes is quite different from that of records. The memory needed
for a record variable is set aside for you by the compiler when you declare any record variable.
Usually such a record variable would have memory set aside for it on the stack, a last-in first-
out (LIFO) memory region managed behind the scenes by the compiler.
Declaring a record variable hands the compiler full responsibility for ensuring that the record's
memory requirements are met during its lifetime, and cleaned up when the variable is no
longer used (whether that memory is stack memory or located elsewhere).

This kind of automatic memory resource allocation performed by the compiler for simple
types, records, sets, files and static arrays gives rise to the description statically allocated
variable to describe such variables' memory management. The programmer does not have to
think about this memory housekeeping at all. With classes the situation is different. Automatic
memory management of this sort does not happen for classes simply by declaring a class
variable (though exception classes are – pardon the expression – an exception to this rule).

8.c Class memory management
Declaring a class variable
 var multiClass: TMultiClass;

sets aside enough memory for a pointer (multiClass is actually a pointer) and after the
declaration that pointer's value is unknown (though if it is declared as a global variable it will be
initialised to nil). This means that multiClass cannot be used yet. For its fields alone
multiClass actually requires enough memory for a string, an integer, a TDateTime, a
double and a boolean. The record multiRecord requires 32 bytes, which the compiler sets
aside for it when it is declared.

The class TMultiClass will need just as much memory for its equivalent fields. Classes also
require some extra memory because of the fields, methods and properties they inherit from
their ancestor(s), as well as some additional memory overhead required for their full
functionality as classes (functionality that is missing in a standard record).
All classes need to have memory allocated for them from a large memory area called the heap.
The compiler does not do this automatically (though there are a few exceptions to this rule). Instead,
each class inherits two memory-management methods from TObject that must be used to
allocate the memory needed for the class when it is created, and de-allocate that memory when
the class is destroyed. The methods are named Create and Destroy. Usually a slight variation
on Destroy (called Free) is used rather than calling Destroy directly. The memory allocation
method has to be declared using the keyword constructor, and the memory deallocation
method has to be declared using the keyword destructor.
So before the declared variable multiClass is ready for use, with enough memory allocated to
it to hold all its contents, it has to be constructed manually in code by a call to its constructor
which is by convention named Create.

begin

multiClass := TMultiClass.Create; // multiClass is now constructed properly
 multiClass.FDate:= Now; // we can safely make an assignment to a field

end;

The Create method was not declared in the declaration of TMultiClass (which merely declared
five data fields). Like several other methods and properties of TMultiClass, the Create
constructor is inherited from the ancestor class TObject. If we check the source for TObject's
declaration we see it includes the following (this is a simplified listing, omitting quite a lot):

 Chapter 8 CLASS: AN ELABORATE TYPE

71

Learn to program using Lazarus

In using classes, you always have to bear in mind the 'weight' of inherited riches, ready and
waiting to be used. Classes are not lightweight programming constructs, they come with
considerable baggage which their parents (and possibly grandparents, great-grandparents and so on)
have contributed to their arsenal of methods and properties.

This makes classes almost unusable if you don't have access to the source code for them.
The simplified TObject declaration shows the Create method declared as a constructor,
and the Destroy method declared as a destructor, and also a number of other methods
declared as class function methods. Class methods, declared either as class function or
class procedure can act not only on instances of the class in memory, they can also act on the
type of that class (which is a sort of template for the class).
Ordinary (non-class) methods require a constructed instance of the class in order to be called (or
else you will see an exception like Figure 8.1).

Once a class has been constructed (which allocates the memory it needs) it is known as an
instance of the class. The class type (TMultiClass in the above example) is a template for how
the actual instance will look once it exists in memory. All references to the constructed class are
via the multiClass variable, which is actually a pointer to the instance of the class which exists
somewhere in memory.

Earlier we encountered the SizeOf() function which can be used to discover the size in
bytes of any variable or any type. SizeOf(boolean) returns 1, for instance. In the same way
class methods can be used on both class variables (instances of the class) and class types
(templates for the construction of the class). Calling SizeOf() on a class instance or class type
always returns 4 (on a 32-bit system), the size of a pointer variable. It does not actually give
you much information about the class!

Returning to the multiClass example introduced above: after the program using
multiClass has finished using the class instance which multiClass points to, its memory must
be released for use elsewhere, otherwise a memory leak will occur.
This is done by a call to the destructor of the class, via the Free method:

 multiClass.Free; // this releases all the memory the instance occupies

It is not obvious that class instance variables are actually pointers to class structures.
There is no mention of pointer in the variable declaration

 var multiClass: TMultiClass;

to inform you that it is a pointer, and there is correspondingly no need to use the caret ^ symbol
anywhere in the declaration. This compiler subterfuge is a simplifying extension to traditional
Pascal syntax. It is a concession to beginning programmers, introduced by Borland with Delphi
1 to simplify the somewhat more complex pointer syntax that would be required if classes were
declared and implemented explicitly using traditional pointer syntax. Instead, the compiler has
inside knowledge of class instance variables, and their memory requirements.

TObject = class
 public
 constructor Create;
 destructor Destroy; virtual;
 procedure Free;
 class function ClassType: tclass;
 class function ClassName: shortstring;
 class function ClassParent: tclass;
 class function InstanceSize: SizeInt;
 class function UnitName: ansistring;
 end;

 Chapter 8 CLASS: AN ELABORATE TYPE

72

Learn to program using Lazarus

8.d Exercising simple class methods
To give you an introductory feel for classes (there is much more to learn about them yet, and this
book will by no means treat classes exhaustively) start a new Lazarus console project, save the
program as class_intro and adapt the skeleton code provided to match the following
program listing:

program class_intro;

{$mode objfpc}{$H+}

type TGrandParent = class(TObject)
 procedure WriteAboutMyself;
 end;

procedure TGrandParent.WriteAboutMyself;
begin
 WriteLn();
 WriteLn('The name of this class is ', self.ClassName);
 WriteLn(' its parent is ', self.ClassParent.ClassName);
 WriteLn(' its InstanceSize is ', self.InstanceSize);
 WriteLn(' its declaration is located in ', Self.UnitName);
end;

type TParent = class(TGrandParent)
 FintField: integer;
 end;

 TChild = class(TParent)
 FsetField: set of byte;
 end;

var exampleClass: TGrandParent;
begin
 exampleClass:= TGrandParent.Create;
 exampleClass.WriteAboutMyself;
 exampleClass.Free;

 exampleClass:= TParent.Create;
 exampleClass.WriteAboutMyself;
 exampleClass.Free;

 exampleClass:= TChild.Create;
 exampleClass.WriteAboutMyself;
 exampleClass.Free;

 {$IFDEF WINDOWS}
 ReadLn;

 {$ENDIF}
end.

 Chapter 8 CLASS: AN ELABORATE TYPE

Class references are dereferenced appropriately as needed, so programmers can largely forget
that they are using pointers and dynamically allocated memory structures (except at the initial
moment of class construction and at the final moment of class destruction). To use the class keyword
in a declaration you must also include the {$mode objfpc} compiler directive.

73

Learn to program using Lazarus

Compiling and running class_intro should yield output similar to the following:

The name of this class is TGrandParent
 its parent is TObject
 its InstanceSize is 4
 its declaration is located in class_intro
 the size of the exampleClass variable is 4

The name of this class is TParent
 its parent is TGrandParent
 its InstanceSize is 8
 its declaration is located in class_intro
 the size of the exampleClass variable is 4

The name of this class is TChild
 its parent is TParent
 its InstanceSize is 64
 its declaration is located in class_intro
 the size of the exampleClass variable is 4

Here we see several aspects of class usage and behaviour:
• Each class (TGrandParent, TParent and TChild) can use the WriteAboutMyself method,

though it is only declared once. The two descendant classes TParent and TChild inherit
this method. It does not need to be redeclared in the descendants – it is there implicitly.
You can only know the full extent of a class's capabilities by looking back through its

 ancestry. As in real life genealogies, sometimes it is surprising what you find there!

• The WriteAboutMyself method uses a variable called Self which is predeclared and
available for any class. It refers, as the name would lead you to suspect, to that very
instance of the class itself. It is a useful way to refer unambiguously to the class itself.
You would be well advised to use the Self identifier even when it may not be strictly
necessary, because it aids in identifying exactly which class instance's methods are being
called. In a hierarchy of similar classes this is not always clear (to the reader) otherwise.

• We use a single variable, exampleClass of type TGrandParent to refer not only to a
TGrandParent, instance but also to a TParent instance, and a TChild instance. Ancestor
variables are type-compatible with any of their descendants. It does not work in reverse.
If we had declared exampleClass to be of type TParent (or TChild) the program would
not have compiled, failing with the error Incompatible types: got “TGrandParent“
expected “TParent” because you cannot assign a parent class to a variable of its child type,
only the other way round.

• The added fields (an integer in TParent and an integer plus a set of byte in TChild)
increase the InstanceSize of the class in memory. The InstanceSize function returns
only the size of the data in the class (the size it would be if it were a record, not a class). The
actual memory footprint of the class will be larger than this figure, since there is additional
overhead associated with all classes. The size of the reference variable exampleClass

which is made to point in turn to a TGrandParent, TParent and TChild instance remains
constant at 4 bytes (the size of a pointer on a 32-bit system).

• The methods invoked in WriteAboutMyself (such as ClassName) are implemented in
TObject, the highest class in the hierarchy. All classes can use these inherited methods.

 Chapter 8 CLASS: AN ELABORATE TYPE

74

Learn to program using Lazarus

8.e Properties: special access to class data and events
Although you can happily declare and use plain data fields in a class just as you would in an
analogous record, in most cases programmers rarely do this, because classes provide somewhat
more sophisticated access to their data than is possible with a record. Properties act as normal
fields, i.e. they provide read and write access to the class's data. However, they also permit data
access to happen only through appropriate methods (rather than directly reading or writing a data
value – though that is possible too). These data access methods enable the programmer to include
'side effects' as part of the data access: perhaps validating the data, filtering it or associating the
access with some action such as updating the display, or causing some other knock-on effect.
Properties can also be read-only or write-only; and there are also array properties which
provide an indexed structure for array-like properties with numerous elements. Individual
property elements of array properties are accessed via an index which can be an ordinal or a
string type. There is also provision for event properties which are properties of procedural type
(not of data type) which allow for events to be handled and generated by classes. This is a vital
feature for GUI programming which is fundamentally event-driven, and not procedural (the
simple console examples given in the preceding pages are all procedural programs). This topic is
considered at greater length in Section 8.g.
A property declaration inside a class declaration is made in one of two ways.

• one way gives unmediated access to the data storage field supporting the property like this:
APropertiedClass = class

 Fdata: TdataType;
 . . .
 property propertyName: TdataType read Fdata write Fdata;
 . . .

end;

• the other way provides two methods – a read getter function, and a write setter procedure
which takes a data parameter. This alternative way to declare properties looks like this:

APropertiedClass = class
 Fdata: TdataType; // some setter & getter methods may not need a data field
 function GetData: TdataType;
 procedure SetData(var aDatum: TdataType);
 . . .
 property propertyName: TdataType read GetData write SetData;

. . .
end;

 Chapter 8 CLASS: AN ELABORATE TYPE

• The WriteAboutMyself method is declared in the TGrandParent class. It then has to be
defined, and the body of the procedure has to be written outside the class declaration to
implement that method's functionality. The code that does this always begins with the type
name of the class whose method is being written followed by a dot, then the method name:

procedure TGrandParent.WriteAboutMyself;
 begin . . .
 end;

• Usually a class will be declared in a unit separate from the main program. In this case the
class declaration is normally placed in the first half of the unit (the interface section), and
the implementation of any methods is placed in the second part of the unit (the
implementation section). See the following chapter for more about units and unit
organisation.

75

Learn to program using Lazarus

program person_class;

{$mode objfpc}{$H+}

uses sysutils, dateutils;

type
 TPerson = class
 FAwards: array of string;
 FBirth, FDeath: TDate;
 FName, FNationality, FRole: string;

 constructor Create(aName, aNationality, aRole, aBirth, aDeath: string);
 destructor Destroy; override;
 function GetAwards(index: integer): string;
 function GetLifespan: integer;
 function GetNumberOfAwards: integer;
 procedure DisplayInfo;
 procedure SetAwards(index: integer; AValue: string);

 property Awards[index: integer]: string read GetAwards write SetAwards;
 property Birth: TDate read FBirth;
 property Death: TDate read FDeath;
 property Lifespan: integer read GetLifespan;
 property Name: string read FName;
 property NumberOfAwards: integer read GetNumberOfAwards;
 property Role: string read FRole;
 end;

function TPerson.GetAwards(index: integer): string;
begin
 if Length(FAwards) > index
 then Result:= FAwards[index]
 else Result:= EmptyStr;
end;

function TPerson.GetNumberOfAwards: integer;
begin
 Result:= Length(FAwards);
end;

procedure TPerson.SetAwards(index: integer; AValue: string);
begin
 SetLength(FAwards, index+1);
 FAwards[index]:= AValue;
end;

 Chapter 8 CLASS: AN ELABORATE TYPE

Omitting the write part of the property makes it read-only. Less commonly the read part of
the property declaration is omitted to make the property write-only. Outside the class
declaration, but somewhere in the program or unit where it is declared, the two property access
methods of the second type of property declaration must be implemented. Suppose TdataType
is integer. This means that the assignment APropertiedClass.propertyName := 10;
is translated by the compiler to the call APropertiedClass.SetData(10);
Likewise, retrieving the value of propertyName by assigning it to an integer variable i,
i := APropertiedClass.propertyName; is translated by the compiler into the call
i := APropertiedClass.GetData;
As an example of the use of read-only properties for data that will not change during the
course of program execution, consider the following person_class console project, which also
demonstrates the use of an array property, here an indexed list of Awards[].

76

Learn to program using Lazarus

var person: TPerson;
begin
 person:= TPerson.Create('John Lennon','British',
 'songwriter','09/10/1940','08/12/1980');
 person.DisplayInfo;
 person.Free;
 person:= TPerson.Create('Arvo Pärt','Estonian','composer','11/09/1935','');
 person.DisplayInfo;
 person.Free;
 person:= TPerson.Create('Usain Bolt','Jamaican',
 'sprinter','21/08/1986','');
 person.Awards[0]:= 'Berlin 2009 100m world record of 9.58s';
 person.Awards[1]:= 'Berlin 2009 200m world record of 19.19s';
 person.Awards[2]:= 'London 2012 100m Olympic record of 9.69s';
 person.Awards[3]:= 'London 2012 200m Olympic record of 19.30s';
 person.DisplayInfo;
 person.Free;
 {$IFDEF WINDOWS}
 ReadLn;
 {$ENDIF}
end.

function TPerson.GetLifespan: integer;
begin
 if FDeath = 0 then Result:= YearsBetween(Now, FBirth)
 else result:= YearsBetween(FDeath, FBirth);
end;

constructor TPerson.Create(aName, aNationality, aRole, aBirth, aDeath:
 string);
begin
 inherited Create;
 FName:= aName;
 FNationality:= aNationality;
 FRole:= aRole;
 FBirth:= StrToDate(aBirth);
 if (aDeath = EmptyStr) then FDeath:= 0
 else FDeath:= StrToDate(aDeath);
end;

destructor TPerson.Destroy;
begin
 SetLength(FAwards, 0);
 inherited Destroy;
end;

procedure TPerson.DisplayInfo;
var n: integer;
begin
 WriteLn('The ',FNationality,' ',FRole,' ',Name,' was born on ',
 DateToStr(Birth));
 case FDeath = 0 of
 True: WriteLn(' is alive today and is ',Lifespan,' years old');
 False:WriteLn(' and died on ',DateToStr(Death),' aged ',
 Lifespan,' years');
 end;
 if NumberOfAwards > 0
 then for n:= Low(FAwards) to High(FAwards)
 do WriteLn(' achieved in ',Awards[n]);
 WriteLn;
end;

 Chapter 8 CLASS: AN ELABORATE TYPE

77

Learn to program using Lazarus

There are several points to note about this example.
The main program block follows the sequence

for each new instantiation of the class. Memory is allocated by the constructor Create,
used in the worker procedure DisplayInfo, and then freed in the indirect call to the
destructor via Free. All uses of classes have to keep to this basic outline: Create the instance,
use the instance, Free the instance. Neglecting to attend to freeing memory objects inevitably
causes memory leaks.
TPerson is basically a data class holding fixed (reference) data that will not change. It makes
sense then to protect that data, making the properties read-only by omitting any property
write section. How then do we get data into the class? Here this is done via the constructor,

Create. In its implementation Create is redeclared, this time with a parameter list designed to
pass initial data to the class. In the constructor's implementation we first call the inherited
constructor (so the memory required is allocated correctly), and then fill the data fields from the
appropriate parameter. Of course a proper program would obtain its data from a database, and
not hard-code data values as here in this simple example.

The program has to deal with the possibility that the people whose lives are summarised
may not have died, so their death date is meaningless. Accordingly it uses a trick, and if the
death date is empty, the value zero is assigned to the FDeath field.
The DisplayInfo procedure checks for this value, and formats FDeath for display, or ignores it
altogether as appropriate.

Because this program has an array property (Awards[]) for which it reserves heap

memory in a dynamic array (FAwards), we have to implement a destructor to ensure this
memory is deallocated after use. Classes are able to use a single method name to achieve
customised effects at different levels of the inheritance hierarchy through virtual methods.
In TObject the destructor named Destroy is declared as virtual. This means we can
redeclare an identically named destructor in a descendent class, and if we declare it using the
override keyword, the compiler will generate code to ensure that at runtime the correct custom
destructor is called, even though its name does not appear to show at which level of the
hierarchy the correct method lies (since the name is identical at different levels). This scheme of
using a single method name to effect different tasks appropriate to the different levels in the
class hierarchy is known as polymorphism. There is more about this topic in Chapter 9.

The class declaration is separated into three sections: fields, methods and properties. This is
for clarity, and that clarity is enhanced by listing the lines alphabetically within each section.
For small classes like TPerson this is not too important. However, for larger classes (you will
find the Lazarus sources are full of them) good organisation of class declarations aids readability
enormously, and alphabetical listing of methods and properties makes it far easier to locate
items when you study a new class to discover what its capabilities are. In fact sections in classes
are almost always arranged according to visibility specifiers, which are the subject of the next
section. Lazarus provides a tool (the Code Observer) that among its many capabilities can check
the alphabetical listing of class methods. Its use is briefly detailed in Chapter 19, Section f.

Create(. . .);
DisplayInfo;
Free;

 Chapter 8 CLASS: AN ELABORATE TYPE

78

Learn to program using Lazarus

8.f Private, protected, public and published
Global variables are visible from everywhere. They live on the top of the program hill, and can
be seen on the skyline from wherever you happen to be. If you have a gun it does not matter
where you are, you can always aim at a global variable. If you are also a good shot, you will hit
it when you fire. Generally there is a need for variables which are better protected, which are
known only in their locality, and are invisible from far away (invisible, say, from some distant unit
that is part of the project).
Information hiding (i.e. exposing information strictly on a need-to-know basis) is a cornerstone of
the object oriented design underpinning Lazarus/FPC. Its class syntax provides five keywords
that allow class designers to protect sections of a class from view, or to expose them. These five
visibility specifiers allow you to guard from view (or publish everywhere in your program) the
contents of the section in the class declaration headed by that visibility specifier.
In increasing order of accessibility a section in a class can be:

• strict private
• private
• strict protected
• protected
• public
• published

Public and published fields, variables, properties and methods are available globally. They
present the public face of the class. The class's constructor and destructor must be declared
in a public section (they are not allowed in private or protected sections). The difference
between public and published is that published properties have extra information
generated for them by the compiler, offering Run Time Type Information (RTTI) that public
properties lack. This extra type information is needed by the Object Inspector (OI) to enable it to
offer a suitable editor where you can edit the published property during the design phase to set
it to a different value.
One page of the Lazarus Component Palette (the tab labelled RTTI) is devoted to RTTI
components that exploit this published information so you can hook up these components to
each other at design time in a way that enables you to create RAD applications with almost no
code. There is lots of code in such an application, of course, it is just that a great deal of it has
already been placed inside the RTTI components for you.

Note: To explore the RTTI components, choose Tools | Example Projects... and in the resulting
Example Projects dialog click on the down-arrow and choose the folder
C:\lazarus\components\rtticontrols\examples

(or its equivalent on your OS) from the drop-down list beside the Lazarus source radio button.
Then choose an example project from the listbox labelled Projects, which also has a filter field
above it. You may need to drag the listbox rightwards using the dotted splitter grip icon on its
right in order to see the full pathnames of the various projects.
Clicking the [Open first selected] button opens that project in the IDE ready for you to explore,
compile and run. You will see that there are many other example programs here that you might
want to explore.

Other visibility sections are protected, private and strict private. The protected section
of a class is accessible only by the methods of that class and its descendants. Its main usefulness
comes when writing a hierarchy of classes (particularly when developing new components). The
strict protected specifier is also possible, but is used only rarely in the sources.
It prevents access to the class from other classes and variables which happen to be declared in
the same unit.

 Chapter 8 CLASS: AN ELABORATE TYPE

79

Learn to program using Lazarus

The private section introduces fields, properties and methods that are not accessible by other
classes (unless they are declared in the same unit).
The strict private section introduces fields, properties and methods that are not accessible
to any other class, even other classes declared in the same unit. This is the ultimate in privacy.
Private data cannot be accessed outside of its class, which guards it from unwanted
accidental damage. Usually if data needs to be accessible outside the class it is declared in a
property, which is placed in a public section of the class (available to the entire program) or in a
published section of the class (available publicly, and published additionally in the OI, where it can
be edited both manually at design-time and in code at runtime).
A class can have zero or more sections, each introduced by a visibility specifier.
There can be any number of sections, and they can be in any order, and can be repeated.
Data fields must precede method and property declarations within a section.
A common convention is to list the sections in order of increasing access, i.e. a private section
… ending with a published section, though if you want to annoy readers of your code, you
have the freedom to list sections in some less logical order.
If no visibility specifier is present the default is public, unless the class has RTTI (either because
it inherits from an RTTI-enabled class, or because you include the {$M+} or {$TYPEINFO} compiler
directive) when the default becomes published.

You can increase the visibility of (strict) private and (strict) protected sections in
descendant classes, but you cannot reduce the visibility of sections previously declared public
or published. For this reason the LCL declares many TCustomXXX classes as immediate
ancestors of many of the controls found on the Palette. TCustomXXX classes have many public
and no published properties. The TXXX class descending from TCustomXXX publishes many of
these public properties, for OI access when the controls are manipulated in the Designer. The
TCustomXXX class remains as an ancestor for other descendants, which may not want to publish
all the public properties, since adding RTTI imposes additional overhead that is not always
needed or desired.
Here is a much simplified class declaration taken from the RTL, to illustrate some of these
ideas.

TComponent = class(TPersistent)
 private
 FOwner: TComponent;
 FName: TComponentName;
 FTag: Ptrint;
 FComponents: TfpList;
 function GetComponent(AIndex: Integer): TComponent;
 protected
 FComponentStyle: TComponentStyle;
 procedure SetName(const NewName: TComponentName); virtual;
 public
 constructor Create(AOwner: TComponent); virtual;
 destructor Destroy; override;
 property Components[Index: Integer]: TComponent read GetComponent;
 property ComponentStyle: TComponentStyle read FComponentStyle;
 property Owner: TComponent read FOwner;
 published
 property Name: TComponentName read FName write SetName;
 property Tag: PtrInt read FTag write FTag;
 end;

 Chapter 8 CLASS: AN ELABORATE TYPE

80

Learn to program using Lazarus

Tcomponent is a basic building block for much of the functionality of Lazarus. Here you can see
that it has three read-only public properties. The Components[] array property is accessed via
the private GetComponent method, whereas ComponentStyle and Owner read their respective
private fields (FComponentStyle and FOwner) directly. It has two published properties Name

and Tag. Tag has direct read/write access to its private field (FTag), while Name has direct read
access to its private FName field, but mediated write access through the protected SetName
procedure. The SetName procedure allows for validation of the component's name. If you drop
a button on a form and try to name it “1stButton”, this procedure will interrupt your action.
You will see a message as in Figure 8.2

Valid Pascal names can contain digits, but not as the first character. The Name property of any
TComponent descendant has this built-in protection, via a protected procedure, from ever being
assigned an invalid name.
You notice that the message says “Component name ...” rather than “Button name ...” because
the validation routine, SetName is inherited from its ancestor TComponent. Also because
SetName is protected (not public) it cannot be called directly in a program. Likewise FName,
(the field where the actual string value is stored) is private and inaccessible. The only access a
programmer has to any component's name is via its Name property. This makes for safer
programming.

8.g Events
An event is some discrete happening within the world of the computer. In programming terms
the event refers to a communication about whatever happened. It may be a system event or a
user-originated event (a key press, a mouse move, a timer firing) or some internal change of state of
a widget (a line in a memo getting selected, a database connection being dropped, an edit losing the
focus).
Procedural programming has code sequence as the ordering principle. For instance, consider
this excerpt from a program presented in Chapter 4:

Figure 8.2 The protected SetName method pointing out a mistake

begin
 AssignFile(f, 'customer.dta');
 Reset(f);
 try
 while not EOF(f) do
 begin
 Read(f, c);
 ProcessCustomer(c);
 end;
 finally
 CloseFile(f);
 end;
end.

 Chapter 8 CLASS: AN ELABORATE TYPE

81

Learn to program using Lazarus

Here there is a clear, pre-arranged sequence of code execution from the opening
AssignFile()call, through the while loop which repeats a begin Read();
ProcessCustomer(); end; sequence for each customer record, c, in the data file, until the

concluding call to CloseFile().
GUI programming is based on a different, event-driven model in which there is no
predetermined sequence of events through the lifetime of the program. Events will happen (or
'pop up') in an unpredictable way throughout the program. We do not know before the program
runs exactly which events will be encountered, how many there will be, nor in what sequence
they will appear. The GUI program has to be designed to deal with these events (to handle them,
in programming jargon) as and when they arise.

Operating systems differ in the mechanisms they provide for notifying the programmer of
system events, however the various implementations all use the windowing system and the
window handle (or its equivalent) to receive notification of events. Windowed controls, then, are
the ones that can receive such messages.
The fundamental engine of a GUI program is the message loop, a means by which your
program can continually watch for system and Lazarus-generated events, and feed them to the
correct windowed control to be handled. In Lazarus the unique instance of the TApplication
class called Application has this responsibility, delegated to a method called
ProcessMessages.

The Lazarus program loop is operated by the Application instance which is created for each
Lazarus project. TApplication is a complex class, but its Run method which is called in every

main GUI program file begins by showing the main form (i.e. the first form created if there is more
than one). Then it repeatedly calls the ProcessMessages procedure. This varies according to OS,
but in essence it queries the windowing system to see if any messages are pending for the
running process. If there are any, ProcessMessages despatches the message(s) to their
appropriate destination control(s).

Some messages are handled automatically by controls as a result of the way the LCL is
programmed. For instance a resize message leads to the control resizing itself (which may have
knock-on effects leading to further messages). Other messages have effects programmed by the
application developer. These are messages generated by the events available on the OI Events
page, such as a form's OnCreate event or a button's OnClick event. Here is the source for
TApplication.Run

procedure TApplication.Run;
begin
 if (FMainForm <> nil) and FShowMainForm then FMainForm.Show;
 WidgetSet.AppRun(@RunLoop);
end;

Essentially the WidgetSet.AppRun(@RunLoop) call invokes a widgetset-specific
ProcessMessages until the program terminates (which happens when the main form is closed). So
in pseudocode the main Lazarus program loop is

begin
 TMainForm.Show;
 while not Terminated do ProcessMessages;
end;

To see how Lazarus implements this, start a new Lazarus GUI project (Project | New Project... , [OK]).
Then select the main program file by choosing Project | View Project Source. The project's .lpr file is
displayed in the Editor, and you'll see the main body of the program is as follows:
begin
 RequireDerivedFormResource := True;
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

 Chapter 8 CLASS: AN ELABORATE TYPE

82

Learn to program using Lazarus

Based on the above we can expand the Application.Run call to get a feel for the overall GUI
program functionality which then reads thus:

begin
 RequireDerivedFormResource := True;
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Form1.Show;
 while not Terminated
 do ProcessMessages;
end.

8.h Event properties
The name of the ProcessMessages method indicates how Lazarus/FPC approaches events:
they are messages, i.e. discrete packets of information signalling that some event, some “action”
has occurred. The Application.Run method (via its continuously running ProcessMessages
loop) is committed to gathering all such “messages” and processing them, which usually means
distributing them among the GUI program windows so that at least one window (most often it
will be the one with the current focus) can handle that message.
Event properties are designed to give applications a straightforward way to respond to events
with code appropriate to the event.
Events rely on provision of a procedural type, a type not introduced in the earlier chapters on
types, since at that stage there was no context to discuss their use. A procedural type is a type
that allows you to refer to a procedure - or function - through a variable, i.e. via an assignment
statement. Procedure type variables store the address of a routine to call (it can be a procedure or
a function), and are specific to routines with matching parameter lists. So they are pointer types,
however they cannot be dereferenced.
A procedural type declaration is similar to the declaration of a function or procedure header,
omitting the procedure name that is usually part of such a header, and instead naming the type
itself. For example:

type TOneStringParamProc = procedure(aString: string);

 Given this procedural type, a variable of that type can be defined and used as in the following
program:

1 program procedural_type;
2
3 type TOneStringParamProc = procedure(aString: string);
4
5 var stringProc: TOneStringParamProc = nil;
6
7 procedure ShowStr(s: string);
8 begin
9 WriteLn('The string passed to this procedure is ',s);
10 end;
11
12 begin
13 stringProc:= @ShowStr;
14 stringProc('"string parameter"');
15 {$IFDEF WINDOWS}
16 ReadLn;
17 {$ENDIF}
18 end.

 Chapter 8 CLASS: AN ELABORATE TYPE

83

Learn to program using Lazarus

Create a new Lazarus console project called procedural_type and test this out (omitting the line
numbers!). The ShowStr() procedure can be called simply by making the stringProc variable a
statement (used in conjunction with the appropriate parameter that ShowStr() was declared as
needing). This is done in line 14 of the program listing above. Note that procedural types must
be global, they cannot be declared within another routine.

Analogous to the procedural variable is the method pointer, which enables you to call a
particular method of a given class instance at runtime. Syntax-wise the only difference between
a procedural type and a method pointer type is the addition of the phrase “of object” required
for the method pointer declaration following the method prototype header.

 type TOneStringParamMethod = procedure(s: string) of object;

Once a method pointer type like this has been declared you can declare a variable of this type,
and assign a compatible method to it. “Compatible” here means any method with the same
parameters, declared in the same order. Method pointers are not compatible with global
procedural types, because they carry a reference not only to the method whose address is
assigned to them, but they also bear a reference to the specific instance of the referenced
method. Procedural types do not need and cannot receive this information.

The Object Pascal syntax for classes supports events through use of event properties which are
implemented using method pointers. They are special properties in that you can only assign
methods to them. You cannot assign data to event properties as you do with ordinary
properties. As with procedural types each event property is specifically compatible with a
particular method signature (i.e. a particular method parameter list). Many of the most commonly
used event properties in Lazarus are of the type TNotifyEvent. This is declared in the Classes
unit as follows:

 TNotifyEvent = procedure(Sender: TObject) of object;

Here is an example of a TNotifyEvent procedure. It is an event handler which has been
assigned to the OnClick event property of a TButton control named Button1:

 procedure TForm1.Button1Click(Sender: TObject);
 begin
 Close;
 end;

This procedure is a TNotifyEvent procedure on account of its parameter list (a single TObject
parameter passed by value). In this particular case the parameter is ignored in the body of the
procedure. When the user clicks Button1 it causes an OnClick event to be generated which the
ProcessMessages method will dispatch to the receiving form of type Form1. Either at design
time using the OI, or in code the following assignment will have been made:

Button1.OnClick := Form1.Button1Click;

The OnClick event property of Button1 allows you to hook up this event to a specific action in
code simply by assigning that code action (the ButtonClick procedure, which here is coded so
it closes the current window) to a method pointer of Button1 referenced by its OnClick property.
(The actual field supporting the property that stores the value is called FOnClick, and it is of type
TNotifyEvent).

 Chapter 8 CLASS: AN ELABORATE TYPE

84

Learn to program using Lazarus

8.i Object oriented design
Object oriented programming, OOP, is the design philosophy underpinning the FCL, LCL and
design of the Lazarus IDE. Key concepts are encapsulation of functionality, inheritance as a
way to facilitate code reuse, data hiding to protect data from unwanted access, and
polymorphism as a way of reusing a single programming term to adapt reliably to related but
subtly different situations in a hierarchy of classes linked by their ancestry.
Classes can certainly be complex, but that complexity is only a result of the object oriented
design that also yields protective data hiding, extensive reuse of well-tested code via inheritable
classes, and polymorphic method calls that offer elegant interfaces to class functionality, and
consistency in method naming across related classes, yet calls which adapt at run time to ensure
that different (yet correct) methods get executed. The next chapter looks in detail at a number of
aspects of polymorphism.

There are quite a number of standard events that all GUI programs need to handle, that
programmers can respond to by writing suitable event handling procedures (like the above
Button1Click procedure that reacted to the click event by closing its window). Event properties that
relate to system events are usually given names beginning with On such as OnKeyUp,

OnMouseDown, OnResize. Events arising from changes of state are also often named OnXXX,

such as the OnChange event of editable components that arises when their Text property is
modified.

The prefixes BeforeXXX and AfterXXX are also used. You will find database-related classes that
have events such as BeforeInsert and AfterPost. Using these events you can enhance, cancel
or override the default behaviour of the classes and components that publish them, using
standard components and widgets, but customising their behaviour to suit the needs of your
project. The following chapter explores this further.

 Chapter 8 CLASS: AN ELABORATE TYPE

Because this TNotifyEvent procedure can be assigned straightforwardly like this it makes it
possible for a single event handling procedure to be shared among different events. The
handler used can also be changed at runtime by a similar sort of assignment. Or it can be
disconnected from the code it previously invoked by setting its value to nil.

The OI makes it easy to reassign event handlers listed on the Events page. If you click to the
right of an event name on the down-arrow alongside it, a drop-down list of potential event
handling procedures is shown. These are guaranteed to be compatible with the event – they
will all be procedures with the correct number, type and order of parameters to be assignable to
that event. (This assumes, of course, that you have written procedures of this sort which you can choose
from – if not the list will be blank).

85

8.j Review Exercises
1. This chapter did not detail the use of indexed properties.

Look at the lazarus\tools\debugserver\frmoptions.pp source for a simple and elegant
illustration of how to design a form class (used in a modal dialog) that returns five boolean
properties which collect user settings in one location with an easy-to-use interface.

2. For a good example of a simple but elegant customised class (descending directly from
TObject) for listing a particular item (TMethod in this case) look at the source for
lazmethodlist.pas found at lazarus\components\lazutils\lazmethodlist.pas.

Learn to program using Lazarus

Polymorphism is a cornerstone of object oriented programming, and Lazarus takes the concept
to new heights with its cross-platform capabilities. Polymorphism is a way of simplifying
complexity by letting a single term mean something different in different situations. The
difference, of course, must be appropriate to the differing situation that calls for the different
meaning. Indeed, often the difference in the programmed response is almost unnoticed because
it is logical and completely fitting.
The need for polymorphic constructs (such as classes, and the LCL, and overloading as a
language feature, and Lazarus's cross-platform capabilities) arises from the non-standard
nature of the realities that software attempts to mirror or emulate. Although generalities can be
abstracted to impose a sort of uniformity onto real-life variety, many realities (even if similar) are
not truly compatible.

9.a Cross-platform polymorphism
Consider the car industry. Every car has a need for windscreen wipers to aid visibility in
inclement weather, or just to clear dead flies and accumulated dirt from the windscreen.
However, there is little or no standardisation between manufacturers. Some cars are made with
a single windscreen wiper mounted centrally with a telescopic action. The majority of cars have
two windscreen wipers. Larger vehicles may have three or more. American cars have wiper
blades that vary in length between 10 and 31 inches. European cars have metric blade lengths
(300, 340, 380, 425 mm etc.). Some cars have a single motor driving both blades through a
gearing mechanism, others have two synchronised motors, one for each blade. If you need a
replacement wiper blade for your BMW it is most unlikely that a Honda spare part (even if
nominally of the same size) will be suitable.
Polymorphism is a “one size fits all” solution to the variety that programmers encounter. It is
an artificial imposition of simplicity and apparent uniformity on what is in reality a more
complex picture. The complexity is not removed, it is just masked. Consequently there may be
the possibility of ambiguity arising (at least in the mind of a code reader, if not in the reasoning
of the compiler).
Just as each car manufacturer specifies different defaults for each new car design, so computer
manufacturers and operating system developers have succeeded in generating a plethora of
standards and styles and interfaces in the technology that has emerged to dominate the market
in the last 30 years. Lazarus, as a cross-platform tool, attempts to impose a simplifying
standardisation on this variety by programming the LCL so that each Palette component you
use in your GUI program behaves identically on whichever platform your program is built.
A button behaves identically on Linux, Mac, Windows, FreeBSD, etc. It will not look the same –
indeed the Lazarus philosophy has been precisely to use native widgets and system dialogs as
far as possible, preserving this platform-specific variety of UI appearance – but it will behave
the same. This is achieved through inclusion of largely hidden platform-specific code called via
the Interfaces unit. The Interfaces unit is required in the uses clause of every LCL main program
file (the .lpr file of each project).

Note: There are emerging options, the CustomDrawn Palette page, as well as the fpGUI and

KOL libraries (not currently bundled with Lazarus) each of which attempts to make all GUI
widgets look and behave identically on all supported platforms. These custom widgets
supplant the native widgets provided on each platform. There is not space in this book to
consider these approaches.

Chapter 9 POLYMORPHISM

86

Learn to program using Lazarus

9.b Polymorphic methods in classes
The idea behind polymorphism in a class hierarchy is that a single verb (say, Speak) can be used
appropriately of various nouns, and the effect in each case will be somewhat different.
Consider a base class, TPerson, containing a method Speak:

type TPerson = class
 procedure Speak; virtual; abstract;
 end;

The keyword abstract simply means that this method has no implementation in this class, and
so cannot be called in an instance of TPerson – the class is designed as an ancestor of further
classes which will implement the method. Although you can create instances of TPerson, the
compiler will warn you that the class has an abstract (uncallable) method.
The keyword virtual indicates that in a descendent class the Speak method can be overridden,
i.e. a new implementation can be provided which is customised for that descendant, and that
Speak will (probably) mean something different in each child class that overrides the method.
Start a new Lazarus project in a folder named polymorphic class. Name the project
polymorphic.lpi and the form mainform.pas. Create a new unit (not a new form) called
person.pas. This unit has code as follows:

unit person;

{$mode objfpc}{$H+}

interface

uses Dialogs;

type
 TPerson = class
 procedure Speak; virtual; abstract;
 end;
 { TBeckham }
 TBeckham = class(TPerson)
 procedure Speak; override;
 end;
 { TShakespeare }
 TShakespeare = class(TPerson)
 procedure Speak; override;
 end;
 { TWest }
 TWest = class(TPerson)
 procedure Speak; override;
 end;
 { TBlaise }
 TBlaise = class(TPerson)
 procedure Speak; override;
 end;

implementation

{ TBeckham }
procedure TBeckham.Speak;
begin
 ShowMessage('I''ve got more clothes than Victoria!');
end;

end.

{ TBlaise }
procedure TBlaise.Speak;
begin
 ShowMessage('Le coeur a ses raisons que la raison ne connaît point');
end;

{ TWest }
procedure TWest.Speak;
begin
 ShowMessage('I used to be Snow White... but I drifted');
end;

{ TShakespeare }
procedure TShakespeare.Speak;
begin
 ShowMessage('The robbed that smiles steals something from the thief');
end;

87

Learn to program using Lazarus

If we have a variable p of type TPerson, then what will p.Speak produce? In the polymorphic

world of OOP the answer is that it depends on whether p points to an instance of a TBeckham,

TShakespeare, TWest, or a TBlaise. The variable p, being of the base type of all those

descendants is type-compatible with any of them. At runtime, then, p can be assigned to any one

of those descendant types. And FPC generates code which determines at runtime what the
actual type of p is, and calls the correct Speak method depending on whether p is a TBeckham, a

TShakespeare, or whatever. This depends on Object Pascal's inheritance mechanism, and on
two reserved words virtual (used in the ancestor class) and override (used in the descendent class).
To complete the project, drop a radio-group component on the main form named rgPeople.
Set its Caption to Choose a TPerson instance and use the OI to add four items to it as
follows (click on the ellipsis […] button by the Items property):

David Beckham
William Shakespeare
Mae West
Blaise Pascal

Generate an OnClick event handler for the radio-group and complete the skeleton
implementation so the finished unitmain looks like the following:

unit unitmain;

{$mode objfpc}{$H+}

interface

uses Forms, ExtCtrls, person;

type

 { TForm1 }

 TForm1 = class(TForm)
 rgPeople: TRadioGroup;
 procedure rgPeopleClick(Sender: TObject);
 end;

var
 Form1: TForm1;

implementation

{$R *.lfm}

{ TForm1 }

procedure TForm1.rgPeopleClick(Sender: TObject);
var p: TPerson;
begin
 if rgPeople.ItemIndex < 0 then Exit;
 case rgPeople.ItemIndex of
 0: p:= TBeckham.Create;
 1: p:= TShakespeare.Create;
 2: p:= TWest.Create;
 3: p:= TBlaise.Create;
 end;
 p.Speak;
 p.Free;
end;

end.

Chapter 9 POLYMORPHISM

88

Learn to program using Lazarus

When you compile and run this program you will see how the single TPerson pointer p can be

used to refer to any of the four descendant classes. The call p.Speak will always be appropriate
to the actual class of the instance p points to, because Speak was declared virtual in TPerson,

and then overridden in each descendant (if you fail to specify override in descendant methods, the
polymorphic mechanism does not work at all).

9.c Polymorphic graphic classes
We've seen an example of polymorphic text in the Speak procedure which produced varying
text strings for each TPerson descendant. To illustrate polymorphic graphical behaviour,
consider a base class called TDrawing, declared like this:

type TDrawing=class(TGraphicControl)
 private
 FExtent: integer;
 public
 constructor Create(theOwner: TComponent; anExtent: integer);
 property Extent: integer read FExtent write FExtent;
 end;

Tdrawing descends from an LCL class called TGraphicControl. This component is an excellent
base component for drawing on the screen. It is provided with a Canvas property (which gives it
a surface to draw on), and a virtual Paint method which we can override appropriately to
paint the correct TDrawing on the screen. Lazarus provides the Paint method to automatically
redraw the TGraphicControl whenever needed.

Obviously when the control is first created, Paint will be called to draw it. Thereafter Lazarus,
working with the host OS, ensures that the Paint method will be called in all other
circumstances in which the control needs drawing. Say while the drawing application is
running you play a game of Doom, and cover the screen with all sorts of other images.

When you tire of the game and close it, the application running underneath it needs to be
redrawn on the screen. Provided our drawing code has been put into the Paint method of
TGraphicControl then Lazarus ensures that Paint will be called in this situation, so the
redrawing takes place automatically.

This is why TGraphicControl was chosen as the base class for TDrawing – it has the right
functionality already programmed into it. All we need to do is add a private field called
FExtent to tell the TDrawing class how big it should be. Based on this integer field we define a
public property Extent which gives us controlled access to the otherwise private FExtent
data field.

Start a new Lazarus project named drawingdemo.lpr, saving it in a new folder, and naming
the first (main) form unit drawingdisplay.pas. In the OI set the Caption of this form to
Polymorphic drawing example. This project will develop a base TDrawing class, and declare
two descendant classes one named TSquare, and one named TCircle, which know how to
draw themselves. We will declare a variable of type TDrawing, and get this variable to draw
itself. According to whether the TDrawing instance is a TSquare or a TCircle, it will draw

itself differently. The one method call (Paint) will adapt polymorphically to suit its instance's
actual type.

Chapter 9 POLYMORPHISM

89

Learn to program using Lazarus

Drop a TRadioGroup control towards the bottom of the main form, naming it rgShape. With
rgShape selected, in the OI set its Caption to Type of FDrawing, and then click on the […] ellipsis
button for the Items property. This opens a String Editor dialog where you can type labels for
new radio buttons. These are added to the control when you press [OK]. Type TSquare and
TCircle on separate lines in the memo of this dialog as new radio button labels. Click [OK] to
accept these button labels. In the OI set the ItemIndex property to 0 (delete the -1 that was there).
Your form should now look something like Figure 9.1.

In the Lazarus IDE choose File | New Unit, and save the new unit file as drawing.pas. Open
the Project Inspector (Project | Project Inspector) and make sure that drawing.pas is listed in
the Files section of the Inspector's treeview (if for some reason it is not, [Add] it using the toolbutton
of that name).

We base our TDrawing class on the LCL class TGraphicControl, which is declared in the
Controls unit. The actual drawing code we write also uses items declared in the Graphics
unit. By default Lazarus has not added either of these units to the uses clause of our new
drawing unit, which is fairly empty with a uses clause of just two units (Classes and

SysUtils). Add Controls and Graphics to the uses clause. Once the uses clause refers to
the sources for all the classes and variables we want to use, we can take advantage of Identifier
Completion to speed our typing.

Below the uses clause start a new line for the type declarations by writing:

type TDrawing = class(TGraph

At this point, instead of completing the typing yourself press [Ctrl][Space].
A small window pops up (see Figure 9.2).

Figure 9.2 Identifier completion, invoked by [Ctrl][Space]

Figure 9.1 The drawingdemo UI

Chapter 9 POLYMORPHISM

90

Learn to program using Lazarus

The IDE has found four identifiers in the LCL, of which one should be what we want. Here it is
the fourth one. Sometimes you are lucky and the first highlighted item found is the very one
you want. You can either double-click on the relevant line to insert that identifier, or use the
arrow keys to select it, followed by the [Enter] key. Now all you have to do is type the closing
bracket. Complete the class declaration, and also declarations for TSquare and TCircle so the
type section reads as follows:

type
 TDrawing = class(TGraphicControl)
 private
 FExtent: integer;
 public
 constructor Create(theOwner: TComponent; anExtent: integer);
 property Extent: integer read FExtent write FExtent;
 end;

 TSquare = class(TDrawing)
 public
 procedure Paint; override;
 end;

 TCircle = class(TDrawing)
 public
 procedure Paint; override;
 end;

You see that TSquare and TCircle are identical classes, except for their individual Paint
methods, which are declared with the override keyword. This implements the polymorphic
behaviour, and can only be used where an ancestor class has declared a method with exactly
the same name, and also declared it as virtual. In fact TGraphicControl has exactly that: a
protected Paint procedure that is declared as virtual.

Note: It is easy to check this for yourself. Place the cursor somewhere in the word
TGraphicControl in the definition of TDrawing, then press [Alt][UpArrow]. This opens the
Controls unit and jumps the cursor to the declaration of TGraphicControl. It is quite a small
class (by LCL standards). You will locate the Paint method easily.

Now we need to write the Create and Paint methods. Click the drawing tab in the Editor and
place the cursor in the declaration of the Create constructor for TDrawing and press
[Shift][Ctrl][C] to invoke Code Completion. Fill out the code skeleton Lazarus generates in the
unit's implementation section so the body of the method looks like this:

constructor TDrawing.Create(theOwner: TComponent; anExtent: integer);
begin
 inherited Create(theOwner);
 FExtent:= anExtent;
 Width:= FExtent;
 Height:= FExtent;
end;

Chapter 9 POLYMORPHISM

91

Learn to program using Lazarus

First we call the inherited constructor with a parameter called theOwner. The inherited
constructor is the constructor of the parent class (TGraphicControl in this case). This sets aside
the memory needed for the class, and sets the Owner of the class to the value passed in the
parameter.
The LCL has a useful automatic memory deallocation system for components (i.e. descendants of
TComponent – this feature applies only to components, not to all classes). Provided the Owner
property of a component is not nil the Owner will see to freeing the memory allocated by the

component's constructor when it was created, at the time when the component has to be
destroyed and disposed of. For us this means that TDrawing and its descendants will be
automatically freed after use (provided we pass the correct theOwner parameter at the time they are
created). Chapter 14 gives fuller details of this (see Section 14.c).
Once the TDrawing class is created in its constructor code, we then initialise some data, set the
FExtent data field to the value passed in via the anExtent parameter, and set the dimensions of
the control. If the Height and Width properties were left at the zero value given them at
creation, the control would appear to be invisible, a mere dot without size.
Use Code Completion to create skeleton bodies for the two Paint procedures and complete
them as follows:

{ TCircle }

procedure TCircle.Paint;
begin
 Canvas.Brush.Color := clBtnFace;
 Canvas.FillRect(0, 0, FExtent, FExtent);
 Canvas.Brush.Color := clYellow;
 Canvas.Ellipse(0, 0, FExtent, FExtent);
end;

{ TSquare }

procedure TSquare.Paint;
begin
 Canvas.Brush.Color := clSilver;
 Canvas.FillRect(0, 0, FExtent, FExtent);
 Canvas.Rectangle(0, 0, FExtent, FExtent);
end;

The Paint procedure has to paint the entire surface of the control, so we first use the FillRect
canvas method to fill in the background of the control, and then use specialised canvas methods
to draw either a Rectangle or Ellipse. Passing symmetrical parameters to these drawing
methods yields a square rectangle and a circular ellipse. These drawing methods are part of the
Canvas class that comes with TGraphicControl. We can just call them, and not have to worry
about implementing them ourselves.

Having written the three classes, TDrawing, TSquare and TCircle, all we need to do now is
make use of them. To give Form1 access to these classes we must add drawing to the uses

clause of the drawingdisplay unit. Click the drawingdisplay Editor tab to focus that unit.

Chapter 9 POLYMORPHISM

92

Learn to program using Lazarus

Rather than type the alteration to uses manually, we'll use the IDE tool to do it. Press [Alt][F11]
(or choose Source | Add Unit to Uses section...) and in the Add unit to Uses Section dialog just one
unit will be suggested: drawing. Double-click on this line and the dialog closes, adding drawing

to the uses clause.

Add just below the uses clause a const declaration:

This adds a new variable of type TDrawing which we name FDrawing, and a new procedure
CreateANewDrawing which will free and erase any existing drawing, and draw a new
FDrawing. According to whether the radio button selects TSquare or Tcircle, FDrawing is
made to be appropriately a TSquare or a TCircle.

Use code completion to create a new skeleton body for CreateANewDrawing, and fill it out as
follows:

const extent = 50;

and in the private section of the TForm1 class declaration add these two lines:
private

 FDrawing: TDrawing;
 procedure CreateANewDrawing;

procedure TForm1.CreateANewDrawing;
begin
 if (rgShape.ItemIndex < 0) then Exit;
 FDrawing.Free;
 case rgShape.ItemIndex of
 0: begin
 FDrawing := TSquare.Create(Self, extent);
 FDrawing.Left:= 10;
 end;
 1: begin
 FDrawing := TCircle.Create(Self, extent);
 FDrawing.Left:= 60;
 end;
 end;
 FDrawing.Top := 10;
 FDrawing.Parent := Self;
end;

This starts out by freeing any existing FDrawing (erasing it from the screen). Then if the
radiogroup's ItemIndex property is 0 (TSquare is selected) a TSquare is instantiated and
assigned to FDrawing. If the radiogroup's ItemIndex property is 1 (TCircle is selected) a
TCircle is instantiated and assigned to FDrawing. In either case FDrawing's Left property is
varied to give an obvious visual sign that it has changed.
Lastly FDrawing's Top property is assigned, and its Parent property is set. The Parent is an
important property for visual controls, connecting them to the underlying OS widget drawing
routines for correct display. If the Parent is not correctly assigned the control will not be
displayed on the form. (Self here refers to Form1). Chapter 14 enlarges on this topic (see Section
14.c).
When do we want CreateANewDrawing to be called? On two occasions: when the form is first
created (we use the form's OnCreate event for this), and when the selection in the radio-group is
changed (we use the radio-group's OnClick event for this). So to complete the project, select the
form, then click the OI's Events tab. Double-click beside the OnCreate event, and fill out the
resulting method as follows:

Chapter 9 POLYMORPHISM

93

Learn to program using Lazarus

procedure TForm1.FormCreate(Sender: TObject);
begin
 CreateANewDrawing;
end;

Select the radio-group, and then click the Events tab of the OI. Double-click beside the OnClick

event, and fill out the resulting method as follows
:
procedure TForm1.rgShapeClick(Sender: TObject);
begin
 CreateANewDrawing;
end;

Compile and Run the project by pressing [F9]. See what happens when you select the
unselected radio button.
When you select the unselected radio button, the radiogroup's OnClick handler calls
CreateANewDrawing. This creates a new instance of TShape or TCircle, and assigns the new
instance to FDrawing. The Lazarus application then calls FDrawing.Paint to display the new
class instance on the screen (this is an automatic internal call, you do not see it in any code you have
written). And depending on whether FDrawing is pointing to a TShape or a TCircle instance,
so the correct Paint method is called. This is what polymorphism is: a single verb (Paint) that
acts differently according to the type of the instance making the call.

9.d Overloading
The kind of polymorphism exhibited by related classes that declare a method virtual and then
in descendants declare the same method using override is a scheme limited just to classes.
There is a more general polymorphic syntax scheme that applies to procedures and functions,
whether inside classes (methods) or outside classes (plain procedural routines). This involves use
of the keyword overload, and procedures or functions that use this keyword are described as
being overloaded.
Normally you cannot declare a variable or procedure or function in the same unit (within the
same scope) which has the same name as another variable or procedure or function. If you do
inadvertently reuse the same name for a new procedure, the compiler will baulk with a
message:

where offendingName is the name you have tried to use twice. Identifiers must be unique.
Overloaded routines all share the same name (by definition), and they must therefore differ in
some other respect for the compiler to be able to distinguish them and recognise which code to
use when that single name is making a call that can be interpreted in several ways.
So overloaded routines must differ either in the number or in the type of the parameters they
specify. The simplest way to introduce the idea of overloading is to give a working example.
Consider the following Add functions, declared together in one unit interface section:

 Duplicate Identifier "offendingName"

Add(a, b: integer): int64; overload;
Add(a, b: single): double; overload;
Add(a, b: string): string; overload;
Add(a, b: boolean): boolean; overload;

Chapter 9 POLYMORPHISM

Because these functions have different signatures (although the number of parameters is identical in
each function, their types are not) the compiler can distinguish them, and even though they bear
the same name Add they are completely distinct, and when the compiler encounters

Add('Monty ', 'Python');
Add(34.56, -203.651);

there is no doubt which Add function needs to be called in each case.

94

Learn to program using Lazarus

Note: Because the differences in the signatures of the routines is sufficient for the compiler to
distinguish the Add routines successfully, there is no need for the overload keyword in most
instances from the point of view of the compiler (the only exception is when routines in different units
need to be overloaded). So it is possible to write the above four routines in the same unit without
using the overload keyword, and the unit will compile successfully.
However, it is helpful to readers of the code to include the overload keyword even when not
strictly necessary to make explicit the programmer's intention to reuse the same name for
differing routines. This is also Delphi compatible, and allows the code to be compiled by Delphi.

9.e Default parameters
Object Pascal supports the use of default parameters for simple types such as booleans,
enumerated types, integers, pointers (nil is the only default allowed), characters and also for
the string structured type. In some situations using a default parameter is preferable to
providing two overloaded routines. If you consider the two floating-point-to-string conversion
routines:

 function DoubleToStr(aDouble: double): string; overload;
 function DoubleToStr(aDouble: double; aMinWidth: integer): string; overload;

The first overloaded function probably provides a predefined aMinWidth value (say 2), and is
possibly written by calling the second function with that value. So it makes more sense to
replace these two overloaded functions with a single function that provides a default
parameter:

 function DoubleToStr(aDouble: double; aMinWidth: integer = 2): string;

Here's a useful function for display of currency values stored in pence (cents) based on the
same idea:

uses math;
function PenceToString(pennies: int64; aPrecision: integer = 2): string;
begin
 Result:= Format('%.'+IntToStr(aPrecision)+'F',[pennies/(10**aPrecision)]);
end;

If no aPrecision argument is given, the function returns what is normally needed, a currency
value giving two decimal places. Otherwise it gives a string with the specified number of digits
following the decimal separator.

Chapter 9 POLYMORPHISM

9.f Review Questions
1. How does overriding differ from overloading?

2. Extend the DrawingDemo project with a third descendant of TDrawing called TTriangle,

writing an overridden Paint method for it (hint: Canvas has a LineTo method),
and adapt CreateANewDrawing and the rgShape control to display all three shapes.

3. Write an implementation of the four overloaded Add functions given above
and repeated here, and put them in a simple application that lets you test their use.

Add(a, b: integer): int64; overload;
Add(a, b: single): double; overload;
Add(a, b: string): string; overload;
Add(a, b: boolean): boolean; overload;

95

Learn to program using Lazarus

The console programs we have produced up to now have mostly been short, and monolithic,
i.e. everything we wrote was included in a single program file, and no other Pascal files were
written, though we did reference other files (written by FPC/Lazarus developers) as needed,
adding them to the uses clause near the beginning of the program. Many console programs will
involve you in creating and writing additional unit files, but our examples so far were short
enough that this was not required.

GUI projects always require at least two Pascal source files as part of a program:

• the main program file, program_name.lpr

• one or more unit files conventionally named unit_name.pas or unit_name.pp

Unit files are of two sorts:

• Plain Pascal unit source files applicable to console and GUI projects alike. You create such

a new unit file from the main menu by choosing File | New Unit, whereupon Lazarus
inserts a new Pascal unit source template into the Editor, naming it by default Unit2 (if you
only had a single Unit1 before).

• A form file unit, not usually relevant for console programs. You create a new form file
from the main menu by choosing File | New Form, whereupon Lazarus inserts a
considerably more complex unit source template into the Editor (it might be named Unit3

by default if Unit1 and Unit2 were already present), together with a Designer window
showing an empty form named Form2 (if there was an existing form named Form1).

In addition to the Pascal source for each form (that is, each window) in a GUI project, there is also
a corresponding resource file, the form definition file, always named unit_name.lfm (where
the corresponding Pascal source is called unit_name.pas). This file is created and maintained
automatically by Lazarus, and although it is a text-format file, and editable, beginners are
advised to leave maintenance of form definition files to Lazarus, since manual alteration of the
file is somewhat risky (because you are interfering with an automated maintenance process).

Units are a mechanism for dividing the code needed by the program over several modules
saved as files, rather than packing everything into one enormous file. Units are the main file-
based way in which complexity is modularised and functionality separated into sections of
mutually accessible code. They provide both privacy (through the implementation section which
is invisible from outside the unit) and public interface (through the interface section which any other
part of the program can reference simply by including the name of the unit in its uses clause).

The keyword for defining such modules is unit, just as program is the keyword for defining
the overall program source file.

10.a Unit structure and scope
The structure and syntax of unit organisation is identical whether the unit contains code for a
GUI form or component, or is an assemblage of standard procedural Pascal code. Its syntax is
modelled on that for the main program, but is enhanced in several ways to provide for
encapsulation of code and data, and to limit visibility of code and data declared within that
unit. The scope of an identifier is the region of code in which that identifier (variable, type or
routine) is accessible. Outside its scope the identifier is unknown and inaccessible. If you name it
in an inaccessible region, trying to access it, the compiler will stop with an “unknown
identifier” message (even though if you name the identifier within its proper scope the compiler knows
the identifier perfectly well). The unit structure deliberately imposes these visibility limits in order
to protect (or expose) data and routines appropriately (as you decide by placing them accordingly).

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

96

Learn to program using Lazarus

unit Unit2;

{$mode objfpc}{$H+}

interface

uses
 Classes, SysUtils;

implementation

end.

The new keywords used, interface and implementation define the two sections present in
every unit:
• Everything in the interface section (after the word interface and up to the word

implementation) is visible to other units that use this unit and to the main program file.
• Everything in the implementation section (after the word implementation) is invisible

outside the unit, hidden from view (analogous to the private visibility specifier that can be
used in class declarations).
Units can optionally incorporate two further sections at the end of their implementation section:
• an initialization section whose code is executed when the program is first

loaded into memory
• a finalization section whose code is executed just before the program terminates.

A more complete unit template layout would look like this (though most of these elements are
optional):

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

If you start a new GUI project (Project | New Project, Application, [OK]), and then immediately
create a new unit (File | New Unit) Lazarus creates a new – almost empty – Pascal source file
named Unit2, and you will see the following code already written in the opened file in the
Editor:

97

Learn to program using Lazarus

unit UnitName; // the unit heading is mandatory

interface // the interface keyword is mandatory

uses unit1, unit2, ... unitN;

type // global type declarations
 TExampleType = ...;
var // global variable declarations
 anExample: TExampleType;
const // global constants
 GoldenSection = 1.62;

procedure ExampleProc; // global routines

implementation // the implementation keyword is mandatory

uses unitX, unitY; // units referred to only in the implementation

type // hidden type declarations employed only in the implementation
 TPrivateType = ...;
var // hidden variable declarations employed only in the implementation
 aPrivateVar: TExampleType;
const // hidden constant declaration employed only in the implementation
 password = 'hiddenPassword';

procedure ExampleProc;

 procedure HiddenProc;
 begin
 // code for the nested procedure HiddenProc
 end;

begin
 // code for the main body of global procedure
 HiddenProc;
end;

initialization
 // optional initialisation code goes here
finalization
 // optional final (clean-up) code goes here
end. // the final end. is mandatory

Note in particular the separation between the declaration of the ExampleProc procedure
(which is visible to and exported to other units) in the interface section, and its implementation in
the implementation section. The code that actually implements the procedure is thus hidden
from other units – they can see only the interface, i.e. the way they need to call the procedure
(its name, and the parameters it requires).
The keywords interface and implementation must be present in every unit, even if the
implementation section is empty. Any identifier declared in the interface section of a used
unit is available to any unit that uses it, just as any identifier declared in the implementation

section of a used unit is unavailable (unknown) to any unit that uses it.
The system unit is automatically used by all units (and programs), and its interface identifiers
are therefore globally available (e.g. LineEnding, Odd(), FillChar()). Consequently it is an
error (“Duplicate identifier”) to add the system unit to any uses clause.

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

98

Learn to program using Lazarus

10.b The GUI program skeleton
Choose Project | New Project … and select Application from the Create a new project dialog to
cause Lazarus to create a main program file named project1.lpr, a form unit named
unit1.pas (together with a form definition file named unit1.lfm) along with the project1.lpi

and project1.lps files (see Figure 10.1).
Open the Project Inspector (via Project | Project Inspector) and double-click on the treeview
node in the Project Inspector named project1.lpr. This loads the main program file into the
Editor (see Figure 10.2). You will now see two tabs at the top of the Editor: unit1 and project1.

Project1 has the current focus, and the unit1 tab is darker to indicate that page is hidden.
Clicking either Editor tab brings the appropriate page to the front, and the cursor will be
positioned where you last left it when editing that page (or at the beginning of the file if you have
not edited it before).

Note: Another way to edit the main project file is to choose Project | View Project Source.

Figure 10.1 Creating a new GUI project in Lazarus

Place the cursor outside all words, somewhere in the white space, and press the space bar to
insert a space. Notice that the tab for the file that is current now has an asterisk beside it
(*unit1 or *project1). The file has not been renamed! The asterisk merely indicates that the

file has changed since it was loaded from disk, and that the changed file will be saved
automatically (overwriting the original) if you recompile to see the effect of your changes.
A second indicator of editing changes unsaved so far is the word Modified which appears in the
status bar at the bottom of the Editor.

Figure 10.2 The Project Inspector showing project1 renamed to first_gui

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

99

Learn to program using Lazarus

Rename the project to first_gui.lpi, and rename unit1.pas to umain.pas. You should find
that in your project directory (along with a backup subdirectory) Lazarus has created a set of files
with the following names :
• first_gui.ico
• first_gui.lpi
• first_gui.lpr
• first_gui.lps
• first_gui.res
• umain.lfm
• umain.pas

The first_gui.lpr main program file when loaded into the Editor looks like this:

program first_gui;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Interfaces, // this includes the LCL widgetset
 Forms, umain
 { you can add units after this };

{$R *.res}

begin
 RequireDerivedFormResource := True;
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

The uses clause which cites cthreads (on Unixes), Interfaces, Forms and the form unit
umain is longer than we have seen for console programs.
The main program block employs two global variables (predefined in the LCL),
RequireDerivedFormResource (a boolean which is set to True), and Application, a global class
instance which represents the project itself. After initialising the Application instance, the
program creates and displays the window called Form1 (declared in the umain unit), and runs the
main program message loop. This loop waits on all the events arising during the program,
ending the program when the main form (window) is closed.
The directive causes all program resources to be read during compilation and linking.
This adds the program icon (by default a Lazarus glyph) so the OS has more than just a text name
for your project, and you can identify it with an icon too.
The Project Inspector gives immediate access to all the files in your project, allowing you to add
files (they don't all have to be Pascal files – you may want image files, database files, .po files, a ToDo

file etc. defined as part of your project) and dependencies (i.e. requirements for particular libraries or
packages). You can also remove files that are no longer required using the Project Inspector's
Remove toolbutton, and call up the Project Options dialog for this project easily using the
Options toolbutton (see Figure 10.2).
The lower part of the Project Inspector is a treeview listing all the Pascal files in your project,
and any dependencies. Lazarus has already included the LCL under Required Packages, since
this is a GUI project that necessarily depends on the LCL.

 {$R *.res}

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

100

Learn to program using Lazarus

10.c Packages
You can see in the Project Inspector treeview that the Required Packages branch lists the LCL.
Most of the functionality we exploit in the first_gui application has been coded by the
Lazarus and FPC teams, and that code is stored in the LCL library (and its dependencies), which
is why the LCL is a required package (in addition to the underlying OS code, of course).
The program will not compile or run without it, since all its functionality depends on code
somewhere inside the LCL or the other libraries considered in the following paragraphs.
A package is a named collection of code-related files, which includes information (metadata)
about where Lazarus can find those files, how they should be compiled, and which other
packages are needed to do this. A package may be an entire library, or a smaller logical module
encapsulating certain functionality needed for a project. While packages are relevant for
console programs, packages really come into their own in helping organise GUI programs,
which are nearly always more complex.
Package filenames are given an .lpk extension. Packages Lazarus knows about are pre-

compiled, and (assuming they have not changed) can be used by the IDE without needing to be
compiled again, which saves development time. All the GUI programs in this book are based
on the LCL, which is a huge library of useful, well-debugged code which in turn depends on
two other large libraries: the FCL (Free Pascal Component Library) and RTL (Free Pascal RunTime
Library). Since a GUI application cannot run without reference to the LCL, Lazarus adds this as
a required package automatically.
If you load a new Lazarus project (project1.lpi) and compile it without adding anything to it
you will have a do-nothing executable file (on Windows named project1.exe, or on Linux named
project1). This is quite large (typically 15 MB or more) because of all the 'hidden' code which
Lazarus includes via the LCL dependency. So although a do-nothing Lazarus executable starts
big, as you add functionality to it with code you write, it grows only slowly in size, since much
of the 'internal' code you might use (called by the additional functionality you write) is already
present, compiled into the LCL dependency. Actually 'do-nothing' is not completely correct.
The program window can be resized, minimised, dragged around the screen, displays a custom
title and icon, has clickable icons, and so on. This 'empty program' functionality is part of the 15
MB binary.

10.d Changing the program icon
To change the icon associated with your project from the default Lazarus cheetah paw-print,
click on the Options toolbutton in the Project Inspector to open the Options for Project:
first_gui dialog box (see Figure 10.3). The opening page of this dialog has an Application
Settings section where you will see the Title set to first_gui. You can edit this to give your
project a different . By default Lazarus sets Title to be the same as the name of the
program.
A TImage control below the Title edit control displays the program icon, which always defaults
to the Lazarus paw print. The [Load Icon] button lets you choose a different icon, and the
TTrackBar control (slider) below the icon lets you set the size of the icon (between 16x16 and
256x256). This is the icon shown by your OS file browser when the executable for your project is
listed or selected.

Title

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

101

Learn to program using Lazarus

Figure 10.3 The Options for Project:
... dialog where the project's icon can be changed

10.e The main form file
If you now double-click on umain.pas in the Project Inspector (or click the appropriate tab in the
Editor) the Pascal source for the main form is displayed, which looks like the following:

{$mode objfpc}{$H+}

interface

uses
 Classes, SysUtils, FileUtil, Forms, Controls, Graphics, Dialogs;

type
 TForm1 = class(TForm)
 private
 { private declarations }
 public
 { public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.lfm}

end.

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

102

Learn to program using Lazarus

Lazarus has written this code for us, declaring a new form class (which descends directly from
TForm) named TForm1. It has empty private and public sections, ready to be customised for our
use. A global variable of type TForm1 is also declared, named Form1. This variable is
instantiated by the earlier call we saw in first_gui.lpr:
 Application.CreateForm(TForm1, Form1);
The Application method CreateForm instantiates a TForm1 instance named Form1 and also
shows the form. At design time the form is seen in the Designer, not exactly as it will be shown
in the running program. The form we see in the Designer corresponds exactly with the code
shown in the Editor, and the form properties as currently set in the OI. You can toggle focus
between viewing the Editor or the Designer using the shortcut [F12], or via View | Toggle
Form/Unit View. If the two windows are small enough, you can view them both on screen at
once, as well as viewing the OI.
The CreateForm call not only creates a new instance of TForm1 named Form1, but it also makes
Application the owner of this form. This means that Form1 will be automatically freed when
Application is freed. This automatic destruction mechanism applies to all descendants of
TComponent (like TForm1, and TApplication). Ownership (which requires provision of a non-nil
TComponent descendant as a parameter to the Create call) frees the programmer from having to
remember to free the form and any controls dropped onto it herself. This is done for her by the
owning component at the time of its destruction.
Lazarus has written a generous uses clause, thinking that we will need to use seven LCL units
to write a GUI program. For many short programs this is an over-generous list. However, that
does not matter. Units which are not used are ignored by the compiler (except that it emits Hints
when they are not needed, mentioning that fact), and will not be linked into the final executable. In
fact the presence of potentially unneeded units is actually helpful in that it enables the Code
Completion feature to work much of the time (when otherwise it would not unless you added a
needed unit).

The Lazarus Editor has numerous cunning and time-saving features built in to it, and it is a
model example of an editor customised for a specific purpose – the rapid typing of Pascal code
constructs. To illustrate how one such feature helps in the typing of code, click the umain tab in
the Editor to bring it to the fore (and press [F12] if you do not see Form1 in the Designer, to toggle its
display to the fore).
Click the Standard tab of the Component Palette to select it, and then click the button icon
(fourth from the left, with ok written on it) to select it. Now click somewhere within Form1 in the
Designer. Lazarus creates a new button control which it inserts at the point where you clicked,
naming it Button1.

Double-click on this button. A new event handler is generated, the Designer disappears to the
background, the Editor displays umain in the foreground again, and the cursor jumps to the
implementation of the new event handler which Lazarus has named TForm1.Button1Click()

– you are free to rename it if you wish. Lazarus gives it this name only because it has to have a
name, so a suitable default name is generated for you.
The cursor is positioned in a new empty line immediately following the begin of the procedure
body. This is an empty procedure skeleton – we have to customise it to do something useful.
Without moving the cursor type “showm” (without the quotation marks), and then press
[Ctrl][Space], the shortcut to invoke Identifier Completion. A popup menu appears (see Figure
10.4)

10.f Editor Auto-completion

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

103

Learn to program using Lazarus

Press the down-arrow key to select the second entry in the popup list (ShowMessage()) and
press [Enter] to insert this selection in the Editor. In this case, if we had typed “showme” rather
than “showm” the list would have been filtered to three entries (rather than four), and the first
entry would have been the one we were after, so a single [Enter] keypress would have
completed the desired word. Finish the entry so the procedure body becomes the following:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessage('Hi!');
end;

Press [F9] to compile and run the program, and click on Button1 to see the effect of the
ShowMessage procedure call (see Figure 10.5).

Figure 10.4 Identifier Completion offering appropriate options

Figure 10.5 ShowMessage('Hi!') displaying text in a program window
above the code that calls it

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

104

Learn to program using Lazarus

Note: Identifier Completion works for all identifiers declared in all units which are in scope.
The 'extra' units Lazarus puts by default in the uses clause of every GUI project are useful in
this respect. The procedure call we wanted (ShowMessage)is declared in the Dialogs unit.
Because this is one of the units already specified in the uses clause, the Identifier Completion
feature has parsed Dialogs in the background already and so can add ShowMessage to the
popup list.
If you remove the Dialogs unit from the uses clause Identifier Completion will fail to find
ShowMessage. In fact it will find only one identifier matching what you have typed (“showm”)
which is ShowModal from the Forms unit. Consequently if you invoke Identifier Completion in
this situation, ShowModal (as the only possibility) will be inserted automatically by Lazarus.
So it definitely helps you to write code faster if you become familiar with the main LCL units
and the sort of routines and identifiers they contain. You can then add them to the uses clause
early on in your project development. This will not only aid in the compiler finding the routines
you need (avoiding the “identifier not found” error), but Identifier Completion can then help you
to spell them correctly.

A further set of auto-completion wheezes are termed Code Completion. To give a short
example, return to the first_gui project, and add a private function to the form class type
declaration, overwriting the comment there, as follows:

TForm1 = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 private
 function TodayAsString: string; // <- this is the line to add
 public
 { public declarations }
 end;

With the cursor somewhere in the new function declaration line press the shortcut
[Shift][Ctrl][C]. Lazarus will construct a new function body in the implementation section of
the unit (where it is needed) and the cursor will jump to the position waiting for you to type code
to complete the provided skeleton. Type “Result:= formatd” (without the quotation marks) and
press [Ctrl][Space], then press [Enter]. Lazarus will write in the name of the FormatDateTime

function. Continue typing until the completed function body looks like the following:

function TForm1.TodayAsString: string;
begin
 Result:= FormatDateTime('dddd, d mmm yyyy', Now);
end;

Move to the Button1Click procedure you created earlier, and change it so it looks as follows:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessageFmt('Today is %s',[TodayAsString]);
end;

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

105

Learn to program using Lazarus

Press [F9] to compile and run the program. You should see a small information dialog reporting
the current date in a user-friendly format when you click on Button1.

In this short example we used a date formatting routine from the SysUtils unit (which Lazarus
has helpfully already included in the uses clause it wrote for us) named FormatDateTime. We also
called another function, Now, from the same unit. This returns the current date as a TDateTime

value, which is why we needed to format it as a string in order to display it. The displayed
string is made up from two parts, a constant 'Today is ' with the string value of
TodayAsString appended to it. There are several ways to accomplish this string concatenation.
For instance we could have written the amended Button1Click procedure like this:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessage('Today is ' + TodayAsString);
end;

This uses the + operator to join the two strings. The alternative given first is by way of
introduction to the Format() function (which is combined with the ShowMessage procedure in
ShowMessageFmt). The Format() function is hardly needed in this case for concatenating strings
(when the '%s' placeholder gets replaced by the string in the array that follows the string), but it is a
very versatile formatting routine for handling all kinds of non-string values. Well worth looking
up in the documentation to learn about its many capabilities for converting non-string types to
formatted strings.

10.g Using the Designer
The Designer window is a very capable visual editor. Notice how you can select Button1 and
drag it around the Designer to place it where you want. If you alter the AutoSize property of
Button1 in the OI to False, you will find you can drag the little sizing grips at the edges of
Button1 (visible only when it is selected) to resize it in any direction. Right-clicking on the button
or elsewhere on the form gives access to several dialog-based tools for changing aspects of the
form or button design. Experiment – you can always exit the project, choosing not to save it, if
you mess things up.
The popup menu appearing when you right-click in the Designer is context-sensitive, so some
functionality may be greyed-out where it is not appropriate to the component(s) you right-
clicked.
You can group several components by holding down [Shift] and clicking on each component in
turn. If you then select say Align... from the context menu, the alignment options you then
choose will apply to all selected components, not just the one you clicked first. This lets you
make many changes very quickly.
Likewise, a group of selected components can have common properties changed in the OI,
affecting every component with one edit. Be aware though that these changes cannot usually be
undone by pressing [Ctrl][Z]; whereas this is always a reversion option available to you in the
Source Editor.

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

106

Learn to program using Lazarus

10.h The Object Inspector
Lazarus offers two ways to assign values to the properties of controls you drop onto a form
from the Component Palette. Either you can write code specifying the name of the control
followed by a dot and the property name, and use the assignment operator := to give the

property a new value, like this:

Button1.Caption := 'Show Date';

Or you can use the OI (Object Inspector) which provides a variety of editors to set property
values manually at design time. Either way is preferable to leaving the Caption of Button1 as

– a hopelessly uninformative caption for any control, not giving the user the least clue
about what might happen if they click it. It is obvious that the control is a button, so a Caption

identifying it as such is useless. The UI question is: What does this button do?
A sensible programmer would already have renamed Button1 to something more meaningful,
say, btnDate or BDate or DateButton. It is good to adopt a consistent naming scheme for all the
code you write. It will help everyone who reads your code later (including yourself).
A simple naming scheme used by many Lazarus people is to prepend the name of each control
used with a letter (or a few letters) indicating what sort of control it is (B for Button, E for Edit, L
for Label, M for Memo etc.). There are no hard and fast rules about naming. It is very much a
matter of style and personal preference.
However it is more important than many realise, not only to provide clarity as you scan your
own code identifiers to appreciate immediately what they refer to, but also to help others
reading your code. Inconsistent naming, or lazy acceptance of all the default names Lazarus
supplies quickly proves confusing to fresh readers of your code who, even if not confused, will
constantly have to refer back to declarations remote from the code section they are reading if
you do not choose names intelligently to make them self-explanatory. The name Button2 gives
away nothing about the button's purpose.

'Button1'

Figure 10.6 The OI showing Font properties expanded

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

107

Learn to program using Lazarus

In the first_gui project select the button named Button1, clicking it if necessary (you may have
to press [F12] first to show the Designer), and make sure that the Properties page is selected in the
OI (the leftmost of the four tabs heading the lower grid section of the OI).

The OI Properties page has a gutter at the left for the small icons used to expand and
collapse structured property values. The two columns of the grid section are not titled, but if
they were, they would say Property name (left column) and Property value (right column). It is the
right hand column that is editable. You can type directly in the right hand column to change or
delete values of some properties (generally string, boolean, ordinal and numeric properties). Double-
clicking on the value of an enumerated-type property will enumerate the various values,
cycling through them one by one.
Click the small grey arrow in the gutter just to the left of the Font property on the OI Properties
page to expand the Font property to expose its own properties (some platforms use a + expansion
icon rather than a grey ► icon). See Figure 10.6.

Note: If you are not a mouse-lover (or have trouble with RSI) a useful keyboard shortcut for
expanding class and set properties to show their sub-properties is [Alt][RightArrow].
Conversely [Alt][LeftArrow] collapses an already expanded property.

Here is a class within a class. The TButton class has numerous properties, of which one is the
Font property which (being itself a class) has properties of its own. When expanded in the OI,
you can see that Button1's Font exposes nine properties. They are indented slightly, to show
that they belong just to TButton1.Font. Once a class property has been expanded the grey
right-pointing expansion triangle becomes black and points downwards slightly.
Font's expanded properties are listed alphabetically, and the last one, Style, (a set property) is
empty by default, showing as [].

This is the only one of Font's nine properties that has a grey expand triangle beside it.
Click this triangle to expand the Style property, and below it (you may need to scroll downwards
to see them all) are listed the four possible elements in the Style set property, all with the value
False (meaning that each of those elements is absent from the set).

If you double-click on any of the TFontStyle values – say on fsBold – it toggles from False to
True, and the Style property line jumps from empty [] to [fsBold]. A further double-click
reverses the assignment. Double-clicking on a different element adds that element (or subtracts
it, if it was there to begin with). As you set or unset these property values you can see the
caption Button1 immediately reflecting the change in style in the button displayed in the
Designer. The form is actually in a Designer window which continuously repaints the form and
any controls it contains (such as Button1) to reflect the current state of its properties.

Other properties display an ellipsis […] button that when clicked opens a new editor
window for editing of a more complex property (e.g. the Anchor Editor window for the Anchors

property, or the Font window for the Font property). Many single line property editors when
clicked allow either the typing of a new value, or have a small arrow at the rightmost edge
which when clicked opens a drop-down list of possible values to choose from. The key
combination [Alt][DownArrow] also opens such drop-down lists which can then be navigated
with the arrow keys, and pressing [Enter] on a selection inserts the selected item as the new
property value.

The treeview box at the top of the OI lists the currently selected form together with all the
controls the form contains, both visual (e.g. edits, labels) and non-visual (e.g. dialogs, timers).
Individual controls can be selected by clicking in the treeview, as well as clicking on the form.
Sometimes the treeview is the only way to select a control with the mouse. For instance, panels
are not selectable on a form if their child components are aligned to fill the panel client space.
An alternative for selecting controls is to press the [Tab] key.

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

108

Learn to program using Lazarus

This cycles among the form's various child

Left or Top

controls (but does not ever select the form itself).
[Shift][Tab] cycles in the reverse order among child controls.
Try editing other values in the OI to see the visual effect painted on the form immediately in the
Designer window. With Button1 still selected scroll upwards and check that the AutoSize

property is False (change it from True if necessary). The Width property will be set at 75. Delete
that value, replacing it by 100. As soon as you press the [Enter] key you will see the button
broaden in width. Similarly if you change the Left or Top property you can make the button
jump around the form. You can easily set the properties to values that move the
control outside the visible area of the form, making the button appear to be invisible (set either to
-100 for example).
Likewise, if you click outside the button to select the form, and expand the BorderIcons

property, by setting all of the values to False you can change the title bar of the form to show
only the [X] close icon (this border icon cannot be removed, otherwise users might be left with no way
of closing the application).

10.i OI Favorites and shortcuts
Once you start to program in earnest, and are spending a lot of time dropping new controls on
forms and setting their properties in the OI you may find the OI Favorites page useful. The
Properties grid is really long for some complex controls, and navigating up and down the rows
to get to the property you want can be annoying (the [UpArrow] and [DownArrow] keys work as
well as the mouse and scrollbar). If you right-click on an often-used property name and choose Add
to Favorites from the popup menu, this adds it to the shortened property list on the Favorites
page where you can more quickly locate the properties you use most often.
There are several other useful keyboard shortcut keys for heavy OI users.
• [F11] focuses the OI if you are in the Designer or Editor.
• [Ctrl][Enter] cycles through the options in a drop-down list with keyboard

to using the mouse.
• [Tab] moves you between the two columns in the property grid
When you are in the left (Name) column you can navigate to a remote property by typing the
first letter of its name. Say you have clicked on a button in the Designer. Pressing [F11] takes
you to the OI Value column of the property grid, to the first property Action. If this is not the
property you want to edit, press [Tab] to move to the Name column. Pressing any character key
will jump to the first property whose name begins with that key, and will focus that property's
Value field ready for editing. Often this will be the property you want. If not it will only be a
few rows lower.
You can now type the new property value (or choose from a drop-down list of values, where
appropriate, or click the […] ellipsis button to open an appropriate editor dialog). Pressing [Enter] or
[Tab] saves the chosen property value.

Note: Two further helpful OI features are available, which are not on by default: OI hints, and
the OI information box. These are basically designed as alternatives (though you can enable them
both if you wish). You turn them on via Tools | Options... ([Shift][Ctrl][O]). In the resulting IDE
Options dialog, from the Environment branch in the treeview on the left click on the Object
Inspector node to open the OI options page, and tick one (or both) of the options Show hints and
Show information box.
The hints are documenting windows that appear fleetingly (with information about the property or
event under the mouse cursor) when you hover briefly above a property or event name. The
information box is a box permanently appended to the bottom of the OI which displays the
same information as the fleeting hint window would do for each selected property or event as
you click on it. You may have to resize the information box by dragging the small splitter
control at the top of the box upwards (it has a faint line of gray dots to indicate where to grab it).

as an alternative

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

109

Learn to program using Lazarus

10.j The OI Restricted page
Because there is only limited standardisation between operating systems, you sometimes find
that some properties or features of a control are unavailable on certain platforms. The OI has a
Restricted page which lists these restrictions (you may need to click the horizontal arrow buttons
beside the OI tabs to move this page into view). See Figure 10.7, and check it out in Lazarus for
yourself.
For TButton this page shows that the Color property is restricted on Windows. Try this out:
select Button1 and on the Color row click either the arrow button to open the drop-down list of
colours, or the […] ellipsis button to open a Color dialog. Change the Color of Button1 from

clDefault to something else, pressing [Enter] to confirm your selection. If you are running on
Windows the colour of Button1 does not change, whatever choice you make (because of this
Windows restriction)!

Figure 10.7 The OI Restricted page for TButton

If you are running on Linux or on a Mac you will see the button change colour as expected.
These restrictions are OS restrictions, not LCL restrictions. Since the LCL uses the underlying
OS widgets to paint the various aspects of LCL Palette controls and since the LCL is cross-
platform, it provides access to most of the commonly used widget attributes (such as colour, via
the Color property). Where a particular OS lacks a widget attribute the LCL is stuck. It provides
the facility for the OSs that offer it, but obviously has to leave a 'hole' in the functionality where
the OS widget cannot provide the hoped-for functionality.
Of course you may find that even among a couple of hundred controls there does not appear to
be one that does exactly what you want. Sometimes this is because of an OS limitation. LCL
controls (apart from the upcoming CustomDrawn set) are based on native controls. We have seen
that on the Windows platform button controls cannot be coloured differently from the theme
colour. This is an unfortunate Windows limitation.
In future Lazarus versions it is likely that the overall number of Palette components will
increase still further, since cool new components may be added (such as the CustomDrawn
controls currently being developed, for which the design incentive has been creation of controls that work
well on tablets and mobile devices with touch screens). It is unlikely that any will be removed, to
avoid compromising backwards compatibility. For instance the TDbf component (on the Data
Access page), was for a time marked deprecated (since at that time it was not actively maintained or
improved) but it was not removed, thereby keeping it available for older projects that used it.

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

110

Learn to program using Lazarus

10.k The Component Palette
The Component Palette in Lazarus version 1.0 has 14 tabs (Standard, Additional, Common
Controls, Dialogs, Data Controls, System, Misc, Data Access, SynEdit, LazControls, SQLdb, RTTI, IPro
and Chart). These 14 pages contain just over 200 components altogether! This is an
embarrassment of riches. Each of these components is itself quite a complex class, with specific
functionality. How can we tame all this complexity? How can you know, when you come to
design the UI of your next application which of these 203 components are the appropriate ones
for your purposes?

The point of a Palette of components, as with a palette of colours held in a painter's hand, is to
give you a wide choice among possibilities. However, unlike blobs of white and burnt sienna
on an artist's palette which can be mixed in an infinite number of ways to give all manner of
subtle shades, the components on the Palette cannot be mixed together.
Each component is a discrete class which shares some functionality (such as the ability to be
dropped on a form in the Designer, properties such as Left and Top, and possession of a list of event
properties such as OnClick), but each component is completely distinct from the other available
components.
Components have a place on a Palette page because they encapsulate certain tried-and-tested
functionality which other programmers have found is often needed. Visual components often
wrap underlying OS widgets, sometimes extending their functionality, and sometimes (e.g.
TStringGrid, TChart) providing a control not available as an OS widget.
Palette components are a testament to one of the principles of object oriented programming
(OOP): reusability. Once a particular well-designed wheel has been tested and debugged it can
be 'fossilised' and placed on a Palette page for reuse whenever needed. That particular wheel
won't ever again need to be reinvented.

10.l Finding a Palette component
For historical reasons (to do partly with Delphi compatibility) the arrangement of controls on the
various Palette pages is not always as helpful as it might be when you are trying to find a
control that you “know is there somewhere”. To save you clicking on every Palette tab and
searching each page for a component you are sure exists somewhere, the IDE provides a quick-
locate dialog named Components, accessed via View | Components or ([Ctrl][Alt][P]). See
Figure 10.9.

Figure 10.8 The Component Palette of the
Lazarus IDE open at the Standard page

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

111

Learn to program using Lazarus

A search filter field enables you to narrow the search among listed components. With each
typed character the list of matching components is reduced. The list has three pages. The List
page is simply an alphabetical list of all 203 components. The Palette page lists components
according to Palette page, and the Inheritance page shows part of the class ancestry for each
component (more useful for component writers than casual users, since it necessarily shows many
classes not available on the Palette such as the TCustomXXX classes).
Double-clicking on a listed item inserts that component on a form in the Designer located near
the top, left of the form, from where you can drag it to your desired location. If you (single) click
a listed component to highlight it and click the [Select] button, the Components dialog is closed
and the appropriate Palette page is opened with the indicated component already selected.

10.m Regular, DB and RTTI component types
There is apparent duplication on the Palette in that several standard components come in three
flavours. In addition to the 'basic' component there is often a DB and a RTTI version as well.
The visual DB controls are all located on the Data Controls page (14 components) and the RTTI
controls as you would expect on the RTTI page (22 components). For example there is a TLabel, a
TDBText and a TTILabel. There is a TEdit, a TDBEdit, and a TTIEdit. Why this 'duplication'?
The reason is to provide specialised, enhanced functionality.
All the TDBxxx controls are very similar to their non-DB counterparts, except they have added
DataSource and (except for TDBGrid) DataField properties which allow them to be hooked, via
a TDataSource instance, to a TDataset descendant. This links them (once the dataset is Active)
to a specific field in the dataset (or in the case of TDBGrid to some or all of the fields of the database).
The DB component then displays the content of the linked field of the current database record,
and most DB components also allow the displayed value to be edited as well. This gives rapid
and almost code-less programmable access to many databases.

Figure 10.9 The IDE Components List page after
typing “tra” in the search filter

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

112

Learn to program using Lazarus

Lazarus provides components to interface with dBase (.dbf) and .csv files (on the Data Access
page) and through various TSQLConnection descendants can also connect to Firebird, SQLite,
Postgres, MySQL, Oracle, and MS SQLServer. These databases can then be queried using the
TSQLQuery and TSQLTransaction components. These SQL-enabled components are all found
on the SQLdb Palette page. This book does not explore database programming (which is a book
in itself), but you will find Lazarus comes with several database example programs you can
study. The following paragraph explains how to locate them.

The RTTI components, likewise are very similar to their non-RTTI counterparts, except for
the addition of a Link property. The link is itself a class with sub-properties. The most
important of these are TIObject, TIPropertyName and TIElementName. Connecting the Link

through these properties allows, again, almost code-less access to the properties of other GUI
components at runtime. There is an example of one use of an RTTI component in Chapter 12,
Section a: Editing short phrases. You will find several further examples in the Lazarus example
sources. See Tools | Example Projects..., and in the Example Projects dialog make sure the
Include Examples checkbox is ticked, and that Lazarus Source is selected in the Search projects from
radio-group. You may have to wait while the IDE searches the source paths, since there are
over 100 example projects shown there for you to browse.

10.n Non-visual LCL and FCL support classes
In addition to the Palette components registered with the IDE which can be dropped onto a
form for immediate use, the FCL and LCL contain a great many highly useful classes (not all of
which are components) that are not available on the Component Palette. Learning to use Lazarus
as a development tool means becoming familiar with what is on offer in this 'hidden' pool of
classes which mostly do not have a visual representation, as well as becoming familiar with the
Palette components the majority of which are both visual and have mouse/keyboard
interactivity built in. Among these vital 'hidden' support classes are the important classes
TList, TStrings (and its descendant TStringList), TCollection and TStream, as well as many
other component and non-component classes. These support classes have a chapter (Chapter 15)
devoted to them, since you need to understand them to be able to use many of the Palette
controls effectively.
The next chapter looks at some of the most useful Palette display-only controls.
Succeeding chapters look at a selection of editing controls, and how to tackle GUI projects.

Chapter 10 UNITS, GUI PROGRAMS AND THE IDE

10.o Review Exercises
1. Start a new GUI project, and drop several controls from several Palette pages on the form.

Explore the components' properties using the OI. Try changing various properties, and
explore the different editors used for setting string, integer, enumerated,
set and Anchors properties.

2. Try [Shift]-clicking two or three form controls and explore what properties
and events they have in common. Try setting common properties or a common event
to see what happens.

3. Right-click on the form in the Designer and choose View Source (.lfm).
If you haven't yet saved the form you will have to do that first.
Lazarus will open the unitName.lfm file, and you can see the text format in which the

published properties of the form and all its child controls are stored.

113

Learn to program using Lazarus

Certain components have been designed principally to report information, rather than to edit it;
or are useful for visual layout and arrangement. These controls tend to be the simplest to use
and understand, since editing capabilities add a level of complexity that display-only controls
do not need. This chapter offers an overview of several display-only controls, starting with
perhaps the most commonly used control of all, the label.

11.a Display controls: TLabel

A label displays read-only text on the screen, optionally associating it with another control
placed on the same form, via its FocusControl property combined with an accelerator key.
A label cannot receive focus itself (i.e. you cannot get the cursor to select or highlight a label in a
running application, nor can you move to a label by pressing [Tab]).

To get a feel for TLabel, start a new Lazarus GUI project, naming it labels, and rename
unit1 to umain. Make sure the Designer is visible showing Form1 (press [F12] to bring it to the
foreground if it is not visible), and from the Standard Palette page drop a button and an edit
control onto Form1 followed by a label (these controls are found on the same Palette page).
Select the label, and in the OI click the down-arrow in the empty field beside the label's
FocusControl property. The drop-down list will have the options: (none), Edit1, Button1.
Choose Edit1. To complete the functionality requires adding an accelerator key to the label.
In the label's Caption property type &Edit1 and press [Enter]. Notice that in the Designer the
label's Caption now reads Edit1 – the & character causes the letter following it to be underlined
(if it does not display an underline, change the ShowAccelChar property to True. It may be that your
platform uses emboldening rather than underlining to mark the accelerator key).

Set the TabOrder property of Edit1 to 1 (if it is 0), and check that both the edit and the
button have their TabStop property set to True, so that Button1 will receive the focus when the
form is first displayed. Then compile and run the program by pressing [F9].
You should see that Button1 has a focus rectangle round it (or however your platform marks a
focused button), and pressing [Spacebar] will depress the button. Press [Alt][E], which will then
shift the focus from the button to the edit control. Although Label1 cannot receive the focus
itself, it can trigger the change of focus from button to edit through use of its accelerator key.

Close the running program, and go back to the Designer, selecting one of the components
you earlier dropped on the form. Enlarge the OI so it occupies the full screen height, and scroll
the Properties grid so you can see both the Left and the Top property of the selected control in the
OI (you may have to use the splitter between the upper treeview and lower grid to reduce the size of the
OI treeview).
Now drag the selected component round the form, and notice how the values of
are continuously updated to reflect the control's new position. The OI keeps its displayed
values continuously synchronised with the Designer form display. Lazarus also ensures that
the underlying property storage (in the umain.lfm file) is also updated to reflect changes in
property values, and also reflect any additions or removals of form controls.

all

Left and Top

 Chapter 11 DISPLAY CONTROLS

114

Learn to program using Lazarus

11.b Display controls: exploring TLabel properties
Often the best way to understand what a particular component property does is to see it
changing in a program. The following demonstration exercises four display properties of
TLabel (Color, Alignment, Layout and Font.Style) to give you a feel for how you can use
this apparently simple component to good effect.
Start a new Lazarus project in a new project folder named LabelProperties and save the main
project file as label_properties.lpr, and save the form unit as label_form.pas. Running the
project once you have completed it will look something like Figure 11.1.
A grid of adjacent labels is drawn (using code) in the upper part of the form, and the lower part
of the form contains three groupbox controls – two radio-groups and a check-group. Radio
controls are designed for choosing between mutually exclusive options, and checkboxes are
designed for editing on/off property types. Checkboxes can optionally also have a third greyed
state (neither On nor Off).

This demonstration will affect the following properties of Tlabel, which are described here:
• Color is an integer subrange type, combining bytes for Red, Green and Blue values

in a single integer.
• Alignment and Layout are enumerated types which affect the positioning of a label's

Caption within its borders. Don't confuse Alignment (which affects the interior of a label) with
the Align property, which affects how the label is positioned on its parent control
(usually a form).

• Font.Style affects the appearance of the typeface used to draw the label's Caption.

The code we write in this example program is concerned with setting up a grid of differently
coloured labels, together with providing event handlers for the three groupbox components so
that changed selections in the groupbox get reflected in the labels' properties and display.
First click in your new Form1 and rename it (use the Name property) in the OI to propertiesForm.

Set its Height to 285, its Width to 400 and its Caption to TLabel properties demo. Then from

the Standard Palette page drop two radio-groups and one check-group on the form.

 Chapter 11 DISPLAY CONTROLS

Figure 11.1 label_properties user interface

115

Learn to program using Lazarus

Hold down the [Shift] key and click on each group-box component in turn so that all three are
selected (their tiny black square sizing grips become grey, and a new enclosing rubber band with grips
appears). In the OI you'll see that some property values are now blank, and others shared in
common are visible.
Set the common Top property to 150, Width to 125 and Height to 130. Check that the controls
do not overlap horizontally, and right-click on the common selection and choose Align... from
the popup menu. Select the Space equally radio button in the Horizontal groupbox. No change is
already selected in the Vertical groupbox. Click [OK] to align the groupboxes and close the
Alignment dialog (see Figure 11.2).

In the OI change the name of one radio-group to rgAlignment. Click the ellipsis button in the
value column for the Items property. In the Strings Editor add the three items:
taLeftJustify
taRightJustify
taCenter

Set the ItemIndex property to 0, and the Caption property to Alignment.

Change the name of the other radio-group to rgLayout. Click the ellipsis button in the value
column for the Items property. In the Strings Editor add the three items:
tlTop
tlCenter
tlBottom

Set the ItemIndex property to 0, and the Caption property to Layout.

Change the name of the check-group to cgFontStyle. Click the ellipsis button in the value
column for the Items property. In the Strings Editor add the four values:
fsBold
fsItalic
fsStrikeout
fsUnderline

Set the Caption property to Font.Style.

We are going to create several instances of TLabel, a class declared in stdctrls, so add
stdctrls to the uses clause of the unit. (When you drop a label on a form Lazarus adds stdctrls
to the uses clause automatically. We have to do the same thing manually here).

In the code for unit labelForm, add a const declaration below the uses clause:
const limit = 3;
 cWidth = 100;
 cHeight = 35;

 Chapter 11 DISPLAY CONTROLS

Figure 11.2 The Designer's Alignment tool

116

Learn to program using Lazarus

Then, with the form selected, click on the OI's Events tab, and double-click on the blank space
beside the OnCreate event property, and in the skeleton Lazarus writes for the new event handler
type SetupLabelGrid; so it looks like this:

procedure TpropertiesForm.FormCreate(Sender: TObject);
begin
 SetupLabelGrid;
end;

Now we need to write the code for SetupLabelGrid. In the private section of the form
declaration add new lines so that it looks as follows (after deleting the public section):

TpropertiesForm = class(TForm)
 cgFontStyle: TCheckGroup;
 rgAlignment: TRadioGroup;
 rgLayout: TRadioGroup;
 private
 labelGrid: TLabelGrid;
 procedure SetupLabelGrid;
 function CreateLabel(aCol, aRow: integer): TLabel;
 end;

Lazarus has already added the names and declarations of the check-group and radio-group
controls we dropped on the form. They have been added at the top of the class declaration in a
published section of the class (this initial section is managed by Lazarus to keep it in sync with the
controls shown in the Designer, and the controls are all published, though the section does not explicitly
state that).
We have added a new private data field (labelGrid), and two new private methods, a function
CreateLabel, which returns a new instance of a label located at a grid coordinate, and a
procedure SetupLabelGrid (called by the OnCreate handler). The new labelGrid field is of type
TLabelGrid. We need to declare this new type as follows (after type and before TpropertiesForm):

TLabelGrid = array[0..limit, 0..limit] of TLabel;

This is a two-dimensional array (columns and rows) of labels. Arranging the array in two
dimensions like this aids in specifying the (Top, Left) data for each label arranged in a grid
pattern.
Place the cursor within the CreateLabel() function declaration and press [Shift][Ctrl][C] to
invoke Code Completion. Lazarus writes skeleton bodies for the two methods we have declared
(SetupLabelGrid and CreateLabel) which have no implementation so far. Fill out the code
skeleton for CreateLabel as follows:

function TpropertiesForm.CreateLabel(aCol, aRow: integer): TLabel;
var sum: integer;
begin
 result := TLabel.Create(Self);
 result.Parent := Self;
 result.Caption:= Format('col:%d, row:%d', [aCol, aRow]);
 result.AutoSize:= False;
 result.SetBounds(aCol*cWidth, aRow*cHeight, cWidth, cHeight);
 sum := aCol + aRow;
 if (sum = 1) then sum := 4;
 result.Color:= clInfoBk + sum;
end;

 Chapter 11 DISPLAY CONTROLS

117

Learn to program using Lazarus

The last three lines simply ensure that adjacent labels in the grid are coloured differently, so the
boundary of each label is clearly visible (this saves writing considerably more code to draw separating
grid lines between each label). If all the labels have the same background colour they merge into
each other when adjacent, and the layout and alignment changes we want to demonstrate are
much harder to see.
After creating a new label its Parent property is set to the form (Self) to ensure correct display,
its Caption is written identifying the label by its column and row, its AutoSize property is
turned off, and its dimensions are set to fit its position in the grid, using the SetBounds

procedure that is available to all components.
Next, fill out the SetupLabelGrid procedure which simply calls CreateLabel() for each 'cell'
position in the grid, as follows:

procedure TpropertiesForm.SetupLabelGrid;
var c, r : Integer;
begin
 for c := 0 to limit do
 for r := 0 to limit do
 begin
 labelGrid[c, r] := CreateLabel(c, r);
 end;
end;

Lastly we need to add three event handlers for the three groupboxes to ensure that changed
selections there propagate to change the labels.
Start with rgAlignment. Click on it in the Designer to select it, and in the OI Events page
double-click beside the OnClick event. Complete the generated skeleton code as follows:

procedure TpropertiesForm.rgAlignmentClick(Sender: TObject);
var rg: TRadioGroup;
 c, r, idx: integer;
 alygnment: TAlignment;
begin
 rg := TRadioGroup(Sender);
 idx := rg.ItemIndex;
 alygnment := TAlignment(idx);
 for c := 0 to limit do
 for r := 0 to limit do
 labelGrid[c, r].Alignment:= alygnment;
end;

The radio-group sends a parameter in its OnClick event identifying itself. We cast this TObject

parameter to be a TRadioGroup (since we know its origin, this is a safe cast) and then read its
ItemIndex property. ItemIndex specifies which item in the radio-group has just been selected.
Since the items have been deliberately added to the radio-group in the order they are declared in
the enumerated type TAlignment, we can simply cast idx to be TAlignment to get a correct

TAlignment value, which is then applied to every label in the grid in nested for do loops.

Generate a similar OnClick event handler for rgLayout and complete it as follows:

 Chapter 11 DISPLAY CONTROLS

118

Learn to program using Lazarus

procedure TForm1.cgFontStyleItemClick(Sender: TObject; Index: integer);
var c, r: integer;
 fs: TFontStyle;
begin
 fs := TFontStyle(Index);
 for c := 0 to limit do
 for r := 0 to limit do
 if cgFontStyle.Checked[Index]
 then labelGrid[c, r].Font.Style := labelGrid[c, r].Font.Style + [fs]
 else labelGrid[c, r].Font.Style := labelGrid[c, r].Font.Style - [fs];
end;

The OnItemClick event of a checkgroup provides the Index of the currently clicked checkbox
as a parameter we can use directly. We cast this to the TFontStyle type, and then loop through
each label applying this set element, adding it to the Font.Style set or removing it from the set
as appropriate.
Note: You cannot use the Include() and Exclude() procedures with set properties, only with
set variables.
Press [F9] to compile and run the application. Clicking on any selection in one of the
groupboxes will immediately reformat the grid of labels accordingly, giving you immediate
feedback about the purpose and functionality of these label properties. Many other LCL
components which display text have similarly named properties, though Color and Font are
much more widely implemented in text controls than Alignment or Layout.

TLabel has many other useful properties, among them being the ability to display multiple
lines of text that wrap to successive lines. You set the WordWrap property to True for this
functionality, and also have to set AutoSize to False.

11.c Display controls: TStaticText
In addition to TLabel, there is a further text-display component called TStaticText, located on
the Additional page of the Palette. Why have two such components? TLabel is a lightweight
control, consuming little memory, and it is not windowed, meaning it cannot receive focus, and
cannot serve as a container for other controls dropped on it. TStaticText is a windowed
control, and it can accept other controls, and can participate in the tab order of the form (it has a
TabStop and TabOrder property, unlike a TLabel).

 Chapter 11 DISPLAY CONTROLS

procedure TpropertiesForm.rgLayoutClick(Sender: TObject);
var rg: TRadioGroup;
 c, r, idx: integer;
 layowt: TTextLayout;
begin
 rg := TRadioGroup(Sender);
 idx := rg.ItemIndex;
 layowt := TTextLayout(idx);
 for c := 0 to limit do
 for r := 0 to limit do
 labelGrid[c, r].Layout:= layowt;
end;

This is very similar to rgAlignmentClick(), but here we cast the radio-group's ItemIndex

property to a different enumerated type, TTextLayout. Again the Items in the radio-group are
arranged to mirror the declaration of this type. Take care with the event handler for the
Font.Style check-group. In the Events tab of the OI we do not this time want the OnClick

event, but rather the OnItemClick event. Fill out the skeleton for it as follows:

119

Learn to program using Lazarus

Although it lacks the WordWrap and Layout properties of TLabel, TStaticText does have a
BorderStyle property, and so can serve as a useful static header-type control. TStaticText has
an AutoSize property like TLabel, but unlike TLabel this is False by default. You would
rarely want to set the Align property of a TLabel to anything other than its default, but it might
make sense to do that for a TStaticText. Figure 11.3 shows a form with two static text controls
aligned top and bottom. Experiment yourself with the behaviour of this text control.

TBevel and TDividerBevel are 'cosmetic' serving simply to help group or compartmentalise
other controls on a form. They cannot receive the focus or have other controls dropped on them.
They are lightweight controls compared to labels and panels, and so use fewer resources (a bevel
has 30, and a divider-bevel 31 published properties; whereas a label has 56, and a panel 71 published
properties).
A bevel (on the Additional Palette page) is a visual rectangular frame, and its 'inside' is empty.
Through the Shape property you choose which sides of the rectangle are displayed, whether it
is a 'box' or a 'frame', and whether it has a raised Style (giving an embossed look) or a lowered
Style (giving an engraved look). It is useful for providing the impression of 3-D shading in areas
of a form.

 Chapter 11 DISPLAY CONTROLS

Figure 11.3 TStaticText instances and a label used for display

11.d Display controls: TBevel and TDividerBevel

Figure 11.4 Bevels and divider bevels in use

120

Learn to program using Lazarus

A TDividerBevel is a similar component found on the LazControls Palette page. It differs
mainly in having Caption and CaptionSpacing properties rather than Shape and Style
properties. This lets you easily name a section within a form. It forms a horizontal divider
rather than a frame, and in Lazarus 1.1 can also be used as a vertical divider. If I had been asked
to name it, I think I would have called it TCaptionBevel. See Figure 11.4.

11.e Display controls: TListBox
The Standard page's listbox is the simplest control for displaying lists of text items which are
selectable. The list of strings is held in a TStrings property called Items (see Chapter 15 for more
about the TStrings class and its decendants).
Listboxes have a Columns property whose default value is 0, meaning it is turned off. Setting
this property to values higher than 1 arranges the list of items in the corresponding number of
columns (not all platforms support the column functionality). Clearly this suits shortish items,
and works best if each item is approximately the same width. Over-long items are clipped by
items in adjacent columns if there is not sufficient room to display them, and the listbox
automatically displays scrollbars if required.
The listbox can be set to have only one item selectable, or if MultiSelect is True it will allow
many items to be selected. It will sort items alphabetically if the Sorted property is set to True.
There is an example in which a TListBox is used in Chapter 12 (see Section c: Editing integers...)

11.f Display controls: TStatusBar
We conclude this chapter by considering the statusbar, a control that looks similar on most
operating systems. You find it on the Common Controls Palette page. Drop a statusbar on an
empty form in a new GUI project. Notice that it aligns itself to the bottom of the form
automatically (just as a main menu component aligns itself to the top of a form automatically).
The simplest type of statusbar is obtained by setting its SimplePanel property to True (the
default). In this state the control provides a single panel capped by a triangular sizing grip (the
SizeGrip property is True by default, but can be turned off). Text assigned to the SimpleText
property (either using the OI or in code) is shown in a single line at the bottom. If the text is too
long to fit, it does not scroll, it simply gets truncated. Nor does over-long text get wrapped if
you set the AutoSize property to False and increase the Height.

To have several separate sections (panels) in the statusbar, as you find in most word processors
and the IDE's own Editor, you have to add panels either in code, or more easily by clicking on
the […] ellipsis button beside the Panels property to open a Panels Editor. Clicking repeatedly
on the [+ Add] button adds as many panels as you wish. Each panel has Alignment, Bevel,

Style, Text and Width properties. The default Width is 50, which does not accept much text
(that is 50 pixels, not 50 characters).

Let's construct a simple demonstration example. Start a new Lazarus project named
statusbar_demo.lpr, with a form unit named statusbar_form.pas. Set the form's Caption to

StatusBar demonstration, and its Width to 400.
From the Common Controls Palette page drop a TStatusBar on the form naming it statusbar.

Edit its Panels property as described above, adding four panels. Scroll the OI treeview until
you see all four panels listed (the list starts with 0 – TStatusPanel). Hold down [Ctrl] and click
on the first two panels to select them. On the Properties page of the OI type 110 as the value for
the Width of these two panels, and press [Enter] to set the value at 110. In a similar way set the
Width of the last two panels to 90.
Next add a selection of controls to the form, a TLabel, a TCheckBox, a TProgressBar, a TBevel,

a TBitBtn, a TEdit, a TSpinEdit, and a TButtonPanel. Use the Components dialog
([Ctrl][Alt][P]) to locate these if you need to. Now select all the dropped controls except the
statusbar by holding down [Shift] and clicking on each control in turn.

121

Learn to program using Lazarus

procedure TForm1.MouseMove(Sender: Tobject;
 Shift: TshiftState; X, Y: Integer);
var ctrl: TControl;
begin
 statusBar.Panels[0].Text:= Sender.ClassName;
 ctrl := TControl(Sender);
 statusBar.Panels[1].Text:= ctrl.Name;
 statusBar.Panels[2].Text:= Format('Top: %d', [ctrl.Top]);
 statusBar.Panels[3].Text:= Format('Left: %d', [ctrl.Left]);
end;

Compile and run this project. As you pass the mouse cursor over the different controls on the
form you should see information about that control displayed in the various statusbar panels. If
the information does not appear for one or more of the controls, close the running project and
click on the control that is not yielding information.

In the OI Events page check that its OnMouseMove event is set to the (only) value that appears in
the drop-down list when you click the down-arrow (because sometimes when assigning an event to
several selected controls Lazarus seems to miss one or two). Then run the project again. It will look
something like Figure 11.5, though of course the way you have laid out the various controls will
be rather different.
Hopefully you are starting to get a feel for some of the common properties shared by
components, and learning where to find them on the Palette. Also note the difference (in the first
two statusbar panels) between the ClassName and the instance Name of each component. The
ClassName is fixed, and belongs to the class itself. The instance Name is the name you give that
instance (which might be the default name Lazarus provides, as in this case – or did you name each
component yourself?).

 Chapter 11 DISPLAY CONTROLS

Click the Events tab in the OI, and you will see just a few events listed (these are the events
common to all the selected controls). Double-click on the row beside OnMouseMove to generate an
event handler that will be connected to each of the selected controls. Lazarus will name the
event handler after the first control you selected, and move the cursor to the skeleton code in
the Editor.
We want to rename this common event handler, so click the name in the Events page of the OI
and shorten the name to just MouseMove, and press [Enter] to set that as the name. Complete
this event handler skeleton as follows:

Figure 11.5 Statusbar panels displaying Label1 information

122

Learn to program using Lazarus

If you have two labels, each has the identical ClassName of TLabel, but each will have a
different Name (Lazarus does not let you name two components identically on the same form – try it and
see what happens). The ClassName method is a special type of function called a class method
which you can invoke on the class type itself (as well as on instances of the class).

11.g Display controls: further options
Lazarus offers several other selection and display-oriented controls, and makes wide use itself
in the IDE of the TTreeView component, and to a lesser extent the TListView component (found
on the Common Controls Palette page). These are slightly more complex controls to understand
and use. The TTreeView is demonstrated in an example in Chapter 12 (Section e, A component
browser).

 Chapter 11 DISPLAY CONTROLS

11.h Review Questions
 1. What makes the difference between a control that can accept focus and one that cannot?
 2. Compare several Palette components. What properties do they share in common?

What events do they have in common? To check your answer, drop them on a form,
select all of them, and see what common properties are showing in the OI Properties
and Events pages.

 3. Build a project modelled on the label_properties project that shows the effect of
changing the properties of a TPanel. You won't need a grid of panels, just a single one will
suffice. Your project should be able to change the BevelInner, BevelOuter, BevelWidth,

BorderStyle and BorderWidth properties, and display the effects of changes.
(Hint: the TSpinEdit component is useful for editing integer values).

123

Learn to program using Lazarus

All programs need ways for the user to interact with them, whether to choose settings, enter
names or other data, or to accept user-determined changes. Controls that accept key-presses (or
mouse clicks or gestures/touch) as a means of entering or altering data are generally termed
editors. They are not restricted just to text entry.
Editing controls must be able to receive the focus in an application, so the user is clear which
control is the one currently receiving user input. Small- to medium-size controls usually
indicate which is the currently-focused component in a multi-component form by means of a
focus rectangle.
Larger GUI controls such as word processor windows and the IDE's Source Editor indicate
focus usually by colouring a tab or page differently from other tabs and pages, and sporting a
flashing cursor to indicate where in a line of text the focus of text entry will be. Often the
current entry field in an editing control is highlighted in some way to narrow the focus
appropriately.
Lazarus controls use the boolean TabStop and integer TabOrder properties to manage focus, as
well as several methods including SetFocus, RemoveFocus, CanFocus, Focused, SelectNext,

and PerformTab. All editing components that have this functionality are direct or indirect
descendants of TWinControl (a key LCL class that is the first in the component class hierarchy to
provide specific focus functionality).
If you are not familiar with the idea of focus moving from one control to the next, set up a new
Lazarus project, drop several controls (such as TEdit or TMemo) on the main form and
experiment with the TabOrder and TabStop properties to see how changing these properties
affects the behaviour of the compiled project when you press the [Tab] or [Shift][Tab] keys. In
some OSs the [Enter] key works like the [Tab] key for changing focus, or can be configured to
do so.

12.a Editing short phrases: TEdit and TLabeledEdit
The most commonly encountered editor component is the TEdit class and its sister
TLabeledEdit. TEdit lives on the Standard, and TLabeledEdit on the Additional Palette page.
The editing functionality of these two edit components is identical, however the TLabeledEdit

has additional properties relating to its attached label.
Both flavours of edit are single-line editors only. Although you can set an edit's Height much
higher than its default value (first setting AutoSize to False), the text field never wraps round to
fill the larger region. To edit multiple lines you need a TMemo or TSynMemo TSynEdit.

The most important property is Text, which holds the string being edited, which is often set to
the empty string '' before use, but can be set, of course, to some other default value.
A program accepting address information via edit fields might have an edit field
set to the country of the user, as a very commonly needed default.
Several other properties relate to the editing functionality. ReadOnly (when True) prevents
editing, though gives no visual indication that [BkSpace], [Delete] and character keys have no
effect – the cursor moves as usual, and the current Text is displayed. Whereas setting Enabled

to False greys out the entire control, and prevents it gaining focus, giving a clear visual
indication of the unresponsiveness of the edit in that state.
Setting EchoMode to emPassword, and PasswordChar to a value other than #0 masks key entry. If
you set it to then the edit displays only asterisk characters as you type in the edit field.
However the Text property contains the characters as typed (i.e. no asterisk characters, unless you
happen to have typed one).

or

edtCountry

'*'

 Chapter 12 GUI EDIT CONTROLS

124

Learn to program using Lazarus

Alignment affects the edited Text in a similar way to a label's Alignment. MaxLength prevents
entry of characters beyond an upper limit (a 0 value turns the property off). If CharCase is set to a
value other than ecNormal then you can force the edited Text to be all upper case or all lower
case.
To try out the effects of alterations in these properties, start a new Lazarus project named
edit_props and enlarge the form size to be about 600x600.

Drop a TEdit and a TToggleBox from the Standard page, and a TLabeledEdit from the
Additional page on the left of the form, below each other (the order is not critical). Set the
Caption of the togglebox to 'Point grid to LabeledEdit'. You'll need to enlarge the

togglebox to show this four-word caption.

Drop a TTIPropertyGrid component (second from the rightmost on the RTTI Palette page) on the
form and set its Align property to alRight. Drag its left border leftwards to make the grid
wider. Click on the down-arrow beside the TIObject property and set it to Edit1. Double-click
on the toggle-box and in the ToggleBox1Change() event handler skeleton type the following:

procedure TForm1.ToggleBox1Change(Sender: TObject);
begin
 case ToggleBox1.Checked of
 False : begin
 TIPropertyGrid1.TIObject := Edit1;
 Edit1.SetFocus;
 ToggleBox1.Caption:= 'Point grid to LabeledEdit';
 end;
 True: begin
 TIPropertyGrid1.TIObject := LabeledEdit1;
 LabeledEdit1.SetFocus;
 ToggleBox1.Caption:= 'Point grid to Edit';
 end;
 end;
end;

Compile and run the program. Clicking the toggle-box sets the property grid to display
properties from the edit that is not the one currently shown in the grid. You can use this
runtime property grid just as you use the OI at design time to alter the current edit's properties,
and you see the effects immediately reflected in the behaviour of the running program.
Try changing the Color, Cursor, CharCase … and in the labeledEdit see the effect of
changing the values of LabelPosition and LabelSpacing. Notice that the EditLabel property
(being a subcomponent) is greyed out, and cannot have its properties edited in this otherwise
pretty amazing grid-style runtime property editor.
Compared to the amount of code we wrote for the event handlers in examples given earlier
(e.g. label_properties, in Chapter 10, Section 10.b) use of the RTTI component leads to
almost code-free programming. Why did we not use RTTI components earlier, then? It would
certainly have introduced you to several new components, and reduced the amount of code
you had to write. But 'quicker and easier' is not our goal here. Learning to program involves
typing code, just as learning to write a novel involves practice writing as well as lots of reading.

 Chapter 12 GUI EDIT CONTROLS

125

Learn to program using Lazarus

12.c Editing integers and floating point numbers
Two editors, TSpinEdit and TFloatSpinEdit found on the Misc Palette page provide simple
number-specific editing abilities, and prevent input of anything non-numeric. The numeric
values are entered either by directly typing digits into the text number field, or by incrementing
(or decrementing) the existing number in the field using up/down arrow keys or mouse clicks on
the up/down arrow icons embedded in the control. Each OS gives its spinedit widget a slightly
different appearance, but whatever the platform you will recognise this control easily.
One point of note is that the published Value property is not a string but numeric, an integer
for TSpinEdit, and a double for TFloatSpinEdit (there is a public Text string property – but you
will rarely if ever need to use it). This is the principal advantage of using these controls: there is no
need to make manual type conversions between string and numerical values. User input can be
read directly as an integer or float in the Value property, even when entered as text in the
number field. These controls also provide validated numeric user input. If you use text-entry
TEdits to obtain numeric data from users you will have to validate the entered strings yourself.

12.b Editing or choosing short phrases: TComboBox
Like a TEdit the TComboBox allows you to edit text in its edit field, but it also offers a list of text
items to choose from. The Style property gives the option for the list either to be dropped
down by clicking on a down-arrow icon, or to be a list of choices that is shown permanently. As
in TListbox the text strings in the drop-down are stored in a stringlist Items property.

If ReadOnly is True no text can be typed in the edit field, but any item selected from the drop-
down list is returned in the Text property, which reflects the content of the edit field when
focus leaves the control. This allows you to control whether the user can enter new text to be
returned, or only be permitted to choose from the predefined Items. You can set Text directly
to a default string value to be shown on entry to the control, or the ItemIndex value can be set
to a positive value which selects the item in Items with that index, and displays it in the edit
field. Figure 12.1 provides a typical example.

Figure 12.1 A TComboBox used for data entry

 Chapter 12 GUI EDIT CONTROLS

126

Learn to program using Lazarus

We will exercise the spinedit control with a simple arithmetical example that also demonstrates
use of the math unit. Start a new project named numberediting with a main form named
numeditmain.pas. Set the form's Caption to SpinEdit example.
Add math to this unit's uses clause. Drop two labels at the top of the form named lblA and

lblB, and set their captions to integer A and integer B. Below the labels drop two spinedit
controls named seA and seB. Increase the width of these two controls so they can accept large
numbers easily, and set their properties as follows:

MinValue -10000
MaxValue 10000
Value 10

Below the spinedits drop a TDividerBevel and set its Caption to calculated results. Below
the bevel drop a listbox named lbResults. The form will look similar to Figure 12.2

Figure 12.2 The SpinEdit example main form design

Click on the first spinedit, and shift-click the second spinedit to select them both. In the OI
Events page double-click beside the OnChange event to create new event handler, then click
there again to select the name, and rename it from the Lazarus default to ChangeAorB. In the
Editor complete the skeleton for this event handler as follows:

procedure TForm1.ChangeAorB(Sender: TObject);
begin
 UpdateCalculations;
end;

We are calling a procedure UpdateCalculations, which we now need to write. In the private
section of the form class declare the procedure UpdateCalculations, use Code Completion to
generate the procedure skeleton and complete it as follows:

 Chapter 12 GUI EDIT CONTROLS

127

Learn to program using Lazarus

procedure TForm1.UpdateCalculations;
var OK: boolean;
 n: Int64;
begin
 lbResults.Items.Clear;
 lbResults.Items.Add('A + B : ' + IntToStr(CalcSum));
 n := CalcIntDivision(OK);
 if OK then
 begin
 lbResults.Items.Add('A DIV B : ' + IntToStr(n));
 lbResults.Items.Add('A MOD B : ' + IntToStr(CalcModulus(OK)));
 end
 else lbResults.Items.Add('A DIV B, A MOD B are not calculable');
 lbResults.Items.Add('A x B : ' + IntToStr(CalcProduct));
 lbResults.Items.Add('A*A + B*B : ' + IntToStr(CalcSumOfSquares));
 lbResults.Items.Add('A to POWER B : ' +

FloatToStr(CalcPower));
end;

In this procedure we call several small procedures we also need to write. So in the private

section of the form class add the declarations for these procedures, then use Code Completion
to generate the required skeletons and complete them as follows:

.......

private
 procedure UpdateCalculations;
 function CalcSum: int64;
 function CalcProduct: int64;
 function CalcPower: double;
 function CalcIntDivision(var isValid: boolean): int64;
 function CalcModulus(var isValid: boolean): int64;
 function CalcSumOfSquares: Int64;
 end;
...
implementation

function TForm1.CalcSum: int64;
begin
 Result := seA.Value + seB.Value;
end;

function TForm1.CalcProduct: int64;
begin
 Result := seA.Value * seB.Value;
end;

function TForm1.CalcPower: double;
begin
 Result := intpower(seA.Value, seB.Value);
end;

function TForm1.CalcIntDivision(var isValid: boolean): int64;
begin
 Result := 0;
 isValid := (seB.Value <> 0);
 if isValid
 then Result := seA.Value div seB.Value;
end;

 Chapter 12 GUI EDIT CONTROLS

128

Learn to program using Lazarus

function TForm1.CalcModulus(var isValid: boolean): int64;
begin
 Result := 0;
 isValid := (seB.Value <> 0);
 if isValid
 then Result := seA.Value mod seB.Value;
end;

function TForm1.CalcSumOfSquares: Int64;
begin
 result := seA.Value*seA.Value + seB.Value*seB.Value;
end;

Every time either spinedit value changes we call UpdateCalculations which simply writes a
new set of Items strings in the listbox. We need to ensure this listbox update happens when the
program is first displayed. We use the OnActivate event do do this. Select the main form, and in
the OI Events page double-click beside the OnActivate event. Complete the event handler as
follows (it calls ChangeAorB with the dummy parameter nil, the event handler as we are using it
ignores the Sender parameter it receives, so the value of the parameter does not matter):

procedure TForm1.FormActivate(Sender: Tobject);
begin
 ChangeAorB(nil);
end;

Compile and run this project, and see the effect of altering the values of integer A and integer B.
A typical program run is shown in Figure 12.3.

Figure 12.3 The running numberediting project

12.d Multiple-line editors
For editing short sections of text such as names to be stored in databases a single-line TEdit or

TDBEdit usually suffices. However where a line of text is too long to fit within an edit control
(without wrapping round) a more sophisticated control is needed. You may have struggled, like
me, when trying to edit a section of a long path in a TEdit-style system widget where the single
line scrolls because it is too long to be shown in the available screen width... and you lose track
of where you are in a line whose two ends have scrolled out of view.

 Chapter 12 GUI EDIT CONTROLS

129

Learn to program using Lazarus

Lazarus has several controls that offer multiple line editing capabilities, including TMemo,

TSynEdit and TSynMemo. All these controls accept text typed into them, and will automatically
display scrollbars if necessary. However the first, TMemo, is quite restricted in display terms: the
text is shown only in one colour, in a single font (typeface), and any enhancement you make to
the text shown (say to underline it) applies to the entire text. There are no Lazarus Palette
components that have built-in .rtf capabilities, though there is a rich text component

available in the code repositories (which has not yet been deemed good enough to be packaged with
Lazarus).
The two synedit controls are more capable (TSynEdit has over 100 published properties), not
lightweight components at all. Consequently there is more of a learning curve to be able to use
these latter two components to highlight individual words in different colours and so on.
The Source Editor in Lazarus is based on TSynEdit, which gives you some idea of the
sophistication possible with these components. However this also underlines the orientation
towards source code editing rather than word processing as such, and their functionality is
based on the use of mono-spaced fonts (though this might be extended in future, to allow use of
proportional fonts). Also every line has the same height.
We conclude this chapter with a component browser example designed to let you examine the
ancestry and published properties of some commonly used Palette components. It introduces
the TTreeView, the most complex display and item-selection component encountered so far,
which was omitted from the discussion of display components in Chapter 11 on account of its
complexity.

12.e A component browser
Start a new Lazarus project and save it as compbrowser, and its main form unit as
comp_browser_main.pas. Set the main form's Caption to Component Browser, its Height to
420 and its Width to 680. Drop a treeview from the Common Controls Palette page on the main
form, setting its Name to tvComps, its Align to alLeft and its Width to 210.

To make a browser to cover the entire 203 Palette components would require a lot of typing of
names, so here we will restrict ourselves to the first two Palette pages (code for a full browser is
included on the CD accompanying this book). At the end of this project you will have become a lot
more familiar with those first two Palette pages and their contents.
In order for the compiler to find both the components listed in the browser and various other
LCL routines we need to specify the units where they are declared in our uses clause. So add
the following units to those already in the uses of compBrowserMain.pas:
..., Menus, Buttons, StdCtrls, ExtCtrls, ActnList, MaskEdit, grids,
CheckLst,PairSplitter, ColorBox, ValEdit, SynHighlighterPosition, strutils,
typinfo;

In order to refer to individual Palette pages we define an enumerated type as follows:

type
 TPalettePage = (ppStandard, ppAdditional, ppOtherPagesNotListedHere);

Alongside this enumerated type we define a constant array of strings corresponding to these
three enumerations:

const

 MaxComponentsOnAPage = 21; // Additional page
 PageNames: array[TPalettePage] of shortstring =
 ('Standard', 'Additional', 'Other unlisted pages');

 Chapter 12 GUI EDIT CONTROLS

130

Learn to program using Lazarus

Figure 12.4 The Component Browser in action

We want our treeview to display nodes for the Palette pages, and sub-nodes for each
component. Selecting a component should generate information about it using RTTI, which
gets displayed in a control alongside the treeview. We will use a TSynEdit control for this
display so that it is possible to highlight only certain aspects of the information (which is not
possible with a memo or listbox, though they are considerably simpler to use and program).
Drop a TSynEdit component from the SynEdit Palette page next to the treeview, and set its
properties as follows:

Name seViewer
Gutter.Visible False
ReadOnly True
Align alClient
ScrollBars ssAutoBoth

To pick an arbitrary component from a list and display its properties we need a variable to refer
to it which is assignment-compatible with any component. The LCL declares such a type, and it
is called TComponentClass. We declare such a variable here. We also need a procedure that will
load the treeview with the initial list of Palette pages and components. In the form's private
section add the TComponentClass variable, and a new procedure as follows:

private
 compClass: TComponentClass;
 procedure LoadTreeView;

 Chapter 12 GUI EDIT CONTROLS

131

Learn to program using Lazarus

To fill a treeview with items it is possible to use the treeview editor in the OI. If you select the
treeview in the Designer, and navigate to the Items property and then click on the […] ellipsis
button you will open an editor designed for adding nodes and sub-nodes to a treeview. Once you
have got used to the way this editor works (you have to keep careful track of which node is selected
before you click any buttons) it is a convenient way of quickly adding text items to any treeview.
Unfortunately in our case the treeview Items Editor will not suffice, because we want to add to the
treeview not just text items identifying a component, but a reference to the actual component class
itself, i.e. we need to add a string and a class reference. The Items list of a treeview has a function
to add two such elements at once to a node:

and the function returns a reference to the new node added, which is of type
You see that the function requires three parameters: a reference to the parent node in the treeview
to which the new node is to be added, and the text description of the new item together with its
associated Data (in our case this will be a TComponentClass).

function TTreeView.Items.AddChildObject(ParentNode: TTreeNode;
const S: string; Data: Pointer): TTreeNode;

TTreeNode

Use Code Completion to write out a skeleton for the LoadTreeView procedure, and complete it
as follows:

procedure TForm1.LoadTreeView;
var aNode: TTreeNode;
 palPage: TPalettePage;
 i: integer;
begin
 tvComps.BeginUpdate;
 for palPage := High(TPalettePage) downto Low(TPalettePage) do
 begin
 aNode := tvComps.Items.AddFirst(nil, PageNames[palPage]);
 for i := 1 to MaxComponentsOnAPage do
 begin
 compClass := GetComponentClass(palPage, i);
 if Assigned(compClass) then
 tvComps.Items.AddChildObject(aNode, compClass.ClassName,
 TObject(compClass));
 end;
 end;
 tvComps.EndUpdate;
 tvComps.Selected := tvComps.Items[0];
end;

We determine the parent node by the assignment
aNode := tvComps.Items.AddFirst(nil, PageNames[palPage]);

The root node of any treeview is nil, and the first (three in our case) identifiable nodes are
generated by AddFirst(nil, 'text') where we use entries in the PageNames array (indexed by
palPage) for the text entry.
The LoadTreeView procedure consists of two nested for loops, the outer loop steps through the
values in the TPalettePage enumeration, and the inner loop steps through each component on
the given Palette page. Since the number of components on each page varies considerably we
set the inner for loop to iterate the maximum required number of times, and test the value of
the GetComponentClass() function for nil (using the Assigned() function) to discard upper
values where there are no components with those indices.
Which brings us to the GetComponentClass() function. This is not an LCL routine – we have to
write it ourselves. It is a function which returns the correct component class (or nil, as the case
may be) given a Palette page and component index. In the form's private section add the
following function declaration:

 Chapter 12 GUI EDIT CONTROLS

132

Learn to program using Lazarus

function GetComponentClass(aPage: TPalettePage; anIndex: word): TComponentClass;

Use code completion to have the IDE write the skeleton for this function, and complete it as follows:

function TForm1.GetComponentClass(aPage:TpalettePage;anIndex: word):TComponentClass;
begin
 case aPage of
 ppStandard: case anIndex of
 1: result := TMainMenu;
 2: result := TPopupMenu;
 3: result := TButton;
 4: result := TLabel;
 5: result := TEdit;
 6: result := TMemo;
 7: result := TToggleBox;
 8: result := TCheckBox;
 9: result := TRadioButton;
 10: result := TListBox;
 11: result := TComboBox;
 12: result := TScrollBar;
 13: result := TGroupBox;
 14: result := TRadioGroup;
 15: result := TCheckGroup;
 16: result := TPanel;
 17: result := TFrame;
 18: result := TActionList;
 else result := nil;
 end;
 ppAdditional: case anIndex of
 1: result := TBitBtn;
 2: result := TSpeedButton;
 3: result := TStaticText;
 4: result := TImage;
 5: result := TShape;
 6: result := TBevel;
 7: result := TPaintBox;
 8: result := TNotebook;
 9: result := TLabeledEdit;
 10: result := TSplitter;
 11: result := TTrayIcon;
 12: result := TMaskEdit;
 13: result := TCheckListBox;
 14: result := TScrollBox;
 15: result := TApplicationProperties;
 16: result := TStringGrid;
 17: result := TDrawGrid;
 18: result := TPairSplitter;
 19: result := TColorBox;
 20: result := TColorListBox;
 21: result := TValueListEditor;
 else result := nil;
 end;
 else result := nil;
 end;
end;

The function has two nested case statements which return either a class reference or nil according to
the parameters passed to the function. Notice in passing that we wrapped the LoadTreeView

procedure in calls to BeginUpdate and EndUpdate. This is often done for complex visual controls both
as an optimisation, and to prevent possible flicker caused by adding scores of text values to the
treeview and redrawing them one by one. BeginUpdate postpones repainting of the control until the
EndUpdate call, meaning it is redrawn only once at the end rather than scores of times during

iterations of the for loops. When should LoadTreeView be called? At the start of the program – i.e. as
soon as the main form has been created. Double-click beside the form's OnCreate event in the OI and
complete the event handler the IDE writes for you as follows:

 Chapter 12 GUI EDIT CONTROLS

133

Learn to program using Lazarus

procedure TForm1.FormCreate(Sender: TObject);
begin
 LoadTreeView;
end;

Press [F9] to check your typing and test the project compilation so far. You should see the
program displaying a treeview with three branches, the first two of which can be expanded to
reveal a list of component names appropriate to their Palette page location. We now need to
add the ability to display information about a selected component in the synEdit control. We
chose the synEdit component because it enables us to mark words or phrases in bold,
underline, colour etc. To do this we need a highlighter class instance, and we have to create
attributes for the particular highlightings required. We also need a counter to keep track of the
lines added to the synEdit. So to the private section of the form add the following fields:

Hiliter: TSynPositionHighlighter;
atrUL, atrBD: TtkTokenKind;
lineNo: integer;

Expand the form's OnCreate method body to read as follows:

procedure TForm1.FormCreate(Sender: Tobject);
begin
 hiliter := TSynPositionHighlighter.Create(Self);
 seViewer.Highlighter := hiliter;
 atrUL := hiliter.CreateTokenID('atrUL', clBlue, clNone, [fsBold,
 fsUnderline]);
 atrBD := hiliter.CreateTokenID('atrBD', clBlack, clNone, [fsBold]);
 LoadTreeView;
end;

We need a procedure that can gather and display the component information for each node.
Let's call it procedure DisplayComponentInfo(aNode: TTreeNode);

Add this procedure to the form's private section, and generate a skeleton body by invoking
Code Completion.

Fill it out like this:

procedure TForm1.DisplayComponentInfo(aNode: TTreeNode);
begin
 seViewer.Lines.Clear;
 hiliter.ClearAllTokens;
 lineNo := 0;
 case aNode.Level of
 0: begin
 seViewer.Lines.Add('');
 seViewer.Lines.Add(' (' + aNode.Text + ' Page)');
 end;
 else
 begin
 compClass := TComponentClass(aNode.Data);
 DisplayPageInfo(aNode);
 // DisplayComponentData;
 // DisplayComponentHierarchy(aNode);
 // DisplayComponentProperties;
 end;
 end;
end;

 Chapter 12 GUI EDIT CONTROLS

134

Learn to program using Lazarus

Notice we are including three procedures here which are commented out. The idea is to write
them one by one, un-commenting each one as it is written. We can then compile and test these
procedures incrementally. To the form's private section add a declaration for
procedure DisplayPageInfo(aNode: TTreeNode);

Generate an implementation body for this procedure and complete it as follows:

procedure TForm1.DisplayPageInfo(aNode: TTreeNode);
var s: string;
begin
 seViewer.Lines.Add(''); inc(lineNo);
 s := ' Palette Page: ' + aNode.Parent.Text;
 hiliter.AddToken(lineNo, 1, tkText);
 hiliter.AddToken(lineNo, Length(s), atrUL);
 seViewer.Lines.Add(s); inc(lineNo);
 seViewer.Lines.Add(''); inc(lineNo);
end;

The synEdit highlighter has a rather verbose syntax, requiring both the line number to
highlight, the position in the line where the highlight attribute is to be applied, and the attribute
to use. Because the highlighter requires line number information, we have to track the line
number as we go. Next select the treeview in the OI and double-click on the Events page beside
the treeview's OnChange event. Complete this event by calling the display procedure as below,
and compile and run to test the program so far.

procedure TForm1.tvCompsChange(Sender: TObject; Node: TTreeNode);
begin
 DisplayComponentInfo(Node);
end;

If all is well, you can proceed, or you may need to fix a few typos.

 Chapter 12 GUI EDIT CONTROLS

12.f Getting RTTI information for a component
For each component listed, the program so far simply writes its Palette page in a blue
underlined typeface. How do we obtain more information about a component class? Some of it
is contained in properties of TComponentClass. Add a further procedure in the form's private
section:
procedure DisplayComponentData;

Generate an implementation body for this procedure and complete it as follows:

procedure TForm1.DisplayComponentData;
var st: string;
begin
 st := ' ' + compClass.ClassName;
 HiLiter.AddToken(lineNo, 1, tkText);
 HiLiter.AddToken(lineNo, Length(st), atrUL);
 seViewer.Lines.Add(st); inc(lineNo);
 seViewer.Lines.Add(''); inc(lineNo);
 seViewer.Lines.Add(Format(' ''%s'' is declared in the %s unit',
 [compClass.ClassName, compClass.UnitName]));
 inc(lineNo);
 seViewer.Lines.Add(Format(' InstanceSize is : %d bytes',
 [compClass.InstanceSize]));
 inc(lineNo);
 seViewer.Lines.Add(''); inc(lineNo);
end;

135

Learn to program using Lazarus

Now uncomment the line in DisplayComponentInfo that calls this procedure we have just
written, and compile and run the project to test the effect. If all works satisfactorily, we can
proceed to getting and displaying information about the component's ancestry.
For this we require a helper function, GetAncestorCount, that counts how many levels of
inheritance apply to a particular component. Declare a further function in the form's private
section:

function GetAncestorCount(aClass: TClass): integer;

Generate an implementation skeleton body for it, and complete it as shown below. Note that we
have to use a general TClass parameter here (not TComponentClass) since many ancestors
higher up in the hierarchy will be classes but not components.

function TForm1.GetAncestorCount(aClass: TClass): integer;
begin
 result := 0;
 if not Assigned(aClass.ClassParent)
 then Exit
 else
 begin
 while Assigned(aClass.ClassParent) do
 begin
 inc(result);
 aClass:= aClass.ClassParent;
 end;
 end;
end;

 Chapter 12 GUI EDIT CONTROLS

In this loop we step up through the class's ancestry, incrementing a counter as we do so, until
we reach a class whose ClassParent is nil. This means we have reached TObject, and can go
no further. In the form class declaration add a further private procedure:
procedure DisplayComponentHierarchy(aNode: TTreeNode);

Generate an implementation method skeleton and complete it as follows:

procedure TForm1.DisplayComponentHierarchy(aNode: TTreeNode);
var sl: TStringList;
 step: integer = 1;
 ancestorCount: integer = 0;
 i: integer;
 s: string;
 aClass: TClass;

 function Plural(aCount: integer): string;
 begin
 case aCount of
 1: result := '';
 else result := 'es';
 end;
 end;

136

Learn to program using Lazarus

begin
 ancestorCount:= GetAncestorCount(compClass);
 s:= Format(' %s class hierarchy [%d ancestor class%s]',
 [compClass.ClassName, ancestorCount, Plural(ancestorCount)]);
 hiliter.AddToken(lineNo, 1, tkText);
 hiliter.AddToken(lineNo, Length(s), atrBD);
 seViewer.Lines.Add(s); inc(lineNo);
 aClass:= TClass(aNode.Data);
 if Assigned(aClass.ClassParent) then
 begin
 sl := TStringList.Create;
 try
 while Assigned(aClass.ClassParent) do
 begin
 sl.Add(DupeString(' ', step) + aClass.ClassName);
 aClass:= aClass.ClassParent;
 inc(step, 2);
 end;
 sl.Add(DupeString(' ', step) + aClass.ClassName);
 for i := sl.Count-1 downto 0 do
 begin
 seViewer.Lines.Add(sl[i]);
 inc(lineNo);
 end;
 finally
 sl.Free;
 end;
 end
 else begin seViewer.Lines.Add(' (No parent class)'); inc(lineNo); end;
end;

We are using the very useful TStringList class here that is discussed more fully in Chapter 15
(see section c) in order to list the names of the ancestor classes (whose number is not known in
advance). Moreover we indent the class names successively as we move up through the
hierarchy using the DupeString function we first encountered in Chapter 7 (Section 7.h).

 Chapter 12 GUI EDIT CONTROLS

We also use the try … finally … end; construct to make sure that if something goes wrong

after we create the needed stringlist that the memory allocated for the stringlist will still be
freed, and no memory leak will occur. Note how we initialised the step variable at the point of
declaration, and included a nested helper Plural() function to get the correct spelling
distinction between class and classes. Uncomment the DisplayComponentHierarchy procedure
in DisplayComponentInfo, and compile and run the program to check your typing so far.
Whew! We come to the final and most complex procedure: DisplayComponentProperties,

which uses a number of types and functions declared in the typinfo unit, some of which are
slightly abstruse, and make heavy use of pointers. You may wish just to accept the following
code for now and come back to study it later. Declare this last procedure in the private section
of the form declaration:

 procedure DisplayComponentProperties;

Generate an implementation skeleton for it, and complete it is as follows:

137

Learn to program using Lazarus

procedure TForm1.DisplayComponentProperties;
var aPPI: PPropInfo;
 aPTI: PTypeInfo;
 aPTD: PTypeData;
 aPropList: PPropList;
 sortSL: TStringList;
 i: integer;
 s: string;
begin
 seViewer.Lines.Add(''); inc(lineNo);
 aPTI:= PTypeInfo(compClass.ClassInfo);
 aPTD := GetTypeData(aPTI);
 s := Format(' %s has %d published properties:',
 [aPTI^.Name, aPTD^.PropCount]);
 hiliter.AddToken(lineNo, 1, tkText);
 hiliter.AddToken(lineNo, Length(s), atrBD);
 seViewer.Lines.Add(s); inc(lineNo);
 if (aPTD^.PropCount = 0)
 then seViewer.Lines.Add(' (no published properties)')
 else
 begin
 GetMem(aPropList, SizeOf(PPropInfo)* aPTD^.PropCount);
 sortSL := TStringList.Create;
 sortSL.Sorted:= true;
 try
 GetPropInfos(aPTI, aPropList);
 for i := 0 to aPTD^.PropCount - 1 do
 begin
 aPPI := aPropList^[i];
 sortSL.AddObject(Format(' %s: %s',
 [aPPI^.Name, aPPI^.PropType^.Name]),
 TObject(Pointer(Length(aPPI^.Name))));
 end;
 for i := 0 to sortSL.Count - 1 do
 begin
 seViewer.Lines.Add(sortSL[i]);
 hiliter.AddToken(lineNo, Succ(Integer(sortSL.Objects[i])), atrBD);
 hiliter.AddToken(lineNo, Length(sortSL[i]), tkText);
 inc(lineNo);
 end;
 finally

 Freemem(aPropList, SizeOf(PPropInfo)* aPTD^.PropCount);
 sortSL.Free;
 end;
 end;
end;

 Chapter 12 GUI EDIT CONTROLS

Uncomment the final commented procedure in DisplayComponentInfo and compile and run
the program, which will appear similar to Figure 12.4. You should have a working component
browser that can be extended to cover all LCL Palette components, if you wish. You might
want to add it to the IDE as an external tool you can call up to use when developing other
projects (see the next Section).

12.g Adding external tools to the IDE
Lazarus provides a way to add any executable to the IDE main menu. We'll use the executable
you just built as an example of how you can extend the IDE in this way. From the main menu
choose Tools | Configure External Tools... to bring up the External Tools dialog. If you have
not yet added any extra tools to the Tools menu this dialog will be an empty box with a toolbar
at the top and [Help], [OK] and [Cancel] buttons at the bottom. If you have already installed
one or more tools in the menu they will be listed in this dialog. Click on the + Add toolbutton
(the leftmost button).

138

Learn to program using Lazarus

This opens a further Edit Tool dialog. Type a suitable name for the tool you are adding in the
Title field, then press the […] ellipsis button in the Program Filename field.

There are options for command-line parameters that may be needed for some tools (for which a
variety of macros are provided), and the possibility to assign a shortcut key you can use to
execute the tool. Click [OK], and [OK] again to dismiss the External Tools dialog.

This brings up a system Open File dialog which you can use to locate the executable you want
added as a tool. In Figure 12.5 you can see the entry for Component Browser as located on the
author's computer. Note the checkbox highlighted in grey in the illustration. For some reason
this is always checked by default. Make sure you uncheck this option (otherwise the tool you
execute will be invisible).

 Chapter 12 GUI EDIT CONTROLS

Figure 12.5 The Edit Tool dialog for adding an external tool to the IDE

139

Learn to program using Lazarus

The tool you have added will now have its own place in the Tools menu (see Figure 12.6). You
can execute the tool either by clicking on its menu item, or by using its shortcut key
combination (if you assigned one).

Figure 12.6 The Tools menu with a new Component Browser entry

 Chapter 12 GUI EDIT CONTROLS

12.h Review Questions
 1. Try extending the Component Browser to show further Palette pages. You need to extend

just one function, GetComponentClass. Can you figure out how to do this? If you're stuck,
look at the project included in the code that accompanies this book.

 2. When would you prefer a TComboBox over a TEdit for accepting user input?

140

Learn to program using Lazarus

We have enough Pascal under our belts at this stage that several of the provided examples will
not be throw-away programs but rather small projects that could be extended to be genuinely
useful: worth naming and keeping (such as the last chapter's Component Browser). This is also a
stage at which it is worth reviewing some important aspects of project development.

13.a Planning a project
A programming project starts with a goal or goals you want to achieve, and as you ponder
these a plan for achieving your goal may crystallise. Simple projects often develop via a trial-
and-error method, and Lazarus as a RAD environment often enables you to code the outline of
a project quite quickly. From the early sketch program you can develop different parts
individually to shape the overall project to fit your goal. The modular nature of Pascal
facilitates such a divide-and-conquer approach. However, starting with the UI can constrain
you by focusing on how you will achieve a goal, rather than identifying exactly what
functionality you need to create. To someone with a UI hammer, everything can seem to be a
potential nail.
Once the principal functionality the project will provide has become clear you might sketch out
the user interface (UI) on paper. Then ask yourself questions such as the following to help you
delineate the tasks ahead.
• What are the main aims of this software? Can I see developing a few modules that

together will meet these aims? What will I name them?
• What are the essential features, and which parts are decorative?
• Can I envisage developing a new class that will encapsulate the functionality I need? If so,

what will the class be called?
• Does the program need a database? If so, which one(s)?
• How many forms (windows) are needed? Where I see several alternative ways to

implement a feature how shall I choose between them?
• Are custom dialogs needed for particular functionality? How will I test them?
• How will I go about testing the functionality and UI?
• Which parts take me into areas where I need to research or learn new techniques? Who can

help me with areas where I am not fully competent? Can I pay someone to code parts that
are beyond my skills, or which I don't have time to get up to speed on?

• What time/money constraints (if any) impinge on this project?

13.b Creating a project task list
It is helpful to develop a checklist of tasks that will have to be completed by the end of the
project development process. It is rewarding to see such list items getting ticked off as you
complete them, and it also helps you remember tasks and ideas that you might otherwise think
of as you write code, but later overlook or forget. The list also gives a basic sort of project
development history. The IDE has good support for a task list comprising ToDo comments,

which is explained in the following section.
Some people find comments (even short ones) distracting clutter in source files, and are averse to
inserting ToDo lines for the same reason. If you feel like that you might prefer simply to

maintain a ProjectTasks.txt file in your project directory to keep track of this aspect. You
could format this file however you wanted, and use the Project Inspector to add it to the project
(it is then simple to double-click it in the Project Inspector to open the file in the Editor to tick off
completed tasks, add new ones and so on). The IDE's ToDo functionality is available in any text file
you edit in Lazarus, so you might combine this approach with the next one, simply keeping
your ToDo list in a separate file from your Pascal sources.

 Chapter 13 LAZARUS GUI PROJECTS

141

Learn to program using Lazarus

13.c ToDo functionality
Lazarus provides ToDo functionality which meets most programmers' needs for a tasklist. The
shortcut for this when in the Editor is [Shift][Ctrl][T], (or right-click to show the context popup
menu and choose Insert ToDo). The ToDo functionality works by inserting a simple comment in
your source code (or into any text file open in the Editor).
Code comments were mentioned earlier, and you will recall that curly brackets { } are used for
enclosing comments and that the compiler understands comments beginning {$ …} as compiler
directives, and that the Editor colours such directives differently to make them immediately
distinctive visually. The IDE recognises two special comment categories: ToDo comments and
Done comments. In addition to colouring ToDo comments blue in the Editor there is a ToDo List

dialog (accessed via View | ToDo List) which collects all ToDo entries from units listed in the

main project file into a single list. Clicking on a list entry jumps straight to that ToDo in the

relevant file.
 An alternative listing of ToDo items is provided by the Code Explorer (provided you specify

this option) which is accessed via View | Code Explorer. The Code Explorer is a sophisticated
and helpful tool. Some of its features are explored in Chapter 19 (Section f).
The IDE considers any comment a ToDo if it begins with {todo: or {#todo: or {done: or

{#done: and spaces and capitalisation are ignored, so
{ToDo: 2 This is a ToDo with priority 2 -oJane -cKillerFeature}

is a valid ToDo comment. ToDos that you have changed into dones are shown in the ToDo List

dialog with an X in the Done column. ToDo comments can include an integer to indicate

priority, a -oOwner tag to identify the Owner and a -cCategory tag to indicate the Category, in
addition to the main text of the comment. These elements are parsed when you export a ToDo
list via the ToDo List dialog toolbutton marked Export. The resulting file is a .csv (comma

separated values) text file, named with an appended date thus: TodoList_YYYY_MM_DD.csv.

If you open this file in a spreadsheet program you will see that each ToDo item has been parsed
into seven columns headed Done, Description, Priority, Module, Line, Owner, and Category.

13.d Version control
Working with a version control system (VCS) is helpful even if you are not collaborating with
colleagues in producing software (when a version control system is essential). Lazarus and FPC
developers use SVN, and many in the Lazarus and FPC communities use SVN, Git, Mercurial
or a combination of these. What you use is obviously up to you. This book will not say more
about this topic, since it is beyond the scope of these pages, except to emphasise the desirability
of version control even for hobby programmers and beginners. The facility to collaborate in an
organised way with other programmers, as well as allowing reversion to earlier designs if an
initially promising branch of development turns out to be a dead end, and merging of bug fixes
or new features once they are debugged are just some of the advantages of a VCS, apart from
the basic backup facility.

13.e Test-driven software development
Commercial software development requires a more rigorous approach, and constant testing
needs to be built in to the development process. Lazarus and FPC provide for this via the
FPCUnit Test Application and FPCUnit Console Test Application project types (the last two options
in the Create a new project dialog accessed via Project | New Project...). Test-driven development
is beyond the scope of this chapter, however it is an important topic which you will want to
explore if you go very far in the world of programming, and if you explore the labyrinth of
Lazarus/FPC svn subdirectories you will see that quite a few are devoted to tests – one reason
Lazarus and FPC is high-quality software.
This topic is treated briefly later – see Section 18.f of Chapter 18, Algorithms and Unit Tests.

 Chapter 13 LAZARUS GUI PROJECTS

142

Learn to program using Lazarus

13.f Naming
What will your new project be called? Try to distil the essence of its purpose or function into a
meaningful name, and if your source code becomes big enough (as it soon might), consider the
best names for the sub-divisions of your code which will be your Pascal units. Almost any
names you come up with will be an improvement on the default names that will be used
otherwise (project1.lpr, unit1.pas, unit2.pas and so on).
Also remember if you work on a case-insensitive platform like Windows that other potential
users may have problems if you call your main unit UnitMain.pas and share it. If the name gets
changed inadvertently to Unitmain.pas, a Mac or Linux filesystem will recognise that as a
different file, and give an Error: UnitMain.pas not found message.
Best to use all lowercase names at first naming if there is ever any likelihood of cross-platform
usage. Since comprehensive cross-platform capability is one of the most attractive features of
Lazarus/FPC, that possibility always needs to be borne in mind. It is impossible to know where
files you write today may be running someday in the future.
The filenames you choose are restricted not only by operating system rules (e. g. no '?' or ':'
characters on Windows, no null or '/' characters on Linuxes), but by Pascal naming rules.
As mentioned above this prevents use of a numeral as the first character of a name, and also
prevents use of non-English alphanumeric characters such as 'ø', space, '+' and '-' in names.
The underscore '_' is OK, and it can also be the first character in a filename.
Lazarus prevents you from using illegal Pascal names for filenames when projects and units are
first saved (you can circumvent this by renaming files later, of course, outside Lazarus – but if you give
Pascal source files illegal names they will not compile). If you save a project or unit with an all-
lowercase name (say mainform.pas) you can manually edit the name of the unit inside the
source to change its capitalisation (say to MainForm) and this is perfectly OK, and Lazarus
accepts this without a murmur. However, it is probably wisest to keep unit and project names
identical in capitalisation with their filenames.

13.g Project directory structure
Where will the project be kept? A new folder (directory) must be created and named, and a
directory structure must be considered so that logically related file groups are stored together.
At all costs avoid the laziness of lumping all project files into one folder. Lazarus does its best to
prevent you doing this by creating an output directory where compiled files (compiled unit .ppu

files and various intermediate compiled resource and object files) are placed, as well as a backup
folder where it places copies of the source files you generate (unless you unwisely turn this backup
feature off).
A chest with several drawers in it is much more helpful in organising your possessions than a
large single-compartment box in which everything is thrown together. Likewise, creating a
sensible folder hierarchy to store your application/project files will help you organise, find and
update items more easily than cramming everything into a single project3 folder. If you're
creating an application to store and play tracks from your mp3 collection, you might decide to
call the application mp3index, and you could create a folder hierarchy named as follows:

mp3index
source
lib
data
images
backup

This is just one of a myriad of possibilities, of course. You might need a directory called
translations, or separate mp3, wav, ogg and midi folders rather than a single data folder.
Your application might not use any images (meaning your program will look rather dull).
The point is to organise file storage thoughtfully. This will help you in the overall management
of the project. You should also consider including a docs folder to document your work.

 Chapter 13 LAZARUS GUI PROJECTS

143

Learn to program using Lazarus

13.h A template project: SetDemo
This section begins the development of a short example project that illustrates some of the
above ideas, which you can use as an adaptable template when you develop projects of your
own. The purpose of the software end-product is to give you a hands-on feel for sets.
Sets are widely used throughout the LCL because they are an elegant and convenient Pascal
feature that helps to simplify all sorts of GUI property programming. However, you may not
have encountered or used sets since your days in a maths class at school, so the following
project provides a visual illustration of what is involved in
• adding items to a set
• removing items from a set
• set union and intersection
• set difference and symmetric difference
The project is designed so that you will be able to see a clear visual representation of the
changing sets as you alter them. This, after all, is one of the main advantages of GUI over
console programming.

Figure 13.1 The Naming page of the IDE Options dialog, highlighting the file naming setting

Create a new project directory (somewhere where you have file-write permission) named SetDemo

(for instance, on the author's system this was G:\Learn to Program\Chapter 13\SetDemo). Start
Lazarus, and check that you have a new project (Project1) loaded (not the previous project you
worked on). If you see a previous project loaded choose Project | New Project, [OK].
To help you avoid accepting the default names Lazarus always supplies for files, make two
changes to your Lazarus settings. Open the IDE Options dialog via Tools | Options... and click
on the Naming node under the Environment branch of the treeview at the left of the dialog (see
Figure 13.1). Tick the Ask for file name on new file setting.

 Chapter 13 LAZARUS GUI PROJECTS

144

Learn to program using Lazarus

Next in the Form Editor node of the same Environment treeview branch make sure the Ask name
on create checkbox is checked (see Figure 13.2). If you don't see this checkbox, enlarge the dialog
by pulling its lower border downwards. Click [OK] to accept these settings. Although you may
find that enabling these features is rather annoying, they will force you to think about naming
whenever it is relevant to do so.
With these two naming settings checked you cannot accept the default names Lazarus supplies
without making a conscious decision to do so. A dialog will intervene every time you drop a
new component on a form, suggesting the Lazarus default name, but giving you the option to
over-type that name (it is already selected, so any key other than [Enter] will delete the default name
and start entry of the alternative you type – you don't need to explicitly delete the default name).

Figure 13.2 The Form Editor page, highlighting the setting for naming new components

Next pull down the Project menu, and choose Save project as... , and in the resulting two Save
dialogs save the main project file as setdemo.lpi and save the unit as setdemo_main.pas (or
setdemo_main.pp). When you open the Project Inspector (Project | Project Inspector) you will
then see these two files listed, as in Figure 13.3.

 Chapter 13 LAZARUS GUI PROJECTS

145

Learn to program using Lazarus

Click on the [Options] toolbutton in the Project Inspector. The Options for Project: setdemo dialog
opens at its first Application page. The Title field will read setdemo. Replace this with Integer
set demo. Click [OK] to accept the new Title.

Double-click on setdemo.lpr in the Project Inspector's file list to focus that file in the Editor.
When you look at the code you see that Lazarus has added the line:

Application.Title:='Integer set demo';

The result of typing a new Application Title in the Project Options dialog is that Lazarus has
written code to effect that change in the main program file. If you look in the title bar of the
Lazarus IDE you see another effect: it now reads:

Lazarus IDE v1.0.4 - Integer set demo

Your IDE version will probably differ, but Lazarus displays the Title of the application in the

IDE title bar, rather than the name of the project (setdemo) if the two differ.
The project name is the name that comes after program in the main project file (in this case it is
setdemo). The project name can differ from the Application.Title (as here) although it is
perfectly OK to leave them identical, which is the default. Application.Title does not have
the same naming restrictions that apply to Pascal program names and OS filenames, so it can
contain spaces as here, or characters such as '/' which are not allowed in filenames on most
OSs.

Figure 13.3 The Project Inspector displaying the setdemo project

13.i Encapsulating set interaction within a new class
Recall that one of the key questions to ask when beginning a new project is: Can I envisage
developing a new class that will encapsulate the functionality I need? For this project that means
creating a class that will encapsulate the functions (as mentioned above) of

• adding items to a set
• removing items from a set
• illustrating set union and intersection
• illustrating set difference and symmetric difference

Accordingly we will create a class that offers this functionality, writing a skeleton with
appropriately named functions, procedures and properties. Once we have a set-interaction
'engine' drafted out, we can then design the UI, and complete the project by hooking up the set
engine class to the UI. Mixing up UI code with non-UI code in a single GUI form is a recipe for a
difficult-to-maintain project. A loosely-coupled design is better (to use the programming jargon).

 Chapter 13 LAZARUS GUI PROJECTS

146

Learn to program using Lazarus

A project design that eschews close coupling of UI code with core project functionality will
force us to think about separating out non-UI functionality at an early stage. This also promotes
possible later code reuse, since encapsulating functionality in a well-designed and debugged
class means we have a code module that can easily be plucked out of a project for use
elsewhere (made into a component, perhaps). Whereas, if the functionality you might need
elsewhere is completely wedded to the widgets and UI code of your project, it will have to be
re-written for use elsewhere. It cannot simply be decoupled and plugged into another situation.

The class we want will include two sets of digits (set A and set Z), read/write properties
allowing addition of digits to these sets (or removal of digits), and methods that let us visualise
not only the sets, but operations on the sets such as set union, set intersection and so on.
'Visualisation' here means that the methods will be functions returning strings that display the
set contents. So we will need a SetAsString() function that can convert a set of digits into a
displayable string. Let's call the new class TDualAZSet, to indicate that it holds two digit sets,
labelled A and Z. To encompass the functionality summarised at the beginning of this Section,
we will need the new class to look like the following:

type
 TDigits = 0..9;
 TDigitsSet = set of TDigits;

 TDualAZSet = class
 private
 FsetA, FsetZ: TDigitsSet;
 function SetAsString(s: TDigitsSet): string;
 public
 property DiffAZAsText: string read GetDiffAZAsText;
 property DiffZAAsText: string read GetDiffZAAsText;
 property IntersectionAsText: string read GetIntersectionAsText;
 property SetA: TDigitsSet read FsetA write FsetA;
 property SetAasText: string read GetSetAasText;
 property SetZ: TDigitsSet read FsetZ write FsetZ;
 property SetZasText: string read GetSetZasText;
 property SymDiffAsText: string read GetSymDiffAsText;
 property UnionAsText: string read GetUnionAsText;
 end;

Here there are two public read/write TDigitSet properties, SetA and SetZ based on private
storage fields FsetA and FsetZ, together with a private conversion function SetAsString.

 The other public properties are read-only string properties that report the set operation that
their name indicates. The purpose of the class is to encapsulate all the set-related functions,
gathering them in one location.

We will further enhance this encapsulation by putting this set-related class in a unit of its own.
Create a new unit (not a new form) via File | New Unit and save it in the project directory as
dualdigitsset.pas. The Project Inspector should now show this new unit as one of the files in
the project.
Lazarus has placed two units in the uses clause of the new unit: Classes, and SysUtils.
The Classes unit is not needed and can be deleted from the uses clause. Below the uses clause,
add a type declaration as given above for the two ordinal types and the longer class type.
If you keep the cursor somewhere inside the class declaration you have just written and invoke

Code Completion via [Ctrl][Shift][C] Lazarus will expand the private section of the class
with declarations for the various getter functions required for the string properties, and also
write skeleton bodies in the implementation section for all the declared methods. The full
class declaration should now read as follows:

 Chapter 13 LAZARUS GUI PROJECTS

147

Learn to program using Lazarus

TDualAZSet = class
 private
 FsetA, FsetZ: TDigitsSet;
 function GetDiffAZAsText: string;
 function GetDiffZAAsText: string;
 function GetIntersectionAsText: string;
 function GetSetAasText: string;
 function GetSetZasText: string;
 function GetSymDiffAsText: string;
 function GetUnionAsText: string;
 function SetAsString(s: TDigitsSet): string;
 public
 property DiffAZAsText: string read GetDiffAZAsText;
 property DiffZAAsText: string read GetDiffZAAsText;
 property IntersectionAsText: string read GetIntersectionAsText;
 property SetA: TDigitsSet read FsetA write FsetA;
 property SetAasText: string read GetSetAasText;
 property SetZ: TDigitsSet read FsetZ write FsetZ;
 property SetZasText: string read GetSetZasText;
 property SymDiffAsText: string read GetSymDiffAsText;
 property UnionAsText: string read GetUnionAsText;
 end;

Most of the method skeletons will be filled out with one-line set-related code sections.
Complete the implementation as follows:

function TDualAZSet.GetDiffAZAsText: string;
begin
 Result:= SetAsString(FsetA - FsetZ);
end;

function TDualAZSet.GetDiffZAAsText: string;
begin
 Result:= SetAsString(FsetZ - FsetA);
end;

function TDualAZSet.GetIntersectionAsText: string;
begin
 Result:= SetAsString(FsetA*FsetZ);
end;

function TDualAZSet.GetSetAasText: string;
begin
 Result:= SetAsString(FsetA);
end;

function TDualAZSet.GetSetZasText: string;
begin
 Result:= SetAsString(FsetZ);
end;

function TDualAZSet.GetSymDiffAsText: string;
begin
 Result:= SetAsString(FsetA+FsetZ - FsetA*FsetZ);
end;

function TDualAZSet.GetUnionAsText: string;
begin
 Result:= SetAsString(FsetA + FsetZ);
end;

 Chapter 13 LAZARUS GUI PROJECTS

148

Learn to program using Lazarus

That completes the “set engine” class. Make sure you save the unit, before continuing with the
UI development work which is considered in the next Section.
It is possible to write a SetAsString() function using types and routines from the typinfo

unit. We used this unit to write RTTI-related parts of the Component Browser project in
Chapter 12 (Section f). There we had no choice, since this author knows of no other way to
access RTTI apart from the routines of the typinfo unit. In the case of getting information
about sets we can obtain the information far more simply using the (if anElement in aSet)
Pascal construct, rather than using the pointer-oriented typinfo types and routines. So I have
preferred to use a type conversion algorithm for SetAsString() which is easier for beginners
to understand.

function TDualAZSet.SetAsString(s: TDigitsSet): string;
var d: TDigits;
begin
 Result:= EmptyStr;
 for d in TDigitsSet do
 if (d in s) then
 begin
 if Length(Result) > 0 then AppendStr(Result, ',');
 AppendStr(Result, IntToStr(d));
 end;
 Result:= Format('[%s]',[Result]);
end;

13.j The setdemo UI
To visualise the contents of the two sets SetA and SetZ we will design a UI in three sections:
 1. In the first section we need a set of buttons to populate or depopulate Set A, with a

representation of the contents of Set A
 2. The second section will have a set of buttons to populate or depopulate Set Z, with a

representation of the contents of Set Z
 3. The third part will have representations of the sets formed by adding, intersecting, and

subtracting Sets A and Z
To provide a clear colour distinction between the three areas we shall use three panels to define
these regions. Look at Figure 13.4 to see the outcome of this UI design.
Press [F12] to focus the Designer containing Form1, if it is not already the foremost window,
and in the OI set the form properties to the following values:

Height 380
Width 400
Name MainForm

Notice that the change to the form's Name also causes the form class declaration (which was
TForm1), and the form variable (which was Form1) to change to the following:

type
 TMainForm = class(TForm)
 private
 { private declarations }
 public
 { public declarations }
 end;

var
 MainForm: TMainForm;

 Chapter 13 LAZARUS GUI PROJECTS

149

Learn to program using Lazarus

Change the Caption of the form to read Visualising two sets of digits. Make sure the
Standard Palette page is open and drop a panel (3rd icon from the right) onto MainForm. Boom!
Because of our earlier change to the Form Editor page of the IDE's Options, checking Ask name on
create, we now have a new dialog to complete (see Figure 13.5).

Figure 13.4 The completed setdemo project with typical entries showing

Figure 13.5 The Choose name dialog

Type pnlA in the name edit field, and click [OK] to close the Choose name dialog. In the OI set
the following properties for pnlA (Name is now already set to pnlA):

Align alTop
Caption – remove the Caption leaving it empty
Color clGradientActiveCaption
Font.Style [fsBold]
Height 80

Drop a labeled edit control (from the Additional Palette page) named edtSetA on the panel (not
on the unused lower part of MainForm) and set the following edtSetA properties:

EditLabel.Caption Set A
LabelPosition lpLeft
LabelSpacing 5
Left 235
ReadOnly True
TabStop False
Text – remove any text to leave this empty
Top 40
Width 150

 Chapter 13 LAZARUS GUI PROJECTS

150

Learn to program using Lazarus

Note that the EditLabel.Caption displaying Set A is now bold, because its ParentFont

property is by default True and its parent, pnlA, has a bold font style.

Right-click on the panel (not the edit) and select Copy from the context menu.
Right-click below the panel on MainForm and choose Paste to paste a copy of pnlA into position.
Notice this new copied panel is not a completely exact copy of pnlA. It is not possible to have two
controls with the same name on a form (how would the compiler know the difference between them?)
so Lazarus names the copied panel pnlA1, to make it distinctive. Set the properties of the new
panel as follows:

Color clGradientInactiveCaption
Name pnlZ

Select the edit control on pnlZ (by clicking on it either in the Designer or in the OI treeview) and set its
properties as follows:

EditLabel.Caption Set Z
Name edtSetZ

Drop a new panel from the Standard page of the OI on the remaining clear region at the bottom of
the form, naming it pnlResultSets and set its properties as follows:

Align alClient
Caption - delete the Caption to leave the property an empty string
Color clScrollBar
Font.Style fsBold

From the Additional Palette page drop a TLabeledEdit control (10th icon from the left) on to
pnlResultSets naming it edtUnion. Set this labeledEdit's properties as follows:

EditLabel.Caption Union of A && Z (A + Z)
LabelPosition lpLeft
LabelSpacing 5
Left 235
ReadOnly True
TabStop False
Top 10
Width 150

Making sure edtUnion is selected, right-click and choose Copy from the context menu, then right-
click on pnlResultSets below edtUnion and choose Paste. With the newly copied TLabeledEdit

selected, use the OI to change its properties to the following new values:

EditLabel.Caption Intersection of A && Z (A * Z)
Left 235
Name edtIntersection
Top 50

Right-click below edtIntersection and choose Paste again, setting properties of the newly pasted
TLabeledEdit as follows:

EditLabel.Caption Symmetric diff. of A && Z
Left 235
Name edtSymmetricDiff
Top 90

 Chapter 13 LAZARUS GUI PROJECTS

151

Learn to program using Lazarus

Right-click below edtSymmetricDiff and choose Paste again, setting the properties of the
newly pasted TLabeledEdit as follows:

EditLabel.Caption Difference of A && Z (A – Z)
Left 235
Name edtDiffAZ
Top 130

Right-click below edtDiffAZ and choose Paste again, setting the properties of the newly

pasted TLabeledEdit as follows:
EditLabel.Caption Difference of Z && A (Z – A)
Left 235
Name edtDiffZA
Top 170

The code Lazarus has written for setdemomain.pas now has a longer class declaration for
TMainForm which will look similar to the following:

type

 { TMainForm }
 TMainForm = class(TForm)
 edtDiffZA: TLabeledEdit;
 edtSetA: TLabeledEdit;
 edtSetZ: TLabeledEdit;
 edtUnion: TLabeledEdit;
 edtIntersection: TLabeledEdit;
 edtSymmetricDiff: TLabeledEdit;
 edtDiffAZ: TLabeledEdit;
 pnlA: TPanel;
 pnlZ: TPanel;
 pnlResultSets: TPanel;
 private
 { private declarations }
 public
 { public declarations }

Check that you have three panels, and seven labeledEdits, though they may well be listed in a
different order from that above. The form in the Designer should now look something like
Figure 13.6. You'll see that we have followed a naming convention that prepends a 3-letter code
to the beginning of each name, identifying what type of component it is. You can ignore
conventions of this sort; but on forms with scores of controls it will often save you writing
nonsense code. A consistent naming scheme also helps you to remember what names you have
given to controls, so you can type their names later without having to scroll elsewhere or jump
about to look up names.

 Chapter 13 LAZARUS GUI PROJECTS

Note: Lazarus puts all controls dropped onto a form into an unmarked section at the very
beginning of the form's class declaration. This section is in fact a published section (although it
does not say so explicitly) so that all the listed controls are accessible in the OI. These controls'
published properties and events can then be manipulated in the OI. Although you can freely
add code, fields, and declarations anywhere in the form class declaration, it is advisable to
leave this first published controls section – for which Lazarus has written all the code – well
alone. Lazarus keeps this section perfectly synchronised with the data written to the form file
(.lfm), and if the programmer inadvertently messes up this synchronisation, it can lead to

strange compilation errors and erratic or mysterious Designer behaviour. It is wiser to leave
that part of the form class entirely to Lazarus, unless you really know what you are doing in
trying to edit it yourself.

152

Learn to program using Lazarus

Figure 13.6 setdemo's main form showing the Designer's alignment Guide Lines

We want a row of buttons [0], [1] ... [9] – a button for each digit – in the upper two panels.
Clicking on a button will add (or remove) that button's digit from the relevant set. There is always
a choice in GUI design between placing controls by dropping them from the Palette and setting
their properties in the OI, or placing them by coded declarations and property assignments in the
form unit. The former approach stores the property data in a .lfm file, and the latter approach
stores property data as code assignments in a .pas file.
Sometimes one approach is better than the other – often it makes little difference. Placing twenty
button controls and setting their properties manually from the Palette and OI is rather tedious,
though by selecting multiple components with [Shift]-click it is possible using the OI to assign a
value to the properties of all selected components at once. However, we shall create these controls
and assign their properties in code, to show you how this can be done (you might also want to
experiment with the manual method yourself). We will use the TSpeedButton control (3rd icon from left
on the Additional page of the Palette). To create a row of ten speed-buttons in code we introduce a
helper type, TButtonArr, to keep track of the buttons, declared thus:
type TButtonArr = array[TDigits] of SpeedButton;

where TDigits is the subrange type declared in the dualdigitsset unit we wrote earlier.
This is the moment to add dualdigitsset to the uses clause of the main form. You don't need to
type its name. Press [Alt][F11], and in the Add unit to Uses section dialog, you will find that the
very unit you want to add is the only one immediately offered! How is that? It is the only other
Pascal unit in your project, and it is not yet in the unit's uses clause, so Lazarus assumes it is the
one you want to use. Click the unit name to select it, and press [OK]. The dialog closes and
Lazarus adds the required unit to the uses clause without the need for you to type anything. This
gives the mainform unit access to the two ordinal types and the class declared in dualdigitsset.

 Chapter 13 LAZARUS GUI PROJECTS

type TDigits = 0..9;
 TDigitsSet = set of TDigits;
 TDualAZSet = class ...

TSpeedButton is declared in the Buttons unit, which is so far missing from our uses clause.

Lazarus has no way to divine that we need this unit, so we have to add this unit manually to
the uses clause. The beginning of the interface section of setdemo_main.pas should now look
like this (the order of units in the uses clause is not important):

153

Learn to program using Lazarus

uses
Classes, SysUtils, FileUtil, Forms, Controls, Graphics, Dialogs,
ExtCtrls, StdCtrls, dualdigitsset, Buttons;
type
TButtonArr = array[TDigits] of TSpeedButton;
{ TMainForm }
TMainForm = class(TForm)...

There are actually several unused units in this uses clause. To remove the unneeded units
rightclick in the Editor and choose Refactoring, then choose Unused Units … Click the [Remove all
units] button. This feels like a rather risky button to press, but Lazarus knows what it is doing. It
doesn't actually remove all the units in your uses clause, only the unused units (which is all the
units listed in the dialog). You'll end up with a much-slimmer uses clause, which will still build
and compile OK, but will no longer give you Hints in the Messages about Unit “xyz” not used in
setdemo_main.pas . To create 2 rows of ten buttons for our form we need to write a
CreateButtons method that will be part of our TMainForm class declaration, and a ButtonClick
method that each button can use. We will also need a helper procedure UpdateSetExpressions
to update the display of the set operations every time the content of one of the sets changes.
Additionally, we also need a variable to hold an instance of the TDualAZSet class. So delete the
form's public section, and place the Editor cursor just after the word private in the form class
declaration overwriting the { private declarations } comment so that the form declaration ends up
looking like this:

TMainForm = class(TForm)
. . .
private
 ds: TDualAZSet;
function CreateButtons(setID: Char): TButtonArr;
procedure ButtonClick(Sender: TObject);
procedure UpdateSetExpressions;

end;

This CreateButtons function has been designed with a single parameter, setID which allows us
to indicate whether the buttons are linked to Set A or Set Z. What we have just written is the
signature for these methods – just the name, return type, and the needed parameters. This
signature is placed in the interface part of the unit. The code that creates the array of buttons,
and provides button-click functionality now needs to be written – the body of the function. Use
Code Completion to generate the method body skeleton in the implementation section. Type the
following into the provided skeletons:

 Chapter 13 LAZARUS GUI PROJECTS

function TMainForm.CreateButtons(setID: Char): TButtonArr;
const spacing = 10;
aLeft = 40;

var i: integer;
b: TSpeedButton;

begin
for i := Low(TDigits) to High(TDigits) do
begin
b := TSpeedButton.Create(Self);
b.Top := spacing;
b.Left := aLeft + i * (b.Width + spacing);
b.Caption := IntToStr(i);
b.Tag := i;
b.Name := Format('%s%d',[setID, i]);

case setId of
'A': b.Parent := pnlA;
'Z': b.Parent := pnlZ;

end;
b.OnClick:= @ButtonClick;
Result[i]:= b;
end;

end;
154

Learn to program using Lazarus

This is a for loop that creates 10 buttons, setting various properties for each button before
adding the button to the TButtonArr returned by the function. Towards the end of this function
we've assigned @ButtonClick (i.e. the address of ButtonClick) to the OnClick event of b.
We now need to write the ButtonClick procedure.

procedure TMainForm.ButtonClick(Sender: TObject);
var b: TSpeedButton;
begin
 if not (Sender is TSpeedButton) then Exit;
 b := TSpeedButton(Sender);
 case b.Name[1] of
 'A': begin
 if (b.Tag in ds.SetA)
 then ds.SetA:= ds.SetA - [b.Tag]
 else ds.SetA:= ds.SetA + [b.Tag];
 edtSetA.Caption := ds.SetAasText;
 end;
 'Z': begin
 if (b.Tag in ds.SetZ)
 then ds.SetZ:= ds.SetZ - [b.Tag]
 else ds.SetZ:= ds.SetZ + [b.Tag];
 edtSetZ.Caption := ds.SetZasText;
 end;
 end;
 UpdateSetExpressions;
end;

 Chapter 13 LAZARUS GUI PROJECTS

Fill out the skeleton Lazarus provides for UpdateSetExpressions as follows:

procedure TMainForm.UpdateSetExpressions;
begin
 edtUnion.Caption:= ds.UnionAsText;
 edtSymmetricDiff.Caption:= ds.SymDiffAsText;
 edtIntersection.Caption := ds.IntersectionAsText;
 edtDiffAZ.Caption := ds.DiffAZAsText;

edtDiffZA.Caption := ds.DiffZAAsText;
end;

Note: This is one of the useful features of the OI treeview. We cannot select the main form by
clicking on it in the Designer, since there is no exposed main form region to click on (the entire
form being covered in panels). Clicking a form's borders or title bar does not select it.

With the main form selected, click on the Events tab in the OI, and double-click in the empty
column beside the OnCreate event. Lazarus creates an OnCreate event handler, and moves the
cursor to the Editor ready for you to complete the code, which should look like the following
when finished:

procedure TMainForm.FormCreate(Sender: TObject);
begin
 ds:= TDualAZSet.Create;
 CreateButtons('A');
 CreateButtons('Z');
end;

155

Learn to program using Lazarus

Here we simply create the ds instance along with two button arrays.
Create a TMainForm.OnDestroy event handler in the same way as you did for the OnCreate

handler, and complete it as follows:

procedure TMainForm.FormDestroy(Sender: TObject);
begin
 ds.Free;
end;

Now press [F9] to compile and run the application, and explore its functionality. Note that the
buttons created in FormCreate don't need freeing explicitly since they are owned by the form
through the constructor call that created them:
b := TSpeedButton.Create(Self);

The Self parameter in this button-creation call is MainForm, which as Owner organises the
freeing of all the components it owns when it is itself freed.

 Chapter 13 LAZARUS GUI PROJECTS

13.k Review Questions
 1. One school of psychology suggests that everyone falls somewhere between two extremes of

personality: at one end are those who plan carefully, list out the tasks that await them, and
tend to think ahead. At the other extreme are the happy-go-lucky who don't worry about
the future and are allergic to plans, preferring to wait and see how things turn out, keeping
their options open. Where do you fit on this spectrum, and how does this affect the way
you might approach the development of a software project?

 2. How might you improve the setdemo application for someone who is visually impaired?
 3. Would it be feasible to adapt the setdemo application to deal with the set of alphabetic

characters A..Z rather than the digits 0..9? What would be involved?

156

Learn to program using Lazarus

The RAD programming paradigm involves dropping components on a window to quickly
design a user interface. This requires program elements that can accept components
(controls, widgets) being dropped onto them. This chapter considers several Lazarus
component containers, beginning with TForm which behaves rather differently from other
LCL controls in several respects (for instance, there can only be one visually designed form per
unit – whereas you can have multiple instances of any other class declared in a unit). It is
helpful to keep the LCL class hierarchy in mind in considering how controls differ from one
another.

14.a Non-visual RTL classes
There are four important RTL classes that descend directly from TObject:

• TList
• TStream
• TPersistent
• TThread

For LCL classes, TPersistent is the ancestor of the visual classes, being a class that provides
the streaming mechanism (RTTI) used to store the published properties of visual LCL
components (in the .lfm form file at design time), and to reconstruct these components and forms
when their constructors are called at runtime, using RTTI stored in the compiled program
executable. The next chapter looks briefly at some of the more important non-visual support
classes that LCL controls depend on.
A simplified ancestry tree for TForm looks like this:

TObject
TPersistent
TComponent

TLCLComponent
TControl

TWinControl
TForm

At each stage in the hierarchy (including several stages missed out in the above lineage)
further functionality is added to the class, making a fairly complex class with hundreds
of fields, methods and properties. Before any further controls are added to a form it has a 1116
byte InstanceSize.

The Lazarus Designer is a tool specifically crafted for working with the class and the
controls it can contain. Every GUI project has at least one form (the main form) which by default
is shown in the Designer when Lazarus first starts. As controls are dragged from the Palette and
dropped on the form in the Designer, so appropriate code is added to the main form unit,
expanding the form declaration; and the form definition file (unitname.lfm) is continuously
updated with details of the property and event values for each control the form currently
contains.
The form declaration Lazarus writes in the main form file is always a direct descendant of

(never itself). For instance, the default form type is called declared as

Likewise the form variable by default is called Form1, and it is of type (not of type).
The form type is best renamed to TMainForm or something more appropriate.
Lazarus keeps track of form naming in a way it does not track other type names.

TForm

TForm

TForm

TForm TForm TForm1,

Tform1 TForm

type TForm1 = class(TForm)
 end;

Chapter 14 COMPONENT CONTAINERS

157

Learn to program using Lazarus

If you rename the form from Form1 to frmMain, Lazarus will not only rename the form instance
to frmMain, but it will also rename the type of the form variable to TfrmMain, both in the
declaration of the class, and in the declaration of the global form variable. (This automatic type
renaming does not happen as a result of any other manual variable renaming). At the same time the
IDE resets the form's Caption to the new name of the form class variable, so the Designer title
bar also reads frmMain. This is correct, because of course the form instance you see depicted in
the Designer is indeed frmMain.

Every GUI program must have at least one window (usually referred to as the main window).
Closing the main window terminates the GUI program. Among the many TForm events is the
OnCloseQuery event which provides a var boolean CanClose parameter which makes it
straightforward to program a check that the user really does want to close the window (which
will close the program if it is the main window).
The LCL automatically shows the main window of a GUI application. Recall that the main
program file of a default new GUI project has a program block that looks like this:

14.b Creating new forms

If you need to create second or further forms beyond the main form, you can do this manually
in code:

Note that the Application instance needs to be made the Owner of the form in order for it to be
freed correctly at the end of the program.
However, beginners are better advised to let Lazarus manage the creation of forms
automatically. If you are writing an accounts program that needs a customer list window and a
supplier list window and an invoicing window, you would use the main menu File | New
Form command to create each form. In your accounts project if you choose Project | Project
Options … ([Shift][Ctrl][F11]) and under Project Options in the treeview on the left click on
Forms, you will see a dialog listing the forms auto-created by Lazarus (see Figure 14.1).
The checkbox on this page, When creating new forms add them to auto-created forms is checked by
default, and it is best to leave it that way until you have gained more experience as a
programmer.

begin
 RequireDerivedFormResource := True;
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

The last statement in this program is a call to the Application.Run method which can be
written in pseudo-code like this:

procedure Application.Run;
begin

 ShowMainForm; // this is Form1 in newly opened default project
 RunMainMessageLoop;
end;

var extraForm: TExtraForm;
begin
 extraForm:= TExtraForm.Create(Application);
 . . .
end;

Chapter 14 COMPONENT CONTAINERS

158

Learn to program using Lazarus

If you have lots of forms in your project you probably do not want them all auto-created (since
that ties up a great deal of memory throughout the life of your program), and you might prefer to
create needed forms on demand, and free them immediately after use. In this case you would
move one or more of the forms from the Auto-create forms listbox on the left of this dialog page
to the Available forms listbox on the right of the dialog. You would then write code to Create,

Show (or ShowModal), Close and Free the forms as appropriate. Section d of this chapter gives
an example of on-the-fly form creation code.

The forms listed in this Options for Project dialog correspond to the Application.FormCreate()
statements that Lazarus has written in the main project file, account.lpr. In the case of the
accounts program just cited, the main program block written by Lazarus would look something
like:

begin
 RequireDerivedFormResource := True;
 Application.Initialize;
 Application.CreateForm(TmainAccountsForm, mainAccountsForm);
 Application.CreateForm(TcustomerList, customerList);
 Application.CreateForm(TsupplierList, supplierList);
 Application.CreateForm(TinvoiceForm, invoiceForm);
 Application.Run;
end.

Figure 14.1 The Forms page of the Project Options dialog

Chapter 14 COMPONENT CONTAINERS

159

Learn to program using Lazarus

14.c Ownership and Parentage
The component containers on which you can drop controls in Lazarus (whether forms, frames, or
lighter-weight components such as TPanel and TDataModule) all share in a scheme designed to
ensure correct display of their child controls, and the correct automatic freeing of any child
instances when the container is itself freed. To participate in this scheme two properties of the
child control have to be set: Owner and Parent.
The child control's Owner is fully responsible for freeing the child instance. It is an error to
attempt to free such a control manually. All containers of controls maintain a Components[]

array listing their owned components, which can be queried by the programmer (and which is
enumerated automatically just before the container is itself destroyed to free all its children).
When any TComponent descendant is created its owning control is passed as a parameter to the
constructor. (You can pass nil as Owner parameter if you do not want to participate in the automatic
freeing scheme). Any Palette control dropped onto a container component in the Designer
automatically has its Owner set to the containing form (or frame) by Lazarus.

If you need a date to be entered, you can use the TDateEdit control (located on the
Misc Palette page). This has a button which when clicked pops up a calendar for date selection.
However, there are situations where three separate edits for entering day, month and year data
are preferable. This short project provides this.
Create a new GUI project named test_dateform.lpi, with a form unit named maintest.pas.

Create a further form (File | New Form) and save this as dateform.pas. Set the form's properties
as follows:

TdateForm
Caption Date entry
Height 180
Name dateForm
Width 220

The child control's Parent is responsible for correct display of the child instance. Only
TWinControl descendants can correctly display child components, and all such parents of other
controls maintain a Controls[] array listing the child controls that are displayed on them.
Parents are hooked into the system's window management and message-event system, and
hence are in a position to relay system information such as Repaint messages to their children.
Any visual Palette control dropped onto a container component in the Designer automatically
has its Parent set to that display container by Lazarus.
For dropped controls the Owner is often identical to the Parent, being the form the control was
dropped onto. However, where containing components such as panels or groupboxes have
controls dropped onto them, the child controls will have the underlying form as their Owner,
but the panel or groupbox as their Parent.

If you construct visual controls in code you are reminded about their need for an Owner through
the required parameter in the call to the constructor. There is no such prompt for setting a
manually constructed visual control's Parent property. If you forget to set it appropriately your
newly constructed component will not be seen. In Delphi it may be required to set the Parent

as the first property assignment after creation for correct display. There is no such requirement
in Lazarus. In fact it is more efficient to make the Parent property the very last property
assignment before the control is displayed.

14.d Programmatic form creation
The following short program gives an example of one way to solicit data from a user using a
modal dialog, i.e. a dialog to which the user must respond before she can proceed with further
program tasks. It is often the case that you need a user to enter a specific data item. A small
dialog customised for this purpose can save you rewriting the same sort of routine over and
over again.

Chapter 14 COMPONENT CONTAINERS

160

Learn to program using Lazarus

Onto the dateform drop a TButtonPanel (accepting the default name), three labels and three
spinedits. Set their properties as follows, so the resulting design looks like Figure 14.2:

TButtonPanel
ShowButtons [pbOK, pbCancel]
ButtonOrder boCloseCancelOK

TLabel
Caption Day Month Year
Left 45 45 45
Name LDay LMonth LYear
Top 20 60 100

TSpinEdit
Left 120 120 105
Name seDay seMonth seYear
MaxValue 31 12 9999
MinValue 1 1 1
TabOrder 0 1 2
Top 16 56 96
Width 50 50 65

To the dateform unit add a global boolean function named GetDate, generate an
implementation skeleton for it, and add dateUtils to the uses clause so that the completed
unit looks as follows (the exact order of controls in the TdateForm class is immaterial):

Figure 14.2 Designing a modal dialog

Chapter 14 COMPONENT CONTAINERS

161

Learn to program using Lazarus

unit dateform;

{$mode objfpc}{$H+}

interface

uses
 SysUtils, Forms, Controls, ButtonPanel, Spin, StdCtrls, dateUtils;

type

 TdateForm = class(TForm)
 ButtonPanel1: TButtonPanel;
 LDay: TLabel;
 LMonth: TLabel;
 LYear: TLabel;
 seDay: TSpinEdit;
 seMonth: TSpinEdit;
 seYear: TSpinEdit;
 end;

function GetDate(var dt: TDateTime): boolean;

implementation

function GetDate(var dt: TDateTime): boolean;
var frm: TdateForm;
 d, m, y: word;
begin
 frm:= TdateForm.Create(nil);
 try
 if dt = 0 then dt := Now;
 DecodeDate(dt, y, m, d);
 frm.seYear.Value:= y;
 frm.seMonth.Value:= m;
 frm.seDay.Value:= d;
 if (frm.ShowModal=mrOK) then
 begin
 y:= frm.seYear.Value;
 m:= frm.seMonth.Value;
 d:= frm.seDay.Value;
 case IsValidDate(y, m, d) of
 False: Result:= False;
 else
 dt:= EncodeDate(y, m, d);
 Result:= True;
 end;
 end
 else Result:= False;
 finally
 frm.Free;
 end;
end;

{$R *.lfm}

end.

Chapter 14 COMPONENT CONTAINERS

162

Learn to program using Lazarus

The global GetDate() function is responsible for creating an instance of TdateForm, showing it
via ShowModal, and freeing it using a construct. Data acquisition is
through the Value property of three spinedit controls, which are set initially according to the
value of the date passed as a var parameter to the GetDate() function. An invalid date, or
cancelling the dialog both set the function's result value to False. If the function returns True
you know the var date parameter passed back is a valid, user-accepted date.

To make the maintest unit a suitable test-bed for this date dialog, add dateform to its uses
clause (use the [Alt][F11] shortcut for this), drop a button on the form, generate an OnClick

handler for the button and complete this handler as follows:

try... finally... end

procedure TForm1.Button1Click(Sender: TObject);
var d: TDateTime=0;
begin
 if GetDate(d) then
 ShowMessageFmt('The date obtained via GetDate() was %s',
 [FormatDateTime('dd/mm/yyyy', d)])
 else ShowMessage('The date entry dialog was cancelled '+
 'or an invalid date was entered');
end;

Compile and run this program to check its UI and its manner of working.
You can adapt the scheme illustrated in dateform.pas to construct simple modal dialogs,
called by a global function with a var data parameter, for getting validated user input about all
manner of data.

14.e TGroupBox, TPanel
A bevel can be used to 'contain' other controls in the sense of providing an enclosing visual
frame for them. However, TGroupBox and TPanel are containers in the full sense: they parent
their contained controls, and if you drop a label, say, on a TPanel or TGroupBox you can drag it
around the panel, but you cannot drag it off the panel (try doing this to see what happens).
Well, actually once dropped on a panel or groupbox you can drag a component off it. However,
doing so does not move it to a part of the form outside the panel or groupbox. It seems to have
disappeared, because it is drawn by its parent panel or groupbox, and all such drawing is
clipped at the borders of the parent control. The only way to 'retrieve' such an unseen control is
to select it in the OI treeview, and reset its Left and Top properties so as to bring it back inside
its Parent.

Note that the Left and Top properties of contained (child) controls are given relative to their
parent container control, which may not be the form.
The TRadioGroup and TCheckGroup controls are both based on a TGroupBox control. In one case
the control contains a group of TRadioButton controls, and in the other case it groups
TCheckBox controls. You may use TCheckBox controls singly on occasion (outside of a group box),
but it never makes sense to use a single TRadioButton, so you will nearly always use the
TRadioGroup control when radio button functionality is needed, rather than several individual
radio buttons.
The TGroupBox border is rather inflexible in its appearance, always expecting a text Caption.

If this is set to an empty string the upper border is still drawn halfway down the nonexistent
text, giving an asymmetry with the bordering perimeter which means it can only sensibly be
used with a non-blank Caption.

The TPanel by contrast is more versatile, not having a Caption drawn as part of its border – the
Caption (which can be blank) is drawn by default in the centre of the control.

Chapter 14 COMPONENT CONTAINERS

163

Learn to program using Lazarus

The Caption is always centred vertically, but can be left-justified or right-justified to move it

away from the horizontal centre. It can be used with or without a border.
If you want a completely border-less panel, then you will discover that setting BorderStyle to
bsNone alone is not sufficient (which is rather counter-intuitive). You also have to set both
BevelInner and BevelOuter to bvNone. However, panels are more commonly used with

borders, and they are excellent controls to use to group other controls in sections on a form.
Judicious use of the Align property of adjacent panels enables all manner of rectangular layouts
to be set up without needing any code at all. The best way to learn about this is to experiment
with three or four panels on a form and to try setting their Align properties to various
combinations of alNone (the default for a panel newly dropped in the Designer), alTop, alBottom,
alLeft, alRight and alClient. The last value means that the panel will occupy whatever

space remains on the form. Figure 14.3 is an illustration of a layout that can be set up with
panels in the Designer and OI in a couple of minutes without any coding at all.

14.f Resizeable children
More sophisticated layouts can also be designed without code using the Anchors property
provided for each visual component. The Anchor Editor is accessed either by right-clicking a
component in the Designer and choosing Anchor Editor, or by pressing the […] ellipsis button
beside the Anchors property in the OI. It is fun to explore the effects of this surprisingly
powerful editor for yourself.
If you are happy to write code, the Anchors and AnchorSide properties are available for
assignment, and there are several AnchorXXX methods also available for positioning controls in
differing layouts if code-free OI settings using the Anchors and ChildSizing properties do not
achieve the layout you desire.
If you need a container of two controls (number one and number two) whose relative sizes are to
be user controlled, the TSplitter found on the Additional Palette page is the visual separator
you are looking for. This is made to stick to one edge of control number one (whose Align is set
to one of alTop, alBottom, alLeft or alRight) by having its Align set to the same value.
The adjacent control (number two) is made resizeable by having its Align set to alClient.
The user can drag the splitter (which sports a small 'grip' of dots along its centre) to resize these
adjacent controls.
Here is a short program example demonstrating how this same effect can be achieved in code,
rather than via property setting in the OI.
Create a new GUI project and name the main form unit main_anchoring.pas. Generate an
OnCreate event handler for the form, and complete it so the unit looks like the following (it will
need ExtCtrls and StdCtrls in the uses clause for the memos and splitter that are created).

Figure 14.3 A form of panel controls set up using the Designer/OI without writing any code

Chapter 14 COMPONENT CONTAINERS

164

Learn to program using Lazarus

unit main_anchoring;

{$mode objfpc}{$H+}
interface
uses Classes, Forms, Controls, StdCtrls, ExtCtrls;
type TForm1 = class(TForm)
 procedure FormCreate(Sender: TObject);
 end;
var Form1: TForm1;

implementation

{$R *.lfm}
procedure TForm1.FormCreate(Sender: TObject);
var
 Memo1, Memo2: TMemo;
 splitter: TSplitter;
 sl: TStringList;
begin
 Height:=140;
 sl:= TStringList.Create;
 try
 sl.CommaText:='Memo1 line2 line3 line4 line5';
 Memo1:=TMemo.Create(Self);
 with Memo1 do
 begin
 Lines.AddStrings(sl);
 Align:=alLeft;
 Parent:=Self;
 end;
 splitter:=TSplitter.Create(Self);
 with splitter do
 begin
 Align:=alNone;
 Left:=120;
 Parent:=Self;
 AnchorParallel(akBottom,0,Parent);
 end;
 Memo1.AnchorToNeighbour(akRight,0,splitter);
 sl.Clear;
 sl.CommaText:='"Memo 2","2nd added line","3rd added line",'+
 '"4th added line","5th added line"';
 Memo2:=TMemo.Create(Self);
 with Memo2 do
 begin
 Align:=alRight;
 AnchorToNeighbour(akLeft,0,splitter);
 Lines.AddStrings(sl);
 Parent:=Self;
 end;
 finally
 sl.Free;
 end;
end;
end.

Chapter 14 COMPONENT CONTAINERS

165

Learn to program using Lazarus

The completed application will look something like Figure 14.4, and the two memo controls'
widths are resizeable using the central splitter. The stringlist component used to populate the
two memos is considered in the next chapter.

14.g TFrame
A frame is a further component container similar in many ways to a form (i.e. a window).
However, you can only have one form per unit, whereas you can have more than one frame per
form.
A principal use of frames is to give a multi-window application a consistent look from window
to window by using the same frame in different windows to place exactly the same components
in exactly the same relative positions with exactly the same shared properties and methods.
A frame is a containing template that both positions contained controls in terms of layout and
sets other non-layout property values. A single frame placed on several different forms acts as a
sort of duplicator, enabling you to position components identically across several different
windows, without needing to manually construct and design each one hoping it will look
identical to the others.

There is no predefined TFrame component on the Palette. Just as you have to create a new
form using File | New Form, so you have to create any frames you use by choosing
File | New... and then picking Frame from the Module branch of the treeview in the ensuing
New... dialog. This creates a new frame named Frame1 of type TFrame1 by default, just as the
first new form is named Form1 by default.

You develop the design of Frame1 (or whatever you might rename it to) by dropping controls
onto the frame, and writing event handlers or property setting code just as you would for a
form. Lazarus provides a supporting unit for the frame (named Unit2.pas or similar by default)
just as it does for a form, and a corresponding (automatically synchronised) Unit2.lfm file where
the frame's property and event data is recorded. The newly designed frame has to be saved
before you can use it. It then becomes part of that project. Each frame requires its own unit
(which Lazarus automatically provides) since it also needs the corresponding .lfm file for its
property data.

To use the new frame after saving it, you use the Standard Palette page, choosing the frame
icon, (second from the right). Select this icon, and on clicking a form (or a panel) a Select Frame
dialog appears which lets you select a frame from the list of frames you have so far defined in
your project. The frame you select will be dropped on the form at the point where you click it,
and the frame with its components can be manipulated in the OI or in code just like any other
components on the form outside the frame.

Figure 14.4 A splitter control dividing adjacent controls contained in a form

Chapter 14 COMPONENT CONTAINERS

166

Learn to program using Lazarus

14.h TDatamodule
A datamodule is a container class you can use to centralise data access, business rules
and non-visual components in an application. You can tell from their name that datamodules
were first introduced to modularise the location of database objects.
However, a datamodule can also be a helpful container for non-database applications to group
timers, dialogs, and other non-visual components (even popup menus) that relate to the
application as a whole rather than to a specific form.
This is particularly true in multiple-form applications. Most often datamodules are used as
containers for components from the Data Access Palette page (such as TDataSource) or from the
SQLdb page (such as TSQLQuery).

Datamodules are not visible at runtime, and their visibility at design time is simply to aid
in dropping the required components within the container. Any unit can have access to the
objects in a datamodule simply by including that module in the unit's uses clause.
A datamodule behaves rather like a hidden window.
However, compared to a visual form they are helpfully lightweight containers (an empty
datamodule has an InstanceSize of just 60 bytes compared to an empty form of about 1Kb).

You create a new datamodule by selecting File | New... to open the New... dialog, and then you
choose Data Module from the list under the Module branch of the dialog's treeview. Non-visual
components are dropped on a datamodule in exactly the same way that they are placed on a
form or a frame.
Datamodules have just two published events (OnCreate and OnDestroy) that can be exploited
helpfully to respectively initialise and at the end of the program to clean up the non-visual
component resources your application uses.
A datamodule automatically becomes the Owner of any component dropped onto it at design
time, in an analogous way to the automatic ownership a form takes of components dropped
onto it. Consequently such contained components never need to be freed manually.
Since datamodules are invisible at runtime, and their contained components are non-visual, the
question of parentage does not arise in this case (except for menus, which are allowed).

Chapter 14 COMPONENT CONTAINERS

14.i Review Exercises
 1. Create a new project and add several new forms to it.

Use Project | Project Options... to open the Options for Project:... dialog
and navigate to its Forms page. Use the functionality here to make some forms
auto-created and some forms not. Then check the behaviour of your project at runtime.

 2. Use the form methods, Show, Close, ShowModal to duplicate in code the
behaviour of the project started in Exercise 1.

167

Learn to program using Lazarus

There are hundreds of classes declared in the FCL and LCL which GUI programmers use
whether knowingly or not, since visual controls often depend on several other classes in
addition to their named ancestor. Not all classes are created equal, however, and some are far
more important to understand than others in order to develop robust GUI programs.
This chapter looks at some of the more important classes on which the LCL design depends,
the non-visual classes that are not components (i. e. they don't descend from TComponent).

This means they can never have a place on the Component Palette ready to be dropped on a
form. Nevertheless you will use them (directly or indirectly) in all your GUI programs
alongside (even within) the visual controls you use.

15.a TPersistent descendants
All the visual (and non-visual) controls on the Palette that can be dropped on a form in the
Designer and manipulated in the OI depend on a system of meta-information called RTTI
(RunTime Type Information) for their correct runtime behaviour. The base class that introduces
this is called TPersistent. A great many classes used in Lazarus consequently descend from
TPersistent, including all components (that is, descendants of TComponent) and all TStrings

classes such as TStringList. There are two other important TPersistent descendants we need
to mention to complete this chapter's survey. They are TCollection and TCollectionItem.

The inter-relationship of a select few of the more important classes underpinning the LCL is
depicted in Figure 15.1.

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

Figure 15.1 A very limited portion of the class hierarchy supporting the LCL

TObject

TPersistentTList TStream

THashed
StringList

TText
Strings

TString
List

TStringsTCollectionTCollection
Item

TCom
ponent

168

Learn to program using Lazarus

Most controls of any complexity need to manage groups of identical elements. For instance a
grid component is made up of columns. While each column may have different display
characteristics (different widths, positions, colours, underlining and so on) the basic structural
features of each column are the same. Likewise with the selection of styles in a chart. Each style
is different, but the basic functionality of each style is the same, to be consistent across all styles.
TCollection and TCollectionItem are classes designed to manage collections of such
identically structured elements. To illustrate how these collection classes work an example
follows that uses an RTTI component, the TTIGrid.

15.b A chemical TCollection
Start a new Lazarus project named chemCollection with a main form unit named
mainChemForm.pas. In the OI name the form ChemForm. Note how Lazarus immediately
renames the form class to TChemForm. Drop a TTIGrid on the form and name it chemGrid.

For this example we will set its properties in code rather than using the OI, to demonstrate that
this is sometimes a useful alternative way of initialising controls. (For example, if the properties are
public rather than published you have to set them in code since they will not be available in the OI). The
completed project will look something like Figure 15.2.
A TCollection always needs a paired TCollectionItem. Here we will use a small class called
TElementItem which has four properties relating to a chemical element (AtomicNo, Name,
Group, Symbol) based on four correspondingly named private data fields. The properties are
implemented through direct read/write access to their associated data fields (no setter or getter
methods are needed here, since we are not interested in any side effects). This means the
TCollectionItem class needs no code in the unit's implementation section since it has no new
methods to implement.
TElementItem is declared as a descendant of TCollectionItem. Since TCollectionItem is a
descendant of TPersistent this gives it full RTTI functionality, and TElementItem's

TCollectionItem ancestry means it already knows how to work as part of a TCollection

without our needing to write any further code.
In the unit's type declaration add the declaration for TElementItem as follows:

type
 TElementItem = class(TCollectionItem)
 private
 FNumber: cardinal;
 FName: string;
 FSymbol: string;
 FGroup: string;
 published
 property AtomicNo: cardinal read FNumber write FNumber;
 property Name: string read FName write FName;
 property Symbol: string read FSymbol write FSymbol;
 property Group: string read FGroup write FGroup;
 end;

The only new idea here is the cardinal type, an unsigned integer type (since atomic numbers
cannot be negative). Although a byte would clearly be sufficient storage (even artificial elements
don't yet have atomic numbers higher than 110) the cardinal type is preferred since it is a native
type on 32-bit computers, and we no longer need to squeeze every available byte out of
memory as was required in the 1970s. TElementItem is basically a data-containing class which
has TCollectionItem functionality built in through inheritance.

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

169

Learn to program using Lazarus

Add grids to the unit's uses clause, and in the private section of the form class insert a field
called Felements of type TCollection, followed by a procedure named SetupChemGrid, and
invoke code completion to write its skeleton implementation body. This procedure will create a
TCollection instance, populate the Felements collection with a few TElementItem instances
and initialise some properties of chemGrid, the TTIGrid. The tasks carried out by
SetupChemGrid are separated into three sub-procedures to make the logic flow clear.
Here is the code to insert:

procedure TChemForm.SetupChemGrid;

 procedure AddElement(aNumber: cardinal; const aName, aSymbol,
 aGroup: string);
 var ei: TElementItem;
 begin
 ei := TElementItem(Felements.Add);
 ei.AtomicNo:= aNumber;
 ei.Name:= aName;
 ei.Symbol:= aSymbol;
 ei.Group:= aGroup;
 end;

 procedure AddElements;
 begin
 AddElement(1, 'Hydrogen', 'H', '"I"');
 AddElement(2, 'Helium', 'He', '"II"');
 AddElement(3, 'Lithium', 'Li', 'I');
 AddElement(4, 'Beryllium', 'Be', 'II');
 AddElement(5, 'Boron', 'B', 'III');
 AddElement(6, 'Carbon', 'C', 'IV');
 AddElement(7, 'Nitrogen', 'N', 'V');
 AddElement(8, 'Oxygen', 'O', 'VI');
 AddElement(9, 'Fluorine', 'F', 'VII');
 AddElement(10,'Neon', 'Ne', 'VIII');
 end;

 procedure InitialiseChemGrid;
 begin
 Self.Height:= 310;
 Self.Width:= 340;
 chemGrid.Align:= alClient;
 chemGrid.TIOptions:= chemGrid.TIOptions + [tgoStartIndexAtOne];
 chemGrid.Options:=chemGrid.Options + [goDrawFocusSelected];
 chemGrid.FixedColor:=clMoneyGreen;
 chemGrid.DefaultDrawing:=True;
 chemGrid.AutoFillColumns:=True;
 end;

begin
 Felements := TCollection.Create(TElementItem);
 AddElements;
 InitialiseChemGrid;
 chemGrid.ListObject := Felements;
end;

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

170

Learn to program using Lazarus

You will notice here two unusual aspects of working with collection classes.
Firstly you instantiate a collection by invoking its Create() constructor to which you pass a
type parameter specifying what sort of TCollectionItem class this collection will be collecting.
So here:

Felements := TCollection.Create(TElementItem);

Secondly, rather than explicitly creating each TElementItem instance with a Create call we
create each instance (for which we reuse a variable called ei) by using the owning collection's
Add method:

ei := TElementItem(Felements.Add);

Although it does not look as though there is a constructor call here, in fact there is, and
FElements.Add both instantiates a new TCollectionItem and adds it to the collection.
Because this is a general Add scheme designed for any TCollectionItem descendant we have
to cast the newly instantiated TCollectionItem returned by the Add() call as a TElementItem.
When should we call SetupChemGrid? At the very start of the program, once the main form is
instantiated. In other words we use the form's OnCreate event handler to call this setup routine.
In the OI, with chemForm selected, click the Events tab, and double-click beside OnCreate to get
Lazarus to generate the event handler. Complete it with the simple call:

procedure TChemForm.FormCreate(Sender: TObject);
begin
 SetupChemGrid;
end;

One last consideration. In SetupChemGrid we called a TCollection constructor, instantiating a
new collection. What happens to that collection instance in memory at the end of the program?
If we don't free the memory, nothing else will. It will remain orphaned, out of reach and
unusable by any other program. This is a very common bug: forgetting to free memory we have
allocated which leads to memory 'leaks' (as they are called). Actually leak is not a very suitable
term here, because although the computer will behave as if its memory were leaking away in
fact what the memory has is not a leak but constipation! A build up of inaccessible garbage in
memory that is not being disposed of or thrown away.
It is simple enough to deallocate the memory allocated in the Felements constructor.
In the OI's Events tab double-click next to OnDestroy to create an event handler that will be
invoked just before the form is destroyed. Complete it as follows:

procedure TChemForm.FormDestroy(Sender: TObject);
begin
 Felements.Free;
end;

Why do we not need to also free all the TElementItem instances we created? Because the
collection instance, Felements, frees everything in its collection when it is itself freed. That is
part of the TCollectionItem functionality we inherited when we declared TElementItem as a
TCollectionItem descendant. The RTL classes come with a great deal of intelligence built in to
them already. We are benefiting from the experience of a team of skilled programmers who
have walked this way before us. Which is why we will nearly always do better to seek a
solution within the RTL/FCL/LCL than try to reinvent such wheels ourselves.
Studying the source code is one of the best ways to learn about this. So users of open source
development tools are better off than programmers who struggle with closed source
proprietary development software and libraries, which always remain unknowable 'black
boxes' (unless fees are paid for access to the source, and NDAs are signed when you hand the money
over).

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

171

Learn to program using Lazarus

15.c The TStringList class
Tlist, depicted in the class hierarchy diagram shown in Section a (see Figure 15.1), is a class
maintaining a list of pointers. It is a sort of model for a number of similar list classes which offer
methods with identical (or analogous) names such as Add, Assign, Clear, Delete, Insert;
and similar properties such as Capacity, Count and a default array property (Items[] for
TList, Strings[] for TStringList). All these list classes have a zero-based default array
property for easy access to the principal data contained in the list.

Added to which, FPC and Lazarus users can get bugs fixed often within days, and submit
patches themselves to address problems they encounter. This usually makes for a far quicker
response from the developers than you find with many commercial software vendors.
Nothing is guaranteed, of course. Actually that is true in both scenarios.
You cannot buy bug-free software, and “more expensive” does not necessarily equate to “has
fewer bugs”. You can only try to make your software as stable and bug-free as possible.
People who claim their software is absolutely bug-free are self-deluded. All that can be claimed
(if it is actually true) is that all presently-known bugs have been fixed.
If you compile and run the chemCollection project you should see a grid presenting the first
few elements of the Periodic Table. Through the 'magic' of RTTI and use of TPersistent

descendants as classes the TTIGrid has taken the Felements collection and
• determined that each item has four properties
• constructed a grid to display those four properties
• added a row for each item in the collection
• arranged the columns in alphabetical order by property name
• numbered each item according to its row
We achieved this with less than 100 lines of our own code. You can look at the source for
TPersistent and TTIGrid to see how much other code is also required to produce these effects!

Figure 15.2 Viewing a chemical TCollection

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

172

Learn to program using Lazarus

There are four session options, of which only one can be active. This is exactly the situation
where radio button choices are ideally suited. Internally the labels for each choice are stored
in a stringlist. These session choices are Project options (not IDE options affecting the whole IDE
environment) so you can set different options here for each project you write, if you wish.

15.d Sorting lines in a text file
Unlike its ancestor TStrings, a TStringList provides storage for the strings it contains
(in a special array that can contain a theoretical maximum of 134,217,728 strings), and it adds methods
to sort its strings and to find a particular string. TStrings itself is a surprisingly capable class
able to save and read strings from disk files, associate any arbitrary TObject with each string,
and provide specialised handling of two types of structured text: text where each line is of the
form name = value, and text where each line is a series of comma-separated phrases.
The following example illustrates some of TStringList's capabilities in a short application,
included so that you can extend the ideas here more usefully. The project analyses text, reporting
both the word count, and the count of unique words.

Begin a new Lazarus project called slistexample, with a main form unit called slistform.pas.

Add a const declaration between the uses and type sections:
const specimen: string = 'Enter by the narrow gate; for the wide gate has a '+
'broad road which leads to destruction and there are many people going that '+
'way. The narrow gate and the hard road lead to life and only a few find it.';

The first pointer in a TList named aList is aList[0] and the last pointer is aList[Count–1].
The first string in a stringlist named sList is sList[0], and the last string in the stringlist is
sList[Count–1]. There are numerous such correspondences between list classes in the Lazarus
libraries, so getting familiar with the methods and properties of one class means you will know
a good deal about many of the similarly-named methods and properties of the other list classes.
TStringList is one of the most widely used RTL classes used in LCL components.

It is not a visual control (so not available on the Palette); nevertheless it is one of the
fundamental classes you need to become familiar with in order to use Lazarus effectively. It is a
direct descendant of the TStrings class, which is an abstract class, designed to manage and
manipulate a list of strings without actually implementing any storage for them.
An abstract class is a class which should not have any actual instances but rather is designed as
the immediate ancestor for a family of more specialised related classes. For instance, the TMemo

component uses a TStrings descendant very similar to a TStringList to implement its Lines

property. So you will not be surprised to know that the first line in a memo1 is memo1.Lines[0],

and the last line is memo1.Lines[Count-1]. A listbox also uses a TStrings descendant for its
Items. Another example of the use of string lists in the LCL is the TRadioGroup control. If you

drop such a control on a form it is initially empty. The radio buttons are added as Items in the

OI. Initially the Items stringlist is empty (Items.Count is zero), and new items are added as
new text lines are typed in the OI Strings Editor. In the Project Options dialog (Project | Project
Options...) the Session page includes a setting for session storage (see Figure 15.3).

Figure 15.3 A radio group used in the IDE

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

173

Learn to program using Lazarus

Set the form's properties as follows:

Caption Stringlist example
Height 320
Width 480

Drop a label on the form, and set its properties as follows:

Left 10
Name LCount
Top 10

Drop a listbox on the form, and set its properties as follows:

Align alBottom
Columns 4
Height 200
Left 10
Name LBWords

Figure 15.3 Stringlist example in the Designer

Drop a memo on the form above the listbox, and set its properties as follows:

Align alBottom
Height 80
Left 10
Name Mdisplay

The form should look something like Figure 15.3.

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

174

Learn to program using Lazarus

Double-click the form to create an OnCreate handler and fill out the skeleton routine thus:

procedure TForm1.FormCreate(Sender: TObject);
var sl, noDuplicates: TStringList;
 j: integer;
begin
 MDisplay.Text:= specimen;
 sl := TStringList.Create;
 noDuplicates := TStringList.Create;
 try
 sl.CommaText:= specimen;
 sl.Sort;
 for j := 0 to sl.Count-1 do
 if (noDuplicates.IndexOf(sl[j]) < 0)
 then noDuplicates.Add(sl[j]);
 LBWords.Items.AddStrings(noDuplicates);
 LCount.Caption:=
 Format('Specimen text has %d words of which %d are unique',
 [sl.Count, noDuplicates.Count]);
 finally
 sl.Free;
 noDuplicates.Free;
 end;
end;

Compile and run this project, and see the instantaneous parsing undertaken by the two
stringlist instances. Here we have used two stringlists. The first one, sl, has its CommaText

property set to the specimen text. (Note that on some OSs the Listbox's Columns property has no
effect, since the native widget does not implement this functionality).

By default TStringList treats the space character ' ' as a separator (delimiter) and the
assignment of specimen to CommaText causes the stringlist to parse the assigned text at each

separator adding each parsed phrase to the list of strings. The value of the separator recognised
for this process can be changed using the (Char) Delimiter and (boolean) StrictDelimiter

properties. TStringList has a convenient Sort method we can call. An equivalent would be to
use the Sorted property, setting it to True.

The second stringlist, noDuplicates, is used to filter out any duplicate entries in sl.
After creation noDuplicates is an empty list. We step through each string in sl,
and provided it is absent from noDuplicates we add it. If it is already present it is not added
again. This test is performed using the IndexOf() method which returns a positive index value
for a string's position in the list if it is present, and -1 if the string is absent.

The resulting stringlist of unique strings is copied to the listbox's Items property using the
AddStrings() method. This takes a single TStrings parameter. Since noDuplicates is a
TStringList it is also a TStrings, so is assignment-compatible with the required parameter.
The block ensures that the memory required to instantiate the two
string lists is freed correctly after use, even if something goes wrong.

try...finally...end

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

175

Learn to program using Lazarus

15.e Streams
TStream (depicted above in the class hierarchy in Figure 15.1) is FPC's object oriented encapsulation
of a general sequences of bytes. The TStream class descendants cater for a large variety of
sequential data such as files, areas of memory, program resources, strings, database BLOB
fields, sockets and named pipes.

A stream is a useful abstraction when dealing with sequential data storage and the
movement of that data to and from its storage. The idea behind a stream is that you are moving
along the data while you read it, so a stream is based on the idea of a flow of items being
handled in sequence. A stream can contain any data, in any order. Streams are often designed
to handle fixed-sized data units (since this makes for simpler programming), however they are not
in any way restricted to containing fixed-size data as dynamic arrays are.

Streams are 'indexed' only in terms of numbered bytes, whereas dynamic arrays are
indexed according to the size of the base type of the array. A stream can grow in memory up to
the size of memory available on the computer running the stream program, which is usually a
very high capacity value on today's computers.
Tstream is an abstract class, meaning it has no actual implementation (so you cannot create an
instance of TStream). Rather, TStream specifies a programming interface and is designed solely
as a parent for actual implementations such as TFileStream (which encapsulates reading and
writing operations on files). TStream declares generic methods and two properties that are
implemented in descendant classes, and it uses exceptions (not run-time errors) for handling
errors. TStream and most of its descendants are declared in the Classes unit of the RTL.

TStream's two properties are:
• Position
• Size

Position denotes the current location in the stream where Read or Write operations will be
executed. Size denotes the current stream size in bytes. If you write additional data at the end
of the stream, the stream grows and Size increases accordingly.

Note that some stream descendants (e.g. pipes and compressed/decompressed streams) lack
these two properties since they are not applicable to all streams.
TStream's principal methods are CopyFrom, Read, Seek and Write. As you would expect
CopyFrom is used to copy data from one stream to another. Read reads data from the stream,
starting at Position. Seek is used to change the Position. Write writes data to the stream
starting at Position. Stream syntax is particularly simple and elegant.

A big advantage in working with streams rather than traditional Pascal file routines is that
any stream descendant can be passed as a TStream parameter to routines that utilise streams,
giving very versatile interoperability. Of course the calling routine has to pass the correct type
of TStream descendant (just as routines passing TStrings parameters need to pass the correct
TStrings descendant). In fact many LCL components and FCL classes have a SaveToStream()

or LoadFromStream() method, so understanding TStream is as essential as understanding
TStrings if you are going to exploit the full functionality of these libraries in your own code.

Streams were introduced into Object Pascal partly to aid in storing class data, and restoring
a newly created class instance to the state in which it was last saved (i.e. with all its properties set
to their correct values). Consequently TStream has several component-related methods such as
ReadComponent() and WriteComponent() which are a specific and perhaps surprising
capability that all RTL streams inherit. In fact all TComponent descendants have the built-in
capability to stream themselves to and from data storage.

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

176

Learn to program using Lazarus

15.f TFileStream
To create a file stream you need to supply two parameters for the Create() constructor: the
name of the file, and a flag indicating the file mode.
Possible values for the file mode parameter are:

fmOpenRead

fmOpenWrite

fmOpenReadWrite

• and five further share modes.

We give here a simple file copying example program utilising TFileStream showing how to
copy any file to the same directory as the original with “Copy of” prepended to the filename
(optionally setting the copied file's date to the original file's date).

Start a new Lazarus project named filecopy with a main form unit named maincopy.
Set the form's Caption to File copying using streams, and its Width to 680. Drop a label,
lblCopyFrom in the top left-hand corner of the form, with its Caption set to Copy from file:,

and drop beside it a TFileNameEdit named edtCopyFrom setting its Width to 515.

Below the first label drop another label named lblCopyToFile with its Caption set to File
will be copied to:, and below that label drop a TCheckBox named cbDate with its Caption
set to Copy original file''s date stamp. Complete the GUI with a button named btnCopy,
with its Caption set to Copy file.
Delete the form's public section, and add the following fields and method to the private

section of the TForm1 class declaration:

private
 SourceFileName: string;
 CopiedFileName: string;
 procedure CopyFile(sourceName, destinationName: string;
 copyDateToo: boolean);
end;

•
•
•

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

177

Learn to program using Lazarus

Generate event handlers for the button's OnClick event, and the FileNameEdit's
OnAcceptFilename event. Press [Shift][Ctrl][C] on the appropriate line to generate the skeleton
for CopyFile. Complete these three methods as follows:

procedure TForm1.edtCopyFromAcceptFileName(Sender: TObject; var Value: String);
var path, fName: string;
begin
 if (Value = EmptyStr) then Exit;
 path := ExtractFilePath(Value);
 fName:= ExtractFileName(Value);
 copiedFileName:= path + 'Copy of ' + fName;
 case FileExistsUTF8(copiedFileName) of
 False: begin
 lblCopyToFile.Caption := 'File will be copied to: '+
 copiedFileName;
 btnCopy.Enabled:= True;
 SourceFileName:= Value;
 end;
 True : case QuestionDlg('Warning', copiedFileName + ' already exists'
 +sLineBreak+'Overwrite existing file?', mtWarning,
 [mrYes,'Overwrite file', mrNo,'Cancel file copy'],0) of
 mrYes: begin
 lblCopyToFile.Caption := 'File will be copied to: '
 + copiedFileName;
 btnCopy.Enabled:= True;
 SourceFileName:= Value;
 end;
 else begin
 Value:= EmptyStr;
 btnCopy.Enabled:= False;
 SourceFileName:= EmptyStr;
 CopiedFileName:= EmptyStr;
 end;
 end;
 end;
end;

procedure TForm1.btnCopyClick(Sender: TObject);
var append: string;
begin
 CopyFile(SourceFileName, CopiedFileName, cbDate.Checked);
 btnCopy.Enabled:=False;
 edtCopyFrom.Text:= EmptyStr;
 case cbDate.Checked of
 False: append := ' created with current date';
 True: append := ' created with original date';
 end;
 lblCopyToFile.Caption:= CopiedFileName + append;
end;

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

178

Learn to program using Lazarus

procedure TForm1.CopyFile(sourceName, destinationName: string;
 copyDateToo: boolean);
var src: TFileStream = nil;
 dest: TFileStream = nil;
begin
 if SameText(sourceName, destinationName) then Exit;
 src := TFileStream.Create(UTF8ToSys(sourceName), fmOpenRead);
 try
 dest := TFileStream.Create(UTF8ToSys(destinationName),
 fmOpenWrite or fmCreate);
 try
 dest.CopyFrom(src, src.Size);
 if CopyDateToo
 then FileSetDate(dest.Handle, FileGetDate(src.Handle));
 finally
 dest.Free;
 end
 finally
 src.Free;
 end;
end;

The CopyFile procedure uses TFileStream.Create, and TFileStream.CopyFrom to perform
the actual file copy. The button OnClick procedure calls CopyFile, disables the Copy file
button, clears the edit field of the TFileNameEdit for subsequent use, and reports on the result
of the current copy operation.
The AcceptFilename event of the TFileNameEdit checks for an existing file of the same name
as the about-to-be-created file copy, and proceeds accordingly, on the basis of user input if the
filename to be used does indeed exist. User input is solicited, if necessary,
using the QuestionDlg() function, one of several user-input dialogs found in the dialogs unit
(which is one of the units Lazarus adds automatically to every new GUI project).

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

179

Learn to program using Lazarus

15.g TMemoryStream, TStringStream and Blowfish
We conclude this chapter with an example that uses a memory stream to hold a variable
number of randomly generated records. The stream can be saved to and restored from a disk
file, and the program's UI is designed so you can move along the stream, backwards and
forwards, examining individual records in the context of the surrounding records.
The application introduces two LCL components we have not used so far
(TUpDown, and TTrackBar) and also shows slightly more sophisticated use of some formatting
functions to display string and date/time data clearly.

The example uses a TMemoryStream-derived class named TdemoStream, rather than a plain
TMemoryStream. This is to illustrate how even such a simple class as TdemoStream can be a
useful encapsulation of code and data.
The stream used in this demonstration is a stream of fixed-size records, since having fixed-size
records makes navigating up and down the stream very straightforward.

These records are associated only with this stream, and because the stream handles no
other kinds of data it makes sense in this application to wrap the record definition and record-
data display code within the derived memory stream class. For this reason we declare the
record definition and new memory stream class in a unit of their own, separate from the main
form unit. The main form unit then refers to the stream unit in its uses clause.

This example also exercises the encrypting/decrypting streams provided in the FCL
which are based on the public domain Blowfish algorithm. The application of Blowfish here is
completely pointless except to illustrate one way to program string and cipher streams
(see Figure 15.4).

Start a new Lazarus project named stream_visualise, with a main form unit named
main_stream. Via File | New Unit generate a new unit for the project named demo_stream.

You'll see that Lazarus gives a non-form unit a uses clause with only two units in it: Classes
and SysUtils. Of course it may happen that you don't need anything from either of these units,
but in our case we will use both of them, so can happily accept this default uses clause.
The memory stream we shall employ will hold record entries of a type named TdemoRec which
for demonstration purposes consists of a character, an integer, a shortstring, and a TDateTime
value. In the virgin demo_stream unit, declare these types first, as follows:

These two types are used by our TMemoryStream descendant class, named TdemoStream whose
declaration follows. It is very little different from a basic TMemoryStream class, but has a new
constructor, which takes a parameter specifying how many new records to insert in the newly
created stream. It has a private helper function used by this constructor, and also a public

string function used to display an individual record in the stream.

type
 Ts20 = string[20];

 TdemoRec = record
 aChar: Char;
 anInt: integer;
 aString: Ts20;
 aDate: TDateTime;
 end;

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

180

Learn to program using Lazarus

There is also a public rec field which will hold the record at the current stream's Position

(if there is one). This is declared as a field rather than a property since it is merely used as a
placeholder for data. We could have declared a Rec property with setter and getter methods
that always reflected the contents of the record at the current Position, but this is not needed
in this application, so we went for a simpler implementation with fewer lines of code.

TdemoStream = class(TMemoryStream)
 private
 function GenerateRandomRec(num: integer): TdemoRec;
 public
 rec: TdemoRec;
 constructor Create(numRecords: integer);
 function RecAsString: string;
 end;

In the implementation section add uses math; and then use Code Completion to generate the
method skeletons required for the TdemoStream class. Complete them as follows:

function TdemoStream.GenerateRandomRec(num: integer): TdemoRec;
begin
 Result.aChar:= Chr(65 + Random(26));
 Result.aDate:= TDateTime(RandomRange(100, trunc(Now)) + Random/10000);
 Result.anInt:= num;
 Result.aString:= Format('example string %d',[num]);
end;

constructor TdemoStream.Create(numRecords: integer);
var i: integer;
begin
 Randomize;
 inherited Create;
 Position:= 0;
 for i := 0 to numRecords-1 do
 Write(GenerateRandomRec(i), SizeOf(TdemoRec));
end;

function TdemoStream.RecAsString: string;
begin
 Read(rec, SizeOf(rec));
 Result := Format('%5d %s %17s %s',
 [rec.anInt, rec.aChar, rec.aString,
 FormatDateTime('dd-mm-yyyy:mm:ss',rec.aDate)]);
end;

The constructor initialises the FPC random number generator by calling Randomize, and then
calls the inherited TMemoryStream constructor to instantiate a new instance of this class. It then
proceeds to write to the newly created stream the specified number of TdemoRec records with
data suitably supplied for each record via a call to GenerateRandomRec().

The RecAsString: string function reads a record from the stream (at the current Position)

and formats this composite char-integer-string-date record as a single string for display.
Note that after each Read operation required to produce RecAsString that the stream Position

is advanced automatically ready to read the subsequent record. Streams therefore don't need a
manual Seek following a Read. This completes the TdemoStream declaration and
implementation, so we can move on to the program's GUI.
How can we best visualise a stream of records?

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

181

Learn to program using Lazarus

15.h Visualising a stream
The remaining work is to build a GUI to exercise the stream class we have just written.
The finished application will look something like Figure 15.4.
Start building the GUI by setting the main form's properties thus:

Caption Visualising a stream of records
Height 670
Width 700

Drop a TTrackBar on the form, setting its properties as follows:

Align alTop
Name tbPosition
TabStop False

Below the trackbar drop three labels. The leftmost label, lblOrigin has its Caption set to 0,
and has its top anchored to the trackbar. Open the Anchors Editor by clicking the […] ellipsis
button next to the Anchors property in the OI to set this (in the Top Anchoring groupbox choose
tbPosition in the drop-down list, and click the middle of the three buttons to set the label's anchoring
to the bottom side of the trackbar).

The centre label, lblPositionDesc has its Caption set to < the trackbar pointer above
illustrates the stream's Position between origin and Size >.
The rightmost label, lblStreamSize, is anchored to the bottom of the trackbar, and to the right
edge of the form. Its Alignment is set to taRightJustify, and it has an empty Caption.

Below the labels drop an edit named edtRecord, and when you set its AutoSize property to
False you can stretch it to fit the window. Set its Alignment property to taCenter.

Below the edit drop a memo, and set its properties as follows:

Font (set to a mono-spaced typeface such as Courier)
Height 300
HideSelection False
Name memoDisplay
ScrollBars ssAutoBoth
Width 450

In the section to the right of memoDisplay drop a label named lblAdjustPosition with the
Caption set to Show previous/next record, and beside it drop a TUpDown named udMover

with its Orientation set to udHorizontal.

With the TUpDown selected, on the Events page of the OI double-click beside the OnClick event
to generate an event handler, and complete this as follows:

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

182

Learn to program using Lazarus

Figure 15.4 The stream_visualise project displaying a short stream

procedure TForm1.udMoverClick(Sender: TObject; Button: TUDBtnType);
begin
 if not Assigned(ds)then Exit;
 case Button of
 btPrev: if (ds.Position >= SizeOf(ds.rec)) then
 begin
 ds.Seek(- 2*SizeOf(ds.rec), soFromCurrent);
 if (ds.Position < 0) then ds.Position:= 0;
 edtRecord.Text:= ds.RecAsString;
 seCurrentRecNo.Value:= seCurrentRecNo.Value-1;
 end;
 btNext: if (ds.Position < ds.Size) then
 begin
 edtRecord.Text:= ds.RecAsString;
 seCurrentRecNo.Value:= seCurrentRecNo.Value+1;
 end;
 end;
 seCurrentRecNoChange(nil);
end;

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

183

Learn to program using Lazarus

Below the TUpDown drop a label with View record number: as its Caption, and beside it drop a
spinedit named seCurrentRecNo with its Value set to 30.
Below these two components drop a further label with No. of records to generate: as its
Caption, and beside it a spinedit named seNoOfRecords, with its MaxValue set to 10000,

its MinValue to 1 and its Value to 40.
Below these place three buttons all with AutoSize set to True.

• Firstly btnGenerateStream with Caption set to Generate new Stream.

• Secondly btnSaveStream with Caption set to Save stream to file,

then discard and Enabled set to False.

• Thirdly btnLoadStream with Caption set to Load stream from file

with Enabled set to False.

Below the buttons place a further label named lblSavedFileSize with an empty Caption.
Lastly place two memos at the bottom of the form named memoEncrypted and memoDecrypted
and delete all text from these memos. Drop a button above memoEncrypted named btnEncrypt

with its Caption set to Encrypt, and drop a final button above memoDecrypted named
btnDecrypt with its Caption set to Decrypt.

The required supporting code now has to be added. Add Blowfish to the main form's uses
clause, then add four fields to the main form class's private section, and a public procedure
as follows:

...
private
 ds: TdemoStream;
 sOriginal, sEncrypted: TStringStream;
 key: string;
 public
 procedure DisplayStream;
 end;

We declare a variable to point to an instance of TdemoStream, two TStringStream instance
variables, and a string which will be the Blowfish encryption/decryption key.
Next generate OnClick handlers for btnEncrypt and btnDecrypt, and a body for the
DisplayStream procedure as follows:

procedure TForm1.btnEncryptClick(Sender: TObject);
var be: TBlowFishEncryptStream;
begin
 if memoDisplay.Lines.Count = 0 then Exit;
 key:= 'example cipher key for Blowfish';
 sOriginal:= TStringStream.Create(EmptyStr);
 be:= TBlowFishEncryptStream.Create(key, sOriginal);
 be.WriteAnsiString(memoDisplay.Text);
 be.Free;
 memoEncrypted.Text:= sOriginal.DataString;
end;

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

184

Learn to program using Lazarus

procedure TForm1.btnDecryptClick(Sender: TObject);
var bd: TBlowFishDeCryptStream;
begin
 sEncrypted:= TStringStream.Create(sOriginal.DataString);
 bd:= TBlowFishDeCryptStream.Create(key, sEncrypted);
 memoDecrypted.Text:= bd.ReadAnsiString;
 bd.Free;
 sEncrypted.Free;
 sOriginal.Free;
end;

procedure TForm1.DisplayStream;
begin
 lblStreamSize.Caption:= Format('%d ',[ds.Size]);
 tbPosition.Max:= ds.Size div SizeOf(ds.rec) - 1;

 memoDisplay.Lines.BeginUpdate;
 memoDisplay.Clear;
 ds.Position:= 0;
 while (ds.Position < ds.Size) do
 begin
 memoDisplay.Lines.Add(ds.RecAsString);
 tbPosition.Position:= (ds.Size * seNoOfRecords.Value) div ds.Position;
 end;
 memoDisplay.Lines.EndUpdate;

 seCurrentRecNo.MaxValue:= seNoOfRecords.Value;
 ds.Seek(seCurrentRecNo.Value * SizeOf(ds.rec), soFromBeginning);
 edtRecord.Text:= ds.RecAsString;
 tbPosition.Position:= (ds.Size * tbPosition.Max) div ds.Position;
end;

Now we need to create OnClick handlers for the three buttons in the centre of the UI, which
generate the demonstration memory stream, save it to file and load it again from a saved file.
These three handlers are as follows:

procedure TForm1.btnGenerateStreamClick(Sender: TObject);
begin
 ds.Free;
 ds:= TdemoStream.Create(seNoOfRecords.Value);
 seCurrentRecNo.MaxValue:= seNoOfRecords.Value-1;
 DisplayStream;
 seCurrentRecNoChange(nil);
 btnSaveStream.Enabled:= True;
 lblSavedFileSize.Caption:= EmptyStr;
 memoDecrypted.Lines.Clear;
 memoEncrypted.Lines.Clear;
end;

procedure TForm1.btnLoadStreamClick(Sender: TObject);
begin
 FreeAndNil(ds);
 ds := TdemoStream.Create(0);
 ds.LoadFromFile(savedFilename);
 seNoOfRecords.Value:= ds.Size div SizeOf(ds.rec);
 seCurrentRecNo.MaxValue:= seNoOfRecords.Value-1;
 DisplayStream;
 btnLoadStream.Enabled:= False;
 seCurrentRecNoChange(nil);
 memoDecrypted.Lines.Clear;
 memoEncrypted.Lines.Clear;
end;

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

185

Learn to program using Lazarus

procedure TForm1.btnSaveStreamClick(Sender: Tobject);
begin
 if Assigned(ds) then
 begin
 memoDisplay.Lines.Clear;
 edtRecord.Text:= EmptyStr;
 ds.SaveToFile(savedFilename);
 lblSavedFileSize.Caption:= Format('Saved file size is: %d bytes',
 [FileSize(savedFilename)]);
 btnLoadStream.Enabled:= True;
 btnSaveStream.Enabled:= False;
 FreeAndNil(ds);
 end;
end;

Lastly we need to set the constant savedFilename, ensure that the TdemoStream is freed at the
end of the program life, and write an OnChange handler for the spinedit seCurrentRecNo to
synchronise changes there with scrolling in memoDisplay and movement of the trackbar thumb.
Before the form's type declarations add a const declaration thus:

const savedFilename: TFilename = 'stream.dat';

Double-click beside the form's OnDestroy event and add this implementation:

procedure TForm1.FormDestroy(Sender: TObject);
begin
 ds.Free;
end;

Lastly generate a seCurrentRecNo OnChange event and complete it as follows:

procedure TForm1.seCurrentRecNoChange(Sender: TObject);
var L: integer;
begin
 if not Assigned(ds)then Exit;
 ds.Seek(seCurrentRecNo.Value*SizeOf(ds.rec), soFromBeginning);
 edtRecord.Text:= ds.RecAsString;
 L := Length(edtRecord.Text) + Length(LineEnding);
 tbPosition.Position:= tbPosition.Max*ds.Position div ds.Size;
 memoDisplay.SelStart:= (tbPosition.Position)*L;
 memoDisplay.SelLength:= L;
end;

If all is typed correctly you should be able to compile and run the application and explore its
features. The memo displaying the encrypted text should be taken with a pinch of salt –
although the encrypted bytes are all correctly saved in its Lines property,
they cannot be displayed correctly since some of the byte values stored there are not viewable
characters.

Note how in setting the highlighting in memoDisplay we have to take account of the unseen
line ending character(s) at the end of each line by adding Length(LineEnding) to the length of
each displayed string. Use of the predefined LineEnding constant ensures cross-platform
consistency.

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

186

Learn to program using Lazarus

15.i Review Exercises
1. Adapt the chemCollection project. Try altering TElementItem by adding another field

(or deleting one) and see how the TTIGrid adapts to the change.
You will need to alter the AddElement() routine accordingly, and also the AddElements

procedure.
2. What are the principal RTL classes required for building the LCL,

and (after TObject) which is the class all participants in the RTTI system must descend
from?

3. Design a TPlanetItem class that would form the basis for a grid display in a TTIGrid
of planetary information.
Then try implementing it to give you a working program.
To check that it is truly flexible at runtime, add an extra property – the planet name
in a language that is not your native language.
Adapt your program to provide this extra information.
Does the TTIGrid adapt itself at runtime as well?

4. The stream_visualise project could be extended in a number of ways.
How would you alter the project so that dragging the trackbar pointer caused movement
through the records in the stream, and so would update the record display in the memo,
current record number and text fields? (Hint: look at the available events for TTrackBar).

5. Having seen how to utilise a Blowfish stream in the above code, design and implement an
application that uses the analogous TCompressionStream and TDecompressionStream

classes to load a text file into a TStringList and save the compressed data to a file with a
different extension (you'll need to add uses zstream; to your application).

Chapter 15 NON-VISUAL GUI SUPPORT CLASSES

187

Learn to program using Lazarus

Every GUI program you write will deal with data, and data demands to be stored. Data that is
truly transient and temporary is of little long-term interest. Important data that needs to be
referred to more than once needs to be stored somewhere accessible. The computer's memory
(RAM) is OK for storage during the running of your program, but thereafter whatever data was
held in memory is lost. If not saved in some persistent medium your data will be lost for ever,
unless it can be recreated.
All the data describing the size, colour, text fonts and so on of the widgets used in your
program are stored as resources within the executable file. The main purpose of files is to
provide a means by which data can persist over time. Lazarus has its own internal mechanism
for reading and storing the component data your program needs, and for making sure your
executable program holds that unvarying data securely so it can be accessed every time your
program runs. This ensures that the look and feel of your GUI is identical each time. The
executable file itself holds this data.
An executable file, however, is not a suitable place to store other kinds of data, data that varies
over time. Indeed modern OSs prevent you writing to executable files or storing anything in
them that differs from their original contents. This is one ploy in the ever more complex battle
against viruses and malware. To a large degree, then, your program's UI is fixed at compilation
time. An upgrade to a later version will overwrite the original executable (replacing it), but user
settings and configuration of the program’s functionality and appearance have to be stored
outside the executable in some other file.

16.a File access in Pascal
There are two possible approaches to file access in Pascal. The classic approach (incorporated into
the language by Wirth before the GUI era) uses a number of independent routines, and relies on
run-time errors for error handling. Run-time errors can occur for manifold reasons (such as an
invalid pointer, or stack memory overflow), but for beginners it is usually file-related run-time
errors that are more commonly encountered.
Pascal provides two basic file types: file and TextFile. Text file routines can access data from
the console, and write to the console as well as to disk files, and so are a natural choice for
writing command-line programs. Files of this sort were considered briefly in two Sections at the
close of Chapter 6. Most programs use the SysUtils unit whether for file-related routines (such
as FileOpen, DirectoryExists) or for type conversions such as turning a string into a
TDateTime or encoding three word values (year, month, day) into a TDateTime.

The SysUtils unit converts all run-time errors into exceptions, about which there is more detail
in the following Section.
More recently an object oriented approach to file handling has been added to the Pascal RTL.
It is based on descendants of the TStream class (a class which offers aptly-named methods and
properties) which relies on exceptions for error handling. This is a more versatile file-type
scheme embracing more than simply disk files, and commonly used TStream descendants
include TFileStream, TMemoryStream, TStringStream and TResourceStream (and there are
several others declared in the libraries; and you can of course write your own). Object oriented file
access of this sort was introduced in the last few Sections of the previous chapter.

16.b Run-time errors and exceptions
Oscar Wilde wrote that experience is the name people give to their mistakes, and you probably
know that “to err is human, but to really foul things up takes a computer!” Dealing well with
errors that arise in the course of running software must be a consideration for any programmer.
Run-time errors are the result of routines that fail. Code that can potentially trigger an error
must take account of all possible eventualities. If programmed for run-time error handling,
library routines return a predefined value if the routine fails to execute.

Chapter 16 FILES AND ERRORS

188

Learn to program using Lazarus

Frequently, however, run-time errors are automatically converted into exceptions.
Exceptions let you interrupt a program's normal flow of control. When an exception occurs
your application is notified. The compiler generates code that knows how to interrupt your
code's processing, and deal with locally allocated memory on the stack (your error-handling
routine must specifically free any heap-based memory allocations), and it also generates an error
instance which stays in memory until it is freed. The call stack begins to unwind from the point
of the interruption. The unwinding process continues up the call stack tree until either a

 construct is encountered, or a global exception handler is encountered. Freeing the
error instance is called “handling the exception”.

Possible causes of error are manifold. A poorly coded routine might corrupt memory, or access
an unavailable device, or some resource limit may be exceeded or an entity may be absent ('out
of memory', 'disk full', 'file does not exist' etc.). Exceptions can also arise from database drivers,
network .dlls or shared objects, or the OS itself.
Any exceptions you don't specifically handle yourself get passed to the Application to handle.
If you want to intervene at that level, one way to do so is to drop a TApplicationProperties
component on your main form, and write a handler for its OnException event.

To illustrate the two approaches to error handling (run-time errors and exceptions) consider the
simple case in which you code an OverwriteCharAtPos() function which replaces the
character at a specified position in a string. You might program to defend against errors in the
following way.

16.c An example of string error-handling
Start a new Lazarus project called string_error with a main form called error_form.pas.

Set the form's Caption to String Error Example and drop on the form
• a labelled edit named edtString with its EditLabel.Caption set to String for

method to call, its LabelPosition set to lpLeft and its Text set to example
• a spinedit named edtPosition with its Value set to 8
• a label named lblPosition in front of the spinedit with its Caption set to Position of

Character to overwrite:
• a label named lblResultString with its Font.Style set to [fsBold]

• a button named btnCallFunctionRTE, with its Caption set to Call Function (Run-time
Error), and its AutoSize property set to True

• a button named btnCallProcedureExcept, with its Caption set to Call Procedure
(Exception), and its AutoSize property set to True

The resulting form in the Designer will look something like Figure 16.1.

try

... except

Chapter 16 FILES AND ERRORS

Figure 16.1 The string_error project in the Designer

189

Learn to program using Lazarus

Add two method declarations to your form's private section:
function OverwriteCharAtPosRTE(aChar: Char; var aString: string;
 aPos: integer): boolean;
procedure OverwriteCharAtPosExcept(aChar: Char; var aString: string;
 aPos: integer);

Generate implementation skeletons for these methods and complete them as follows:
function TForm1.OverwriteCharAtPosRTE(aChar: Char; var aString: string;
 aPos: integer): boolean;
var len: integer;
begin
 len := Length(aString);
 Result := (len <> 0) and (aPos > 0) and (aPos <= len);
 if Result then aString[aPos] := aChar;
end;

procedure TForm1.OverwriteCharAtPosExcept(aChar: Char; var aString: string;
 aPos: integer);
var len: integer;
begin
 len := Length(aString);
 if (len <> 0) and (aPos > 0) and (aPos <= len)
 then aString[aPos] := aChar
 else raise Exception.CreateFmt(
 'Index (%d) out of range error in string "%s"',[aPos, aString]);
end;

Double-click btnCallFunctionRTE's OnClick event to generate an event handler and
complete it as follows:
procedure TForm1.btnCallFunctionRTEClick(Sender: TObject);
var s: string;
begin
 s := edtString.Text;
 if OverwriteCharAtPosRTE('Z', s, edtPosition.Value)
 then lblResultString.Caption := s
 else RunError(999);
end;

Double-click btnCallProcedureExcept's OnClick event to generate an event handler and
complete it as follows:
procedure TForm1.btnCallProcedureExceptClick(Sender: TObject);
var s: string;
begin
 s := edtString.Text;
 OverwriteCharAtPosExcept('Z', s, edtPosition.Value);
 lblResultString.Caption := s;
end;

Chapter 16 FILES AND ERRORS

190

Learn to program using Lazarus

Build this program (Run | Build or [Shift][F9]). Run the executable using your OS's file
explorer (i.e. not using the IDE, which runs it under the debugger, unless you prefer to turn the
debugger off and use the IDE to run it without the debugger). You can cause a run-time error or
exception in several ways. Experiment with different values for the string and the character
position. Catching the error using the run-time error method will pop up one or perhaps two
dialogs similar to Figure 16.2, and close the application. Precisely how run-time errors are
displayed is rather OS dependent, and also depends in Windows on whether you have set the
application build as o you see a 'DOS box' window as well as your GUI
windowed application. The intervention of the debugger (and Project Options settings for
debugging and display of line number information) also affect the output.

{$apptype console} s

Catching errors using an exception is usually the preferred way to handle errors, giving a
dialog similar to Figure 16.3. This lets you recover from the error by pressing [OK], or close the
application by pressing [Cancel], which is far more user-friendly.
Exceptions also allow you to separate normal program logic from error-handling more
effectively. Since you can create exception objects which can have as much data as you wish, the
error message displayed when the exception is handled can be far more informative for users,
who are not interested at all in the hexadecimal stack addresses and line number information of
the run-time error message. While they may not be interested in the Index (8) out of range error in
string “example” message shown below, it will be far more useful when relayed to you the
programmer, to understand what has gone wrong. It would be simple to adapt the message to
include, say, the name of the failing routine.

Figure 16.3 string_error dialog showing an exception,
allowing you either to recover from it or exit

Figure 16.2 Part of a run-time error dialog presented when the string_error project bombs

Chapter 16 FILES AND ERRORS

191

Learn to program using Lazarus

The short excursion into error handling given above is needed because dealing with files is the
first major area encountered so far where robust error-handling is essential. You don't want
your program to crash simply because a user types in an invalid file name, or attempts to write
to a read-only CD-ROM drive.

16.d File name encoding issues
Internally Lazarus works with the UTF8 (Unicode) character set (both in LCL code, and in the IDE's
Editor), and some OSs (notably Windows) do not. The FPC RTL routines use system encoding for
file routines (not UTF8). Consequently we need to use encoding conversion routines in Lazarus
when using traditional Pascal file routines (which are all implemented internally in the compiler or in
the RTL).
Suppose you have a text file where you list useful software shortcut keys, called
Abkürzung.txt. To open this text file named AbkTxt in your program and read it into a memo
component we have to write:

procedure TForm1.LoadShortcutFileIntoMemo1;
var AbkText: TextFile;
 fName: string = 'Abkürzung.txt';
 s: string;
begin
 AssignFile(AbkText, UTF8ToSys(fName));
 try
 Reset(AbkText);
 while not Eof(AbkText) do
 begin
 readln(AbkText, s);
 Memo1.Lines.Add(s);
 end;
 except
 ShowMessageFmt('Text file %s not found', [fName]);
 end;
end;

If we fail to include the encoding conversion function UTF8ToSys which wraps fName in the
above code, the application will not find the file since its name contains an umlaut, and the call
to Reset will fail, triggering an exception. Actually it is not a good idea to hard-code file names
in a routine like this, but this is given to illustrate the principal point about needing correct
encoding of system names.

Note here the simple syntax required to catch exceptions that a section of code might generate.
Just as we created an exception for an error condition earlier with the line
raise Exception.CreateFmt(' . . . ', [. . .]);

so we catch an exception, should it arise, with a try … except … end; code block.

Actually we can avoid using an explicit while loop to read individual lines from the file
altogether. The TMemo.Lines property (a TStrings descendant) has its own LoadFromFile
method. A simple call,
Memo1.LoadFromFile(UTF8ToSys(fName));

is all that is needed.

Chapter 16 FILES AND ERRORS

192

Learn to program using Lazarus

16.e User-directed file searching and naming – the Dialogs Palette page
It was pointed out above that hard-coding file names is generally poor programming style.
Lazarus provides a number of useful file dialogs on the Dialogs Palette page which wrap system
dialog controls from each platform's widgetset to give simple platform-independent ways of
opening and saving files.
The various dialogs share commonly named properties, of which the two most important are
DefaultExt and FileName, and a boolean method called Execute which shows the dialog, and
if the dialog is not cancelled returns True, with the chosen file in the FileName property.
FileName can be pre-assigned to a default value. TOpenDialog and TSaveDialog are
complemented by TOpenPictureDialog and TSavePictureDialog which are more specialised
file pickers and savers designed for graphic-format files. Their Filter property is pre-

populated with a generous selection of common graphic file formats Lazarus supports, and
they also provide (optional) picture previews.

Using the file dialog components makes it quite straightforward to develop a text file statistics
application that analyses the contents of a text file. Start a new Lazarus project named
text_stats with a main form named stats_main. Set the form's Caption to Text File
Statistics Summary, its Height to 540 and its Width to 610.

Figure 16.4 The text_stats project analysing a large text file

Chapter 16 FILES AND ERRORS

193

Learn to program using LazarusLearn to program using LazarusLearn to program using Lazarus

Rather than use the file dialogs from the Dialogs page, we will use the TFileNameEdit
component from the Misc Palette page, which conveniently combines a file open/save dialog
with a button to invoke it. The completed text file statistics tools will look like Figure 16.4 when
complete. Drop a TFileNameEdit at the top of the form, naming it fnEdit, setting its Width to

330 and its DefaultExt to txt. Click on the ellipsis […] button beside the Filter property

and use the Filter Editor to add three lines of file selections as shown in Figure 16.5, using
semicolons to separate multiple filters entered on a single line. It is safer not to allow the third
line (*.*) – so you can choose whether you add it or not.

Drop a TLabel beside the file-edit, named lblDirections, setting its Caption to [Click on

the button to open a text file]. Drop a TMemo on the form named memoPreview, setting
its Align to alBottom, its Height to 310, its scrollbars to ssAutoBoth and deleting its name
from the Lines property.
Drop a TListBox named lbStats on the form, and set its Align to alBottom. Drag its top
border upwards so your form looks similar to Figure 16.4. Add strutils to the form's
clause.

uses

Figure 16.5 The file dialog Filter Editor

Delete the TForm1's public section, and in the private section add the following items:

 private
 FFileName: string;
 function CharCount(const aText: string): integer;
 procedure ComputeStats;
 procedure DisplayFileInfo;
 function WordCount(const aText: string): integer;
 function ParseToWords(const aString: string; separatorsSet: TSysCharSet):
TStringList;
 function IsTextFile(aFileName: string): boolean;

Select fnEdit in the Designer (or OI treeview) and double-click on the OI Events page beside the
OnAcceptFileName event. Lazarus will generate an implementation skeleton for this event, and
also generate skeletons for all the other methods you have just declared. Complete the
OnAcceptFileName event handler as follows:

Chapter 16 FILES AND ERRORS

194

Learn to program using Lazarus

procedure TForm1.fnEditAcceptFileName(Sender: TObject; var Value: String);
begin
 FFileName:= UTF8ToSys(Value);
 if not IsTextFile(FFileName)
then case QuestionDlg('Caution!',
 Value+' does not look like a text file'+sLineBreak+
 'What do you want to do?',
 mtWarning,
 [mrYes,'Open file anyway',
 mrNo,'Look for a different file', mrCancel], 0) of
 mrNo: Exit;
 mrYes: DisplayFileInfo;
 end // case QuestionDlg
 else DisplayFileInfo;
end;

Although we have set the file filter to default to a .txt extension, it is possible that files with
.txt extensions are not text files. So we will write a (very simple-minded) IsTextFile()

function to test whether a file is text or binary (even though it is not possible to write a function that
always makes this distinction correctly).
Our function will test for ASCII characters, BOMs for unicode encodings and xml files, and also
reject files with successive repeated zeros (which are almost certainly binary). This is not very
thorough or reliable, but perhaps will cover 95% of cases.
If the 'text' file fails this test, we give the user the option to open and read the file anyway, by
using the QuestionDlg() function from the dialogs unit. This is a very useful and versatile
function for eliciting Yes/No/Cancel sort of answers, with eminently configurable parameters
which let you specify which buttons you want the dialog to carry, and what the button captions
should be.
Modal dialogs return a TModalResult value which tells you which button the user clicked. We
test this with a case statement to determine whether to Exit this procedure, or call the
DisplayInfo procedure.

Chapter 16 FILES AND ERRORS

195

Learn to program using Lazarus

16.f Discriminating between text and binary files
Complete the code for the IsTextFile() function (which has three nested functions) as follows:

function TForm1.IsTextFile(aFileName: string): boolean;
const BufSize = 1024;
var inf: file;
 buffer: array[1..BufSize] of byte;
 numRead: int64;

 function IsUTF8OrXML: boolean;
 begin
 Result := False;
 if buffer[1] = $3C then Result:= True;
 if (buffer[1] = $00) and (buffer[2] = $3C) then Result := True;
 if (buffer[1] = $FF) and (buffer[2] = $FE) then Result := True;
 if (buffer[1] = $FE) and (buffer[2] = $FF) then Result := True;
 if (buffer[1] = $EF) and (buffer[2] = $BB) and (buffer[3] = $BF)
 then Result := True;
 end;

 function IsASCIIfile: boolean;
 var index: integer;
 begin
 Result := True;
 for index := 1 to numRead do if Result then case buffer[index] of
 9, 10, 12, 13: ;
 32..126: ;
 else Result := False;
 end
 else Break;
 end;

 function IsBinary: boolean;
 var zeroCount: integer = 0; currZero: boolean; index: integer;
 begin
 Result := False;
 if (buffer[1] = Ord('M')) and (buffer[2] = Ord('Z')) then Exit(True);
 for index := 1 to numread do
 begin
 currZero:= buffer[index] = 0;
 case currZero of
 False: zeroCount:= 0;
 True: inc(zeroCount);
 end;
 if (zeroCount >= 4) then
 begin
 Result := True;
 Break;
 end;
 end;
 end;

begin
 Filemode := 0;
 AssignFile(inf, aFileName);
 try
 Reset(inf, 1);
 except
 begin ShowMessageFmt('File %s could not be opened!',[aFileName]);
 Result := False;
 Exit;
 end;
 end;
 BlockRead(inf, buffer, SizeOf(buffer), numRead);
 CloseFile(inf);
 result := IsASCIIfile or IsUTF8OrXML and not IsBinary;
end;

Chapter 16 FILES AND ERRORS

196

Learn to program using Lazarus

This function would not pass muster in a commercial application, but suffices for our purposes
here, examining only the first few bytes of the file (or up to 1024 bytes for ASCII files).
The code for DisplayFileInfo is somewhat shorter:

procedure TForm1.DisplayFileInfo;
begin
 memoPreview.Lines.Clear;
 memoPreview.Lines.LoadFromFile(FFileName);
 ComputeStats;
end;

Here is the code for ComputeStats:

procedure TForm1.ComputeStats;
var c, w, m: integer;
 start: TDateTime;
begin
 if (FFileName = EmptyStr) then Exit;
 start := Now;
lbStats.Items.Clear;
 lbStats.Items.Add(' ' + SysToUTF8(FFileName));
 lbStats.Items.Add(EmptyStr);
 c := CharCount(memoPreview.Text);
 w := WordCount(memoPreview.Text);
 if (w = 0) then m := 0
 else m := c div w;
 lbStats.Items.Add(' Line count: '+FormatFloat(',#',
 memoPreview.Lines.Count));
 lbStats.Items.Add(Format(' Mean word length is: %d', [m]));
 lbStats.Items.Add(' Word count: ' + FormatFloat(',#', w));
 lbStats.Items.Add(' Character count: ' + FormatFloat(',#', c));
 lbStats.Items.Add(' File size is: ' +
 FormatFloat(',#', FileSize(FFileName))+' bytes');
 lbStats.Items.Add(Format(' Calculations took %s secs',

Chapter 16 FILES AND ERRORS

197

Learn to program using Lazarus

function TForm1.ParseToWords(const aString: string;
 separatorsSet: TSysCharSet): TStringList;
var
 buildingAWord: boolean = False;
 s: string = '';
 c: Char;
begin
 if (Length(aString) = 0)
 then begin
 Result := nil;
 Exit;
 end;

 if (separatorsSet = [])
 then separatorsSet:= WordDelimiters;

result := TStringList.Create;
 for c in aString do
 case (c in separatorsSet) of
 False: begin
 if not buildingAWord
 then buildingAWord:= True;
 s := s + c;
 end;
 True: begin
 if buildingAWord
 then begin
 buildingAWord:= False;
 Result.Add(s);
 s := EmptyStr;
 end;
 end;
 end; //for-case
 if (s <> EmptyStr)
 then Result.Add(s);
end;

We first check that there is an actual file to report on, if so noting the current time, and clearing
any previous file statistics. The lines which follow collect and format the information, calling
custom WordCount() and CharCount() functions in the process. WordCount() in turn calls
ParseToWords(), a routine developed for Chapter 18:

function TForm1.WordCount(const aText: string): integer;
var sl: TStringList;
begin
 Result := 0;
 if aText = EmptyStr then Exit;
 try
 sl := ParseToWords(aText,[]);
 Result := sl.Count;
 finally
 sl.Free;
 end;
end;

Chapter 16 FILES AND ERRORS

198

Learn to program using Lazarus

Lastly, type the simpler CharCount function:

function TForm1.CharCount(const aText: string): integer;

var c: Char;
begin
 Result := 0;
 for c in aText do
 if (Ord(c) > 32) then Inc(Result);
end;

Select the lbStats listbox, and in the OI set its Font to a clear, readable typeface in bold.
Compile and run the program, testing various text files. If you try to open a non-text file, notice
how the customisable QuestionDlg() function presents a useful dialog with very little code
required (see Figure 16.6), considering how many options are available for constructing the
dialog.

Chapter 16 FILES AND ERRORS

Figure 16.6 The customisable QuestionDlg function in action

199

Learn to program using Lazarus

Pascal is a strongly typed language which means that every data holder (or variable) you use has
to be specified in advance, and its size (or potential size) known in advance. This enforces a
certain size-awareness at the design stage as you begin to write code, but does not, of course,
prevent you from inadvertently exceeding the size limits of the data containers you choose
when your program is running.
What happens if you pour a programming quart into a pint pot? Do the excess bytes disappear
gracefully, leaving the remaining properly contained bytes undisturbed? Does your user notice
anything amiss? A lot depends on how severe the 'spillage' is, and also whether you have
anticipated the potential for such a problem to arise, and provided for the possibility that a
variable may prove too small to hold the data being forced upon it. We'll look at one scenario
based on use of a recursive routine (a routine that calls itself).

17.a Using recursion to evaluate factorials
The factorial function, written N! is defined as the product of all non-negative integers less than
or equal to N (here “non-negative integer” is taken to include zero, since some mathematicians do not
accept that inclusive meaning for the term “positive”). The values of 0! and 1! are both defined as 1.
So 4! = 4 x 3 x 2 x 1 = 24.
Most Pascal tutorials include code for a factorial function since it is one of the simplest and
most straightforward illustrations of the use of recursion, in which a routine calls itself
repeatedly. Successful recursion depends on making sure that the repeated calling of the
routine stops at some point, so the recursion does not become infinite. An infinite loop (or
endless loop, the phrases have the same meaning) is very easy to accomplish in programming, and
completely intractable. There is no way to break out of an infinite loop. All you can do is kill the
running program (or turn the computer off). Clearly programmers aim to avoid this situation.
The value of N! increases very quickly with N and 12! is the largest value that can be stored in a
32-bit integer, and 20! is the largest value that can be stored in a 64-bit integer. Let's use a 64-bit
factorial function, that will be part of a project called factorial (see Figure 17.1).

Start a new Lazarus project you name factorial, which has a main form named
main_factorial.pas. Set the main form's Caption to Factorial example, and add a new
method in the form's private section:

private
 function Factorial64(aByte: byte): int64;

Generate a skeleton for this method and complete it as follows:

function TForm1.Factorial64(aByte: byte): int64;
begin
 case aByte of
 0, 1: Result:= 1;
 else Result:= aByte * Factorial64(aByte - 1);
 end;
end;

For parameter values greater than 1 this function generates a result which is the product of the
passed parameter multiplied by the function called with a parameter one less that the current
parameter. This results in a succession of calls to Factorial64() with successively smaller
parameters. Eventually the parameter in the recursive call will have dropped to 1, at which
point the recursive calls stop, and the final multiple-product result is evaluated.

Chapter 17 WORKING WITHIN KNOWN LIMITS

200

Learn to program using Lazarus

procedure TForm1.BListFactorialsClick(Sender: TObject);
var i: integer;
begin
 MDisplay.Lines.Clear;
 for i := 1 to EParameter.Value do
 Mdisplay.Lines.Add(Format('%d! is %s',
 [i, FormatFloat(',#', Factorial64(i))]));
end;

Compile and run this program, and see what happens if you specify values for factorials above
20! – the program sails on without a murmur, but gives nonsense results for those higher values
(see Figure 17.1), though if we were not alerted by the negative values we might not notice!

Figure 17.1 Output from the Factorial example project

To create a UI for testing this function, drop a button at the top of the form named
BListFactorials, and set its AutoSize to True, its Height to 500, and its Caption to List

Factorials up to:. Beside the button drop a spinedit named EParameter with its Value set to
21, and its MaxValue set to 30.
Below the button and edit drop a memo named MDisplay and set its Align to alBottom, and its
ScrollBars to ssAutoBoth. Drag the top of the memo upwards so it fills most of the remaining
height of the form. Double-click the button to generate an OnClick event handler and complete
it as follows:

Chapter 17 WORKING WITHIN KNOWN LIMITS

201

Learn to program using Lazarus

Figure 17.2 The Project Options Code Generation page with two relevant checks highlighted

How can we prevent the erroneous values for 21!, 22! and higher from being displayed?
There are several possible remedies. We could, for instance, limit the values accepted by the
program (knowing that 20! is the highest value that can be held in the int64, 64-bit integer). The easiest
way to do this would be to set EParameter.MaxValue to 20. Or we could use a higher-capacity
type to store the factorial value (say, qword or extended), and discover what the new upper limit
for the parameter became with a larger result type to store the factorial before it too overflowed.
An alternative would be to use a try ... except ... end block to catch the overflow
condition by trapping a specific exception. In this case we would be looking for an
EIntOverflow exception. To do this we need both to adapt the code given above slightly, and
also change the code generation settings to get the compiler to add a check for overflow.

Chapter 17 WORKING WITHIN KNOWN LIMITS

To make the second alteration call up the Project Options dialog (either from the Project
Inspector toolbar, or via Project | Project Options... or via [Shift][Ctrl][F11]). In the treeview at
the left of the dialog under the Compiler Options node click on Code Generation to open that
page, and in the Checks groupbox make sure the Overflow (-Co) checkbox is checked. Since we
are using a recursive routine it is also a good idea to enable the Stack (-Ct) checkbox as well.

202

Learn to program using Lazarus

procedure TForm1.BFactorialExceptionClick(Sender: Tobject);
var i: integer;
begin
 MDisplay.Lines.Clear;
 for i := 1 to EParameter.Value do
 MDisplay.Lines.Add(Format('%d! is %s',
 [i, FormatFloat(',#', FactorialExc(i))]));
end;

Now it remains to write the new FactorialExc() method. Declare it in the form's private
section as:
function FactorialExc(aByte: byte): int64;

Use Code Completion to create a skeleton for this method, and complete it as follows:
function TForm1.FactorialExc(aByte: byte): int64;
begin
 Result:= -1;
 case aByte of
 0, 1: Result:= 1;
 else
 try
 Result:= aByte * FactorialExc(aByte - 1);
 except on e:EIntOverflow do
 MessageDlg('Problem',
 Format('"%s"%sA parameter value of %d caused the above exception'+
 ' in the FactorialExc function',
 [e.Message, LineEnding, aByte]), mtWarning, [mbClose], 0);
 end;
 end;
end;

17.b Catching a specific exception
Add a further button to the UI named BFactorialException with its Caption set to List
Factorials using exceptions. Double-click this button to generate an OnClick event
handler and complete it as follows (it is identical to the first button's code except for a different
function call):

Here we wrap the nested call to FactorialExc() within a try/except block which checks for
the specific EIntOverflow exception. If found it calls the MessageDlg function which has
several parameters designed to let you construct a fairly sophisticated message dialog. Here we
include a nested call to Format() to add the exception error message (e.Message) to our own
message text. Note the syntax for catching a specific exception: on ... do.
The compiler takes care of constructing and freeing the exception instance. We can give it a
name (here “e”) so we can reference it to display its Message property. In other situations
exceptions are anonymous from the programmer's point of view, since only the compiler needs
to be able to reference an exception that is created and freed almost straightaway.
The stack is 'unwound' to the point where the exception occurred. Initially setting Result to -1
(it is normally overwritten later in the try section of the function) ensures that the displayed result
will be negative if there is an exception. The negative value is to proclaim its invalidity (in this
case – in other situations some other error indication may have to be used).

The stack is the memory area used for all subroutines, including recursive ones, which by their
nature can use unusually large amounts of stack memory if they have very large local variables,
or if the level of nested calls becomes very deep.
Modern OSs reserve large areas of memory by default for stack operations (e. g. Windows 7 sets
aside 16MB per thread, MacOS X 8MB per thread) so that normal program usage will not cause
stack overflow. Although Lazarus provides an option to set stack size on the Code Generation
page, programmers will not normally need to tinker with this setting (see Figure 17.2).

Chapter 17 WORKING WITHIN KNOWN LIMITS

203

Learn to program using Lazarus

17.c Permutations
The factorial function n! gives the number of ways of ordering all items from a set of n items, or
(to use the mathematical term) the number of ways of permuting n items. Permutations of words
are called anagrams. If we take the word tea, possible anagrams are: tae, eta, eat, aet, ate. For
this 3-character word there are 3! permutations possible, i.e. 6 possible permutations (tea and 5
others).

It is relatively straightforward to design a recursive procedure to produce all the anagrams of a
given word. The basic algorithm is to move each letter in turn into the first position, and then
list all possible orderings of the remaining letters. To “list all possible orderings of the
remaining letters” we again move each of the remaining letters into the now second position
and list all possible orderings of the remaining letters. For a three-letter word there is only one
possibility left, having already used two of the letters. So we have one of the possible
permutations.

You can avoid the debugger interposing intermediate error dialogs if you run this program
outside the IDE (or turn off the debugger using Tools | Options... | Debugger | General |
Debugger type and path).
The project so far will produce a screen something like Figure 17.3.

Figure 17.3 An integer overflow exception being caught

Chapter 17 WORKING WITHIN KNOWN LIMITS

204

Learn to program using Lazarus

17.d Time-consuming routines
Computers are extremely fast at moving data about in memory, and somewhat slower at
displaying changing data on screen, slower still at reading and writing to disks and other
devices. Generating and displaying all the permutations of lengthy words is likely to take
measurable, noticeable time even on a very fast modern computer. In fact, designing a routine
that takes an appreciable time to execute raises an oft-encountered issue: How do we best cope
with a routine that is taking a long time?

Tight loops that run many millions of times before exiting tie up CPU cycles, and make UIs
appear to freeze. Some OSs will post a “not responding” message in an application's title bar if
it becomes, well, unresponsive, and also grey out the offending program's window.
This is not a good situation for users of your programs, or for you. Users may think the entire
computer has frozen or crashed, and may turn it off, or kill your program, thereby losing or
corrupting data. They may think your program is flawed and abandon it, especially if the steps
they took to recover from your frozen program damaged other data.
This is more likely if there is no feedback warning of the possible freeze or delay, or even an
hourglass cursor to indicate that something expected is going on unseen. The best feedback is a
progress bar or other continually updated indication of progress towards the end of the hold-
up. Users may want large files to download instantaneously, but they do know this is
unrealistic, particularly on a Friday evening.

The problem partly arises from the single-threaded nature of a basic Lazarus program.
Modern CPUs can run several threads at once, but each program or process has only one main
thread. Unless you create further threads for your program's routines you are restricted to the
main thread which Lazarus generates and in which all its GUI components operate.
If you hog that thread with a processor-intensive routine (such as generating and displaying
900,000 anagrams) that takes noticeable seconds or even minutes to complete, the GUI will
appear to freeze. Until the hog-routine completes, no amount of mouse activity or keyboard
bashing makes any difference since the main Lazarus program loop that normally responds to
such user input is stymied, and itself unresponsive.

The Lazarus program loop is operated by the Application instance which is created for
each Lazarus project, and which we glanced at briefly earlier (see Section i of Chapter 8, and
Section b of Chapter 9). TApplication is a complex class, but its Run method which is called in
every Lazarus main program file begins by showing the main form (i.e. the first form created if
there is more than one). Then it repeatedly calls the ProcessMessages procedure. This varies
according to OS and widgetset, but in essence it queries the windowing system to see if any
messages are pending for the running process.
If there are any messages, despatches the message(s) to their appropriate
destination control(s). Some messages are handled automatically by controls as a result of the
way the LCL is programmed. For instance a resize message leads to the control resizing itself.
Other messages have effects programmed by the application developer. These are messages
generated by the events available on the OI Events page, such as a form's OnCreate event or a
button's OnClick event.
This means that sometimes we are able to make a GUI more responsive by explicitly calling
Application.ProcessMessages in our own processor-intensive loop code.

ProcessMessages

You can see that this is a recursive algorithm that can be extended to cover words of arbitrary
length. Such an algorithm is implemented in Section 17.e. We also know from the successive
values of n! in the preceding program that the numbers of possible permutations increases very
rapidly for word lengths greater than about 5 characters. Which leads into a consideration of
time limitations in programs.

Chapter 17 WORKING WITHIN KNOWN LIMITS

205

Learn to program using Lazarus

Of course this will not make a time-consuming tightly-coded-loop routine any faster (in fact it
will slow it down). However, it will give the main program loop an opportunity to process
pending messages such as giving feedback to the user about the state of the processor-intensive
task.
A better option (outside the scope of this book) is to place time-consuming tasks in a thread of their
own, and avoid bogging down the main program thread with time-consuming routines that
block normal program messaging systems from operating.
Let's see how this works out in a program that generates all possible anagrams of a user-
supplied word.

17.e Generating anagrams
Start a new Lazarus project named anagrams, with a main form named anagram_main, whose
Caption is set to Anagram Generator, whose Width is 590 and whose Height 460.
Drop a TLabeledEdit at the top of the form named EWord, and set its LabelPosition to lpLeft,
its EditLabel.Caption to Generate anagrams for this word, its Width to 110, and its
MaxLength to 12, arranging its Left property to display the full EditLabel.Caption.

Drop a label below the EWord named LAnagramCount. Double-click EWord to generate an
OnChange event handler, and complete its implementation as follows:

procedure TForm1.EWordChange(Sender: TObject);
var w: integer;
 f: int64;

 function Plural(x: int64): char;
 begin
 Result:= #0;
 if (x > 1) then Result := 's';
 end;
begin
 w:= EWord.GetTextLen;
 f:= Factorial(w);
 LAnagramCount.Caption:= Format('%s will generate %s anagram%s',
 [EWord.Text, FormatFloat(',#',f), Plural(f)]);
end;

This procedure gives the user continuously updated feedback on the expected number of
anagrams his/her word will generate, using a little helper function to make sure the plural of
'anagram' is applied correctly, and calling a Factorial function we now have to supply. In the
form's private section declare the function as follows:

function Factorial(anInt: integer): int64;

Then generate an implementation skeleton and complete it thus:

function TForm1.Factorial(anInt: integer): int64;
begin
 result := -1;
 if (anInt < 0) then Exit;
 case anInt of
 0, 1: Result:= 1;
 else Result:= anInt*Factorial(Pred(anInt));
 end;
end;

is

Chapter 17 WORKING WITHIN KNOWN LIMITS

206

Learn to program using Lazarus

This procedure differs slightly from the one given before, including a couple of optimisations.
On 32-bit OSs it is usually faster to work with the native 32-bit integer type than use byte
variables, and it may also be faster to use the Pred() function than calculate anInt - 1 on each
recursion. A further optimisation is the dropping of an on/except block altogether, since in this
application we are restricting the anagram word length by setting EWord.MaxLength to a value
which prevents factorial overflow. Exception trapping adds overhead to every routine which
uses it (though in this case the effect of these optimisations may be imperceptible).
Add two further labels, LElapsedTime and LProgress to the right of EWord. Below
LAnagramCount drop two buttons. Name the first button BSlowAnagrams with its AutoSize set
to True and its Caption set to Generate Anagrams (slow). Name the second button
BFasterAnagrams with its AutoSize set to True and its Caption set to Generate Anagrams
(faster) (see Figure 17.4).
Double-click these buttons to generate OnClick event handlers and implement them as follows:

procedure TForm1.BSlowAnagramsClick(Sender: TObject);
begin
 LBWords.Items.Clear;
 LBWords.Items.Add('[Slower]');
 wordCount:= 0;
 start:= Now;
 LBWords.Items.BeginUpdate;
 GenerateAnagramsPoorly(EWord.Text, 1);
 LBWords.Items.EndUpdate;
 LElapsedTime.Caption:= 'Elapsed time: '
 + FormatDateTime('n"m" s:z"s"',Now-start);
end;

procedure TForm1.BFasterAnagramsClick(Sender: TObject);
begin
 LBWords.Items.Clear;
 wordCount:= 0;
 ss := TStringStream.Create('[Faster]'+LineEnding);
 ss.Seek(0, soFromEnd);
 start:= Now;
 LBWords.Items.BeginUpdate;
 try
 GenerateAnagramsFaster(EWord.Text, 1);
 LProgress.Caption:= 'Loading listbox from stream...';
 Application.ProcessMessages;
 ss.Seek(0, soFromBeginning);
 LBWords.Items.LoadFromStream(ss);
 finally
 ss.Free;
 end;
 LBWords.Items.EndUpdate;
 LElapsedTime.Caption:='Elapsed time: '
 + FormatDateTime('n"m" s:z"s"',Now-start);
end;

Chapter 17 WORKING WITHIN KNOWN LIMITS

207

Learn to program using Lazarus

The faster routine deals with the anagrams in two stages. First it creates a TStringStream and
uses that to cache the anagrams as they are produced in the call to GenerateAnagramsFaster().

Then the listbox is filled with a call to LBWords.Items.LoadFromStream(). Caching the data
using a stream wins hands down on speed.
The slower routine adds each anagram as it is produced to the LBWords.Items.Text property.
When you run this routine with longer words you will see that as the Text property gets longer,
so the routine gets slower and slower as all the string concatenations are performed.
The last UI control is a listbox named LBWords. Drop this at the bottom of the form, setting its
ScrollWidth to 590, its Columns to 6, its Align to alBottom, and its Height to 350 (see Figure
17.4). Note that some OSs do not allow for more than one column in a listbox. If you develop on
such a platform you will not see the anagrams displayed compactly in columns across the
screen. Before we can run the program we need to add a few fields to the form's private

section, and generate a few more method implementations. Delete the form's public section,
and add private fields and methods as follows (the Factorial function should be there already):

private
 wordCount: int64;
 start: TDateTime;
 ss: TStringStream;
 procedure Exchange(var a, b: Char);
 function Factorial(anInt: integer): int64;
 procedure GenerateAnagramsFaster(aWord: string; charPos: integer);
 procedure GenerateAnagramsPoorly(aWord: string; charPos: integer);
end;

Figure 17.4 The anagram project GUI design, with listbox at the bottom

Chapter 17 WORKING WITHIN KNOWN LIMITS

208

Learn to program using Lazarus

Invoke Code Completion on one of the private methods to generate implementation skeletons,
and complete these as follows:

procedure TForm1.GenerateAnagramsPoorly(aWord: string; charPos: integer);
var le, p: integer;
begin
 le := Length(aWord);
 if (charPos >= le) then
 begin
 LBWords.Items.Text := Format('%s%s',[LBWords.Items.Text, aWord]);
 inc(wordCount);
 if (wordCount mod 10) = 0 then
 LProgress.Caption:= Format('%d anagrams generated',[wordCount]);
 Application.ProcessMessages;
 end
 else for p:= charPos to le do
 begin
 Exchange(aWord[p], aWord[charPos]);
 GenerateAnagramsPoorly(aWord, Succ(charPos));
 Exchange(aWord[p], aWord[charPos]);
 end;
end;

procedure TForm1.Exchange(var a, b: Char);
var tmp: Char;
begin
 tmp := a;
 a := b;
 b := tmp;
end;

procedure TForm1.GenerateAnagramsFaster(aWord: string; charPos: integer);
var le, p: integer;
begin
 le := Length(aWord);
 if (charPos >= le) then
 begin
 ss.WriteString(aWord + LineEnding);
 inc(wordCount);
 if (wordCount mod 10) = 0 then
 LProgress.Caption:= Format('%d anagrams generated',[wordCount]);
 Application.ProcessMessages;
 end
 else for p:= charPos to le do
 begin
 Exchange(aWord[p], aWord[charPos]);
 GenerateAnagramsFaster(aWord, Succ(charPos));
 Exchange(aWord[p], aWord[charPos]);
 end;
end;

Chapter 17 WORKING WITHIN KNOWN LIMITS

209

Learn to program using Lazarus

The two GenerateAnagrams... functions are similar in that they use the same recursive
algorithm for exchanging individual characters. They differ only in the way the generated
anagrams are stored and displayed.

Chapter 17 WORKING WITHIN KNOWN LIMITS

Compile and run this program, for which typical output is shown in Figure 17.5. Take care not
to use the slower routine on words of 7 or more letters – you'll wait all day! Notice how
strategically placed calls to Application.ProcessMessages allow the GUI to be updated with
information about progress even within intensive recursive routines. However some calls are
opaque, such as the call to LBWords.Items.LoadFromStream() which is monolithic. We can't
get 'inside' it to report on progress (without rewriting the TListBox component).

Figure 17.5 The Anagram Generator in action

17.f Review Questions
1. It was stated blithely earlier (in Section e) that three optimisations applied to the anagrams

project probably made an imperceptible difference. How would you test the truth of this
assertion?

2. Extend the anagram project by designing a way to make several timed trials of the
two anagram generating routines, and comparing and displaying average results
for the two routines for varying word lengths.

210

Learn to program using Lazarus

18.a Collaboration
The final product of your Lazarus project will be a program that does certain things well,
perhaps even excellently if you become a good programmer. You must find a good name for
your program. This is not always an easy task, particularly if you are disinclined to copy an
existing name, or prevented from doing so by reason of copyright. (Can a generic term like 'Word'
be a registered brand name? In some places, apparently, Yes).
Perhaps you will write all the needed code yourself (except, of course, the libraries like the FCL and
LCL you depend on). In most human endeavours it transpires that collaboration is a benefit, that
two are better than one, especially if those two people's gifts and approaches are different, even
opposite. Someone else may have the experience or skill you lack and be able to offer it where
needed. To me this is one of the joys of open source programming communities – you
encounter people who are willing to share something of themselves and their experience. And
this is foremost a human encounter, rather than a commercial contract with a fee (though there is
a place for that as well, if programmers are to eat).
One way to move forward in understanding and programming insight is to join a
programming forum or newsgroup. You can learn a lot about programming just 'listening in' to
discussions of programming topics on a mailing list between half a dozen programmers
contributing to an informed debate. You may well find that such discussions, even if you are
rarely a contributor, are well worth the effort of following. We all need to be stretched in our
understanding, and listening to several different views debated over some moot point in
programming often uncovers the subject to newcomers far more than the contributors to the
debate have any awareness of.

18.b The algorithm – a specific plan
Programmers term a specific plan, a series of steps to be followed to achieve some end, an
algorithm (the word derives from the work of Al-Karismi, a seminal Islamic mathematical writer of the
ninth century). The phrase pseudo-code is also used to indicate a similar concept. In other
words, in thinking about particular functionality that your software needs to encapsulate, it is
often best to start, not with detailed Pascal code, but with an outline of the steps to be followed
in implementing the desired functionality. Articulating this algorithm, firstly as a notion in
your imagination, and then possibly as a sketch on paper, may clarify your thinking, and also
help you name the smaller steps into which you have analysed the needed routine; steps that
will be combined to provide the overall functionality.
Let's take a simple, straightforward example to illustrate the process. We find the need, in the
course of a project's development for a function that takes text (of arbitrary length, such as a
paragraph from this book), and parses it into its constituent words. We want our function to be
able to specify the definition of a 'word' by stipulating what character(s) are to be regarded as
word separators (in programming jargon these are often referred to as delimiters). The function
should return the list of parsed words in a stringlist. A stringlist is preferred over a dynamic
array of strings for this purpose, because it offers a count, it automatically expands to the size
needed, and it offers an interface widely used in LCL controls such as TMemo and TListBox.

There are various ways to accomplish this task. Here we consider one of these many ways, not
because it is the 'best', or the fastest, but because it illustrates the process of designing, refining
and testing an algorithm implemented in Pascal, with a few pointers for subsequent
optimisation.
Firstly: What are we to call this function? If we want it to be pretty much self-descriptive, it
could be called ParseTextToIndividualWordsList. However, for our own use a shorter

name might suffice, say ParseToWords. Some languages provide such a function in their main

library with a shorter name (e. g. PHP offers an Explode function). But usually the shorter the
name, the less information it conveys, and so the more cryptic the function may appear. We will
aim to give fully meaningful names to routines, without being pedantically verbose.

Chapter 18 ALGORITHMS AND UNIT TESTS

211

Learn to program using Lazarus

18.c A parsing algorithm
Before you start to write any new function you should always ask yourself: “Is this
functionality already provided in the libraries at my disposal (RTL, FCL, LCL)?” We may waste
time reinventing the wheel simply because we do not know the name or location of the
required wheel in the 1.6 million lines of code that come with Lazarus. Sometimes a simple
search of the relevant source directories and subdirectories using the Find in Files tool (IDE
shortcut [Shift][Ctrl][F], or Search | Find in Files...) will throw up exactly the routine we need,
or something very close to it.
The RTL strutils unit has two functions, WordCount() and ExtractWord() that could be
combined to do what we want. But there is nothing that precisely meets our specification (as far
as this author knows). However, looking at the above RTL functions does reveal a useful type for
our needs:

type TSysCharSet = Set of Char;

and a useful default constant:

const

 {Default word delimiters are any characters except the core alphanumerics}
 WordDelimiters: set of Char = [#0..#255]–['a'..'z','A'..'Z','0'..'9'];

We can use this const simply by specifying strutils in our uses clause.
Thus the signature of the function will be:

function ParseToWords(const aString: string; separators: TSysCharSet):
 TStringList;

We pass a text string to the function, along with a set of valid word separator characters (such as
['!',' ','.'] and so on), and receive a stringlist containing the parsed words. The const specifier for
the parameter does two things. Firstly it prevents us from accidentally altering the string
parameter passed in (if our code mistakenly alters aString the compiler will warn us that aString is
supposed to be const), and secondly it opens the possibility of the compiler making some
optimisations to the string-handling code in the function that would not be possible if the string
were passed as an ordinary parameter that could be changed.

Since it is possible that very large strings indeed might be passed to the function, this could
be a significant advantage over a non-const parameter. Note that there are possible drawbacks
to using const parameters, which can lead to subtle bugs appearing. There has been detailed
discussion of this issue on the mailing lists, so it will not be pursued here, except to underline
that const is not a panacea to be applied everywhere.

What about an algorithm? A basic 'brute force' approach would be to examine each
character in the string in turn. We ignore any characters that are separators until we find the
first character that is not a separator. This will become the first character of a parsed word.
We continue moving along the string checking characters as we go, adding successive
characters to the word fragment being parsed until we encounter another separator character.
At that point we pause and extract the word we've found, adding it to the Result list. We then
repeat this individual character examination again, continuing from the point we had reached
before pausing, and continue examining, pausing to extract a parsed word as needed until we
reach the end of the string.
Having reached the end of the string there may be a final parsed word ready to add to the
resulting stringlist which has not yet been added. If so, we add it.

Chapter 18 ALGORITHMS AND UNIT TESTS

212

Learn to program using Lazarus

Our algorithm should be able to cope with these situations, all of which may well exist:
• aString is empty
• separators is an empty set, []. In this case we use a default (WordDelimiters).

Unfortunately because the parameter is a set type we cannot provide a default value in the
parameter list itself, as we could if it were a Char e.g.

 Parse(const aString: string; separator: Char=' '): TStringList;

• several adjacent separators may be present (e.g. 'What?! Surely not!...')
• the points just before the beginning of the string, and just after the end of the string must be

treated as separators, even though there are no string characters at these points to examine
• separators may, or may not, appear at the beginning and/or the end of the string
• aString may turn out to contain only separators

In outline our algorithm will look like this:
• begin with an empty parsed string fragment
• step through each character in aString in turn
• if the character is part of a word, add it to the current parsed fragment
• else, if the character is the first separator following a word, add the current fragment to the

stringlist and reset the current fragment length to zero. Second or subsequent adjacent
separators are ignored.

• After reaching the end of the string, if a non-zero-length fragment remains, add this to the
stringlist too.

Implementing the algorithm is a matter of using the best Pascal routine for stepping through
each character in a string. Since the string is known at the outset (it is passed as a parameter) we
can use a for loop starting at the first character, and ending at the last character.
FPC recently provided optimised syntax to aid in using for loops for situations like walking

through each character of a string. The syntax is as elegant as it is simple:

for element in aString do {something using element};

Chapter 18 ALGORITHMS AND UNIT TESTS

213

Learn to program using Lazarus

This enables us to write the following:

function ParseToWords(const aString: string; separators: TSysCharSet
):TStringList;

var
 c: Char;
 s: string;
 buildingAWord: boolean = False;
begin
 if Length(aString)=0
 then begin
 Result := nil;
 Exit;
 end;
 if separators = []
 then separators:= WordDelimiters;

 Result := TStringList.Create;
 for c in aString do
 case (c in separators) of
 False: begin
 if not buildingAWord
 then buildingAWord:= True;
 s := s + c;
 end;
 True : begin
 if buildingAWord
 then begin
 buildingAWord:= False;
 Result.Add(s);
 s := '';
 end;
 end;
 end;
 if (Length(s) > 0) then Result.Add(s);
end;

Note that in addition to the simplified syntax, we have also initialised the

boolean variable buildingAWord in its declaration.
We first check for passing of any empty parameters, providing for the case that either of them is
empty. Then we create the stringlist the function will return.
The loop that steps character-by-character through the string contains a single case
statement which tests the current character for membership in the separators set.
The character is either a separator or part of a word.

for... in... do

for

To record whether a word is currently growing or whether we are finding successive separators
we maintain a record of the parsing state by means of a boolean variable, buildingAWord.
This history of the parsing state, held as a boolean, saves us from the need to backtrack to see
whether previous characters were separators or word-characters.
As long as we find word-characters, buildingAWord is True, and the characters are added
to the growing fragment. As soon as a separator is encountered, buildingAWord is set to False,
and the current fragment (now a complete word) is stored in the Result stringlist, and the
fragment is cleared to be empty for the next word.

Chapter 18 ALGORITHMS AND UNIT TESTS

214

Learn to program using Lazarus

18.d Testing the ParseToWords function: the FPCUnit Test
Lazarus provides two ready-to-run test program skeletons, one for console tests, the other for
GUI tests. We will adapt the GUI test-runner application. Select Project | New Project and
choose the last option in the listbox on the left of the Create a New Project dialog: FPCUnit Test
Application and click [OK].

This choice presents you with the TestCase Options dialog, and the Default Test Name field has
the default name TTestCase1 highlighted for you to overwrite. Change this to
TParseWordsTestCase, and click the [Create unit] button (leaving the two checkboxes unchecked).
See Figure 18.1.
Choose Project | Save Project As... naming the project parseWordsUnitTest.lpi and putting
this project in a new directory. Name the main unit parsewordstestcase.pas.

The skeleton code Lazarus provides contains a lot of functionality inherited from the TTestCase
class:

type TParseWordsTestCase= class(TTestCase)
 published
 procedure TestHookUp;
 end;

implementation

procedure TParseWordsTestCase.TestHookUp;
begin
 Fail('Write your own test');
end;

We shall adapt the TestHookUp method of the TTestCase descendant to perform the tests we
devise. First we have to declare the ParseToWords() function. Choose File | New Unit and
save the new unit Lazarus generates as ParseWords.pas. Add strutils to the uses clause, and
add a type section with the declaration of the ParseToWords function as above.

Chapter 18 ALGORITHMS AND UNIT TESTS

Figure 18.1 The TestCase Options dialog

215

Learn to program using Lazarus

With the cursor in that function declaration line press [Shift][Ctrl][C] to get Lazarus to write a code
skeleton in the implementation section of the unit. Then copy the body of the function as given in
Section e, and save your work.

Move back to the ParseWordsTestCase main unit, and press [Alt][F11] to open the Add unit to Uses
section dialog. Click the Interface radio button, and double-click parseWords in the list (it should be
the only unit listed). The dialog closes and Lazarus adds parseWords to the uses statement.
To complete the test runner program we simply need to add tests to the TestHookUp method. Place
the cursor within the class name TTestCase, and press [Alt][Up arrow]. This jumps you to the
declaration of TTestCase, and you will see that it descends from TAssert. Place the cursor in
TAssert and press [Alt][Up arrow] to reach the declaration of TAssert. You will see that it consists
of about 40 overloaded procedures named AssertXXX... These are the procedures we can invoke
to test our assertions about the tests we write.
For example, if we pass an empty string to ParseToWords it should return a nil value, not a
stringlist. So one of our tests can be:

AssertNull('Empty string returns nil function result', ParseToWords('', []));

The first parameter to the AssertNull procedure is a string describing the nub of the test, and the
second parameter is a nil value (hopefully). If we wrote:

AssertNull('This test is bound to succeed', nil);

then when we run the test program, this test cannot fail to succeed – not only are we asserting that
the parameter passed is nil, we actually pass a nil value, so the outcome of the test is now a
certainty rather than merely an assertion.
Move back to the main unit ParseWordsTestCase, and change the name of the procedure
TestHookUp to BoundToSucceed. Press [Shift][Ctrl][C] to get Lazarus to change the name in the
implementation section. Replace the line

Fail('write your own test');

with the line

AssertNull('This test is bound to succeed', nil);

Compile and run the program. If all goes well, when you click on the [Run] button you should see
green success icons as in Figure 18.2.
Whereas, if you change the line of code to the following and run the program, you will see purple
fail icons when you [Run] the test as in Figure 18.3:

AssertNull('This test is bound to fail', pointer(1));

Here we have put in a pointer value that is not nil, and so (in spite of the procedure's name) this one
is bound to fail. You may find when running the unit test program under the debugger that an
exception dialog is raised. If so, click on [Continue] (rather than [Break]) and use the taskbar if
necessary to focus the program to the foreground again. Hopefully that little exercise has given you
a feel for how the FPCUnit Test application is designed and works.

Chapter 18 ALGORITHMS AND UNIT TESTS

216

Learn to program using Lazarus

The important question is: What tests should we write? It is hard to give a satisfactory answer,
since you can never have too many software tests, and unfortunately many important tests of
GUI programs are very hard to write (because testing GUI functionality and interactivity in an
effective and automated way is not easy).

Chapter 18 ALGORITHMS AND UNIT TESTS

Figure 18.2 A successful run of BoundToSucceed

Figure 18.3 A failed run of BoundToSucceed

217

Learn to program using Lazarus

Fill out the TParseWordsTestCase class declaration to read as follows:

type TParseWordsTestCase= class(TTestCase)
 published
 procedure BoundToSucceed;
 procedure ParseEmptyString; // ''
 procedure ParseNoSeparatorsInString;//'ThereIsNoSeparatorInThisString'
 procedure ParseOnlySeparatorsInString; // ';,.()!'
 procedure ParseLeadingAndTrailingSeparators; //'____LeadingAndTrailing.....'
 procedure ParseSeparatorsAllTogether; // 'start.,.,.,.,.end'
 procedure ParseLongText; // longText - see const above
 end;

Add the following const statement for longText:

const longText =
'We find the need, in the course of the development of a project for a '+
'function that takes text (of arbitrary length, such as a paragraph from '+
'this book), and processes it by parsing it into its constituent words.';

Press [Shift][Ctrl][C] in the published procedures section of the TParseWordsTestCase class
declaration to cause Lazarus to write skeleton implementation code for us. Then complete the
test procedure implementations as follows:

Chapter 18 ALGORITHMS AND UNIT TESTS

18.e Example tests
The easiest tests to write are not of the GUI parts of software, but of procedural code such as
function results. We test the 'extremes' of parameters that might be passed to the tested
function, and devise tests that provide as wide a variety of possible inputs to the function as we
can come up with (and have time to write).
Once written, the Unit Test program can be run again very quickly if the function is ever
patched or altered, to make sure that the core functionality has not been compromised (or
perhaps to discover that it has been compromised). Designing a function that passes all the valid
tests we can devise does not guarantee that it is bug-free. However it does reduce the
likelihood that the most glaring and commonly encountered bugs have slipped past us.
We give here a few more tests that might be applied to the ParseToWords() function. It is not a
comprehensive list by any means, but a selection of the type of tests you should consider
applying: simple straightforward tests; tests of 'corner cases'; tests at the lower and upper limits
of data being processed; tests to cover situations that “will never happen” – but which do seem
to happen, nevertheless, on users' computers.

218

Learn to program using Lazarus

procedure TParseWordsTestCase.ParseEmptyString;
begin
 AssertNull('ParseEmptyString', ParseToWords('', []));
end;

procedure TParseWordsTestCase.ParseNoSeparatorsInString;
begin
 AssertEquals('ParseNoSeparatorsInString', 'ThereIsNoSeparatorInThisString',
 ParseToWords('ThereIsNoSeparatorInThisString', [])[0]);
end;

procedure TParseWordsTestCase.ParseOnlySeparatorsInString;
begin
 AssertEquals('ParseOnlySeparatorsInString', 0,
 ParseToWords(';,.()!',[]).Count);
end;

procedure TParseWordsTestCase.ParseLeadingAndTrailingSeparators;
begin
 AssertEquals('ParseLeadingAndTrailingSeparators', 'LeadingAndTrailing',
 ParseToWords('____LeadingAndTrailing.....', [])[0]);
end;

procedure TParseWordsTestCase.ParseSeparatorsAllTogether;
begin
 AssertEquals('ParseSeparatorsAllTogether', 'start',
ParseToWords('start.,.,.,.,.end', [])[0]);
end;

procedure TParseWordsTestCase.ParseLongText;
begin
 AssertEquals('ParseLongText', 39, ParseToWords(longText, []).Count);
end;

You see that writing tests is slightly tedious – there is little motivation to write lots of them, and
lots of tests covering the widest possible variety of test cases is what is needed to give you
confidence in a test suite, indeed to make it worth having at all.
Does ParseToWords pass all these tests on your machine, and your operating system?
How fully do you feel the tests given above exercise or stress this routine?

Chapter 18 ALGORITHMS AND UNIT TESTS

219

Learn to program using Lazarus

18.f Test-driven development
Note that, helpful as these sort of tests are (indeed essential if we want to write high quality software
that does not fall over at the first small hurdles users put in its way), the way these tests have been
introduced does not qualify as test-driven development (TDD). We came up with our tests
after we developed the parsing routine to check that it worked as we expected. The test-driven
paradigm is more rigorous and more logical. It starts with writing tests, forcing you to consider
the outputs of your routines and the output interface of your GUI controls before you code
them. This whole philosophy is beyond the scope of a short introductory book like this.
However, you can probably see that developing a routine's complexity test by test is a safer
way to build something complex from well-tested mini-modules and subroutines. This sort of
testing tests not only each subroutine as it develops, but can also test the growing complexity
of interactions between the various parts of more complex software as it grows.

18.g Optimising debugged routines
The more geeky you are, the more likely you may be to fall into the trap of premature
optimisation. Once you have written a bit of Pascal code, and gained some confidence in use of
the basic syntax and commonly encountered LCL classes and components you will gain ideas
of how to make code run faster. However, it is nearly always a mistake to start out by writing
code chosen solely because you think it will be fast. It is far better to develop and implement an
algorithm that is simple, elegant, and easy to maintain and debug. The chances are it will be fast
enough.
If you find some of your code proves to be sluggish when dealing with real-life data, that is the
time to think about optimising it (if you consider the time you spend on this worthwhile). Usually the
slowest portions of any program are those dealing with input and output (or I/O as it is often
abbreviated), either to screen, file or other device. The 'slowest' parts of GUI programs tend to be
the periods of inactivity resulting from lack of user input. Memory operations are generally
orders of magnitude faster by comparison.
The ParseToWords function would probably be speeded up somewhat if instead of building up
each parsed word character-by-character

s := s + c;

we instead introduced a wordStartPosition counter to remember the index of a word's
starting position in aString, and then when we next met a separator (at the ith character) we
copied the entire word at one go
 Result.Add(Copy(aString, wordStartPosition, i – wordStartPosition));

This would mean replacing the optimised syntax “for c in aString” by the more traditional
Pascal syntax using a for loop counter variable i that we can use both to save a value for
wordStartPosition, and to track the current position in the string. It is likely to be faster to
Copy() a section of text to a buffer rather than to append the same text character-by-character to
a string buffer. However, that is a supposition. Unless you make the comparison by timing
comparative performance under identical conditions your supposition (however reasonable in
theory) may be incorrect in practice. The questions which follow explore this a bit more.

18.h Profiling and compiler optimisation
Linux users have an advantage in the availability of the profiler valgrind which is designed for
making exactly the kinds of comparisons outlined above. The Linking page of the Options for
Project: xxxx dialog (Project | Project Options...) has a specific checkbox to support this
(Generate code for valgrind (-gv)). All platforms are able to take advantage of some built-in FPC
optimisations which may (or may not) increase the speed of running programs.
The compiler has various optimisation techniques up its sleeve which you can invoke to see if
they offer any speed advantage. The Code Generation page of the Options for Project dialog
offers several such technical tweaks.

Chapter 18 ALGORITHMS AND UNIT TESTS

220

Learn to program using Lazarus

Make sure (if you use the gdb debugger) you have completed debugging your project before you
activate any of these optimisations, since they remove information the debugger needs to debug
your project as it runs. Don't be disappointed if none of these optimisations has much
discernible effect on your program’s speed. They are most effective on very processor-intensive
code running in tight loops. Commonly GUI programs have I/O bottlenecks rather than CPU
bottlenecks.

Chapter 18 ALGORITHMS AND UNIT TESTS

18.i Review Questions
1. Rewrite ParseToWords() to use the Copy() procedure so that entire words are added

to the stringlist Result in one go, rather than being built up character-by-character
before being copied. Run your altered routine through a test suite to check
that it works as you expect.

2. Write a short program to call ParseToWords and your newly optimised
FasterParseToWords say 100,000 times each on some test strings, timing the performance
in each case, displaying the result, and determining if there is a significant difference
between the two routines
(Hint: you can use the sysutils Now function for simple timing tests if you don't have profiling
software).

3. Is there a different, better algorithm you can devise to parse a string into individual words?
Why do you think the programmer who wrote the strutils WordPosition() routine
chose to use the PChar data type, and to use the Move() procedure to implement
ExtractWordPos()?

221

Learn to program using Lazarus

If you make no mistakes, you usually don't make anything, and mistakes in
software are often not apparent from simply looking at the written code. Of
course the compiler will pick up typing errors such as missing semicolons,
spelling typos, or forgetting to declare a variable you use (and Lazarus' Code
Completion feature can often be invoked to insert missing variables without you
needing to type a declaration in full). Often it is the case that problems only
emerge when code which compiles perfectly is run and stressed with a real
user and fresh data input that varies from the few cases you put into your
unit tests (you did write unit tests, didn't you?).
How do we divine what is causing a program to give different output from
the expected or intended outcome? The problem is not usually spotting the
bug, but understanding what is causing it, and then working out how to
eliminate it. This chapter looks at some techniques you can use to diagnose
what might be going wrong when your program gives the “wrong answer”.
Sometimes hard-to-pinpoint bugs will require several different approaches
before you can diagnose exactly what is going wrong and where. There are
also those very-hard-to-find bugs, appearing just occasionally, and with no
discernible pattern whose cause may never be diagnosed or corrected.
The first sections of this chapter (a to g) consider several bug-avoidance
strategies, and later sections look at bug-hunting techniques.

19.a Preventing bugs
The simplest way to avoid a bug is not to write code yourself, but to use
another programmer's well-tested routine. For example, I know that the core
Lazarus/FPC developers are better and more experienced programmers than
me. This is not false humility on my part, it is just a fact. Routines I write –
the code offered in this book – should be treated with caution. It is not that
well tested, being written to illustrate specific points about Pascal and
programming in general. There are no customers depending on it or using it
in critical situations, and (at the time of writing) no feedback from code users at
all. It is folly to assume that simply because code you write “works” that it is
therefore bug-free. All software requires rigorous testing to identify and
eliminate bugs. Often bugs only come to light under certain (perhaps rare)
situations, or in combinations of circumstances that might occur on another
computer operated by a beta-tester which rarely if ever occurs on your
development computer. So it is always better to use a RTL/FCL/LCL routine
in preference to a roll-your-own routine if you can, and if you care about
software reliability.

This is not because the Lazarus libraries are completely bug-free. It is
because they are used, all the time, by many more people than use or test
code you will be writing, and are being continuously maintained (any parts
that are not are specifically marked as deprecated). Also people who use Lazarus
tend to report bugs when they find them because they feel part of the Lazarus
community and want to contribute. Reporting a bug is a valuable
contribution; almost as valuable as contributing a patch to fix the bug.
Whereas users of commercial software – even sometimes users of commercial
development software – rarely report a bug, and perhaps do not always even
realise that is what they have just stumbled across. They tend to curse
computers and move on to the next task.

Chapter 19 DEBUGGING TECHNIQUES

222

Learn to program using Lazarus

19.b Unit tests
Writing unit tests (see Chapter 18, section g) will help you isolate simple-to-find bugs.

19.c Paying attention to compiler messages
Some bugs arise because we ignore Warnings issued by the compiler. Unless you position it
elsewhere the Messages window sits below the Editor. It does not pass on all the output from
the compiler (the compiler's output is filtered to remove some messages) but what it does display is
worth noticing.
Note: If you want to see all compiler messages simply right-click on a compiler message and
choose Copy all Shown and Hidden Messages to Clipboard. Paste them into any text editor to view
them all.
Some of the information is not useful for tracking bugs. The message:

(like other Hints) is unlikely to help you trace a bug. However, it reduces your code size slightly
to remove unnecessary statements (though it does no harm to leave this pointless statement in place),
and it also reduces the number of messages to review when building or compiling. In the case
of this message there are several ways to remove the unused unit, and prevent the message
reappearing at each build/compile. If you click on the message it jumps you immediately to the
line and position (line 8, character 72) identified in the message. You can manually delete the
math unit. Or if you right-click on the message and choose Quick fix: Remove unit, Lazarus will
delete the unit name math for you.
Likewise you can right-click on Unit1 in the Editor and choose Refactoring | Unused Units... to
open the Unused units dialog. This dialog may well show more than just the one unused unit
since it determines what is not needed independently from the compiler's output, and does so
very thoroughly, dividing the Unused Units treeview into two branches. These list unused units
found in the interface separately from those found in the implementation section. You may
notice a brief burst of disk activity while this determination proceeds.
You can either choose the [Remove all units] button to remove all the listed unused units, or (if
you know you are about to use some routines from one or more of the units which is presently unused)
you can click individual units to select them, and [Ctrl]-click to select more than one unit (the
units do not need to be adjacent). This enables the [Remove selected units] button which removes
only the unused units you have specified (see Figure 9.1) leaving the unselected units still in the
uses clause.

unit1.pas(8,72) Hint: Unit "math" not used in Unit1

Figure 19.1 The Unused units dialog

Chapter 19 DEBUGGING TECHNIQUES

223

Learn to program using Lazarus

There are also compiler Messages that can be very helpful in helping prevent bugs slipping past
you. Start a new Lazarus project called fibonacci with a main form unit called fib_main.pas,

with the form's name set to fibForm and its Caption set to Fibonacci example.
This short project will calculate the first few numbers in the Fibonacci series. The Fibonacci
mathematical series is related to the arrangement of various items in nature, such as leaves on a
plant stem, segments of a pineapple and the whorls of a pine cone. See Figure 19.2 for typical
program output.
Drop a button on the form named BTestFib with its Caption set to Fibonacci. Beside it drop a
label named LFibLimit with its Caption set to Number of items in Fibonacci series:, and
beside that drop a spinedit named EFibLimit with its MinValue set to 3 and its Value set to 30.
Double-click BTestFib to generate an OnClick event handler as follows:

procedure TcalcForm.BTestFibClick(Sender: TObject);
begin
 MDisplay.Lines.Text:= FibString(EFibLimit.Value);
end;

Clicking BTestFib will generate a Fibonacci series whose length is determined by the spinedit
value. The series is stored in a string which is displayed in the memo named MDisplay. In the
form's private section add a declaration for this Fibonacci string function:

private
 function FibString(noInSeries: integer): string;

Use Code Completion to generate an implementation skeleton for this function, and complete it
as follows (Fibonacci series can be produced using a recursive algorithm, but here we use an iterative
algorithm):

function TcalcForm.FibString(noInSeries: integer): string;
var i: integer;
 m: integer=1;
 n: integer=0;
begin
 Result:= Format('Fibonacci series (%d-%d): ',[m, noInSeries]);
 while (i < noInSeries - 2) do
 begin
 Inc(i);
 m:=m+n;
 n:=m-n;
 Result:= Format('%s %d',[Result, m]);
 end;
end;

Chapter 19 DEBUGGING TECHNIQUES

224

Learn to program using Lazarus

Compile and run this project. How come it does not display a series of 30 Fibonacci numbers? If
you're lucky it will display only two numbers in the series, 0 and 1. If you're unlucky it might
display something more unusual. Did you notice the compiler Warning?
 fib_main.pas(47,10) Warning: Local variable "i" does not seem to be
initialized

Warnings indicate that something is amiss with code. Uninitialised variables are a common
source of bugs, and fortunately a bug source that is extremely easy to put right. All we need to
do is insert

immediately after the first begin (or set the initial value of i in the var declaration as we did for the
variables m and n). If we recompile and run the program we get a more satisfactory result (see
Figure 18.1) in which each number in the series is the sum of the two previous numbers.

i := 0;

Figure 19.2 The first 36 numbers in a Fibonacci sequence

19.d Using Assertions
An assertion is a useful tool (widely used in C and C++ programming where it originated) for
checking the runtime value of a variable (checking, for instance, that it falls within a certain allowed
range). If the assertion fails the program halts with an Assertion Failed exception and a message
identifying the offending line in the program source code. Assertions are mainly useful for
catching programmer errors (such as trying to access a class instance that has not been instantiated),
and for checking assumptions that may not always be true.
Because there is full compiler support for assertions, they can be left in code permanently, but
switched off through a compiler directive (or compiler command line argument) so that no
assertion code is compiled into a production executable, i.e. you can have working assertions
only in a test-phase, 'debug' executable, and remove compiled assertion code routines from
your 'release' version without altering the source code.
An assertion is basically a single boolean expression with an optional message. The syntax for
including an assertion is
Assert(asserted_boolean_expression, optional_failure_message);

You also need to give the compiler directive {$ASSERTIONS ON} or {$C+} in one of your
program's units (or specify the command line option -Sa). The Options for Project... dialog
([Shift][Ctrl][F11]) has a Parsing page on which there is an Include Assertion code (-Sa) checkbox
to give the compiler the same instruction.

Figure 19.3 Output from a failed assertion

Chapter 19 DEBUGGING TECHNIQUES

225

Learn to program using Lazarus

Here is an example of how you might use an assertion both to check that an array exists, and that
the index given to an array procedure has a sane value (see Figure 19.3). The procedure is one that
deletes an indexed value from a string array, reducing the array size by one and shuffling every
entry above the index downwards accordingly. It makes use of the powerful (and hence potentially
dangerous) Move() procedure. Start a new Lazarus GUI project called assert_array.lpi, with a
form unit called unit_main.pas. Name the form frmTestAssert, and set its Caption to Assert
example. Add an {$ASSERTIONS ON} directive to the unit, along with a type declaration for a
dynamic string array named TStrArray. Drop a button on the form, generate an OnClick event
handler for it, and add a public field FArray of type TStrArray, and two public procedures
DeleteStringAt() and ShowArray to the form class. Generate method bodies for them in the
implementation section, and complete the program as follows:

unit unit_main;

{$mode objfpc}{$H+}
{$ASSERTIONS ON}

interface

uses SysUtils, Forms, Dialogs, StdCtrls;

type
 TStrArray = array of string;

 TfrmTestAssert = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 public
 FArray: TStrArray;
 procedure DeleteStringAt(var anArray: TStrArray; anIndex: integer);
 procedure ShowArray;
 end;

var frmTestAssert: TfrmTestAssert;

implementation

procedure TfrmTestAssert.Button1Click(Sender: TObject);
begin
 SetLength(FArray, 7);
 FArray[0]:= 'This '; FArray[1]:= 'string '; FArray[2]:= 'does ';
 FArray[3]:= 'not ' ; FArray[4]:= 'have ' ; FArray[5]:= 'six ';
 FArray[6]:= 'words';
 ShowArray;
 ShowMessage('Calling DeleteStringAt(FArray, 3)');
 DeleteStringAt(FArray, 3);
 ShowArray;
 DeleteStringAt(FArray, 7); // comment out this line to untest the assertion
end;

procedure TfrmTestAssert.DeleteStringAt(var anArray: TstrArray;
anIndex: integer);

begin
 Assert(Assigned(anArray), 'nonexistent array given to DeleteStringAt');
 Assert((anIndex >= Low(anArray)) and (anIndex <= High(anArray)),
 Format('index value %d out of range in DeleteStringAt procedure',
 [anIndex]));
 Move(anArray[anIndex+1], anArray[anIndex],(High(anArray)-

anIndex)*SizeOf(string));
 SetLength(anArray, Length(anArray)-1);
end;

Chapter 19 DEBUGGING TECHNIQUES

226

Learn to program using Lazarus

procedure TfrmTestAssert.ShowArray;
var s: string;

z: string = '';
begin
 for s in FArray do AppendStr(z, s);
 ShowMessage(z);
end;

{$R *.lfm}

end.

19.e Modularising functionality
Encapsulation of program data and code in classes is a further development in the direction of
modular code which was one of Niklaus Wirth's goals in designing Pascal. The underlying
philosophy is that nothing outside the class should influence what goes on within it, except
through carefully designed data or event properties, or parameters passed in a constructor or
other method. The class should be, as it were, a black box with a limited number of 'feelers'
which give the class the ability to interact with the rest of the program code. But these 'feelers'
are carefully controlled. Only the minimum needed for communication with classes outside the
black box is exposed in the class interface.
Likewise a class should not need to know anything about the internals of other classes it relates
to in order to work, and its methods and properties should be designed to communicate using
the minimum possible data for interaction.For instance, in the earlier setdemo project (see
Chapter 12, Section g) we used the form's OnCreate event to initialise two sets of digits (we called
the sets A and Z), and to set up twenty buttons that the program needed for manipulating the
values in sets A and Z.
It would have been possible to write the OnCreate handler so that it declared the button arrays
needed, created each button, set each button's properties and events and populated the two
panels with the buttons. But this would have been poor design, coupling the form's OnCreate

event with far more detail of button set-up than is good. If we ever needed to set up button
arrays elsewhere, to reuse the set-up code we would then have had to extract it from the form's
OnCreate event, where it does not really belong.

A better design conceptualises functionality in a more modular way. To set up buttons we write
a CreateButtons method. To initialise sets we write an InitialiseSets method. Then our
form's OnCreate event becomes a matter simply of writing:

procedure TMainForm.FormCreate(Sender: TObject);
begin
 CreateButtons('A');
 CreateButtons('Z');
 InitialiseSets;
end;

As well as separating functionality into logically separate 'code modules' (i.e. methods) this
approach is also elegant and eminently readable. It is obvious from their names what
CreateButtons and InitialiseSets ought to do, and it is far easier to check that FormCreate

does what it should when its tasks are reduced to a simple list of called methods. This also
makes it much easier to spot if one method is missing, or called in the wrong sequence.

Chapter 19 DEBUGGING TECHNIQUES

227

Learn to program using Lazarus

With the button-creation code neatly separated from the set-initialisation code there is far less
chance that either method will interfere with the other in unforeseen ways, and the button-
creation code can now be very simply reused and called from elsewhere in the application
(should that ever be required) since it has been separated into its own method. Lazarus provides at
least two tools to help you modularise your code in this way.

19.f Code Observer
Lazarus has a tool called the Code Observer (which is off by default) which can help in
identifying over-long procedures, and other code deficiencies. Long procedures can be a sign of
poorly encapsulated functionality, or over-dependence of one part of your code on another
part, when less inter-dependence would lead to a cleaner design that is far easier to maintain.
The longer and more spaghetti-like your code is, the harder it is to read, understand and to
debug. Leopold Kohr's mantra for global economics small is beautiful is equally relevant as a
principle behind the writing of solid code.
The Code Observer is switched on by going to the Categories node of the Code Explorer branch of
the IDE Options dialog ([Shift][Ctrl][O]). Click on the Categories node of the Code Explorer branch
and make sure Code Observer is checked, before clicking [OK] to save the new settings (see Figure
19.4). You will probably have to scroll down in the treeview at the left of the dialog to reach this
branch.

You also need to click on the Code Observer node in the Options dialog to open the relevant page
(see Figure 19.5) where it does not hurt to tick all the categories, even though you might not be
bothered about some of them such as Style. Nevertheless, it is helpful to sort methods
alphabetically, particularly in classes that have lots of methods, since it is so much easier to
locate what you are looking for.

Figure 19.4 The IDE Options Categories page

Chapter 19 DEBUGGING TECHNIQUES

228

Learn to program using Lazarus

Figure 19.5 The IDE Options Code Observer page

Once you have set the Explorer and Observer options the way you want them, actual
observations are viewed in the Code Explorer, accessed via View | Code Explorer. Make sure
the Code tab at the top is selected, not the Directives tab. If you load the earlier compbrowser.lpi

project from Chapter 11, and view the Code Explorer using the illustrated settings, and scroll to
the Code Observer node in the Code Explorer's treeview you will see something like what is
shown in Figure 19.6.
Three methods are highlighted as being long. Clicking on the method name jumps you
immediately to the source, so you can examine it and see if it should be reworked, or refactored
to use the programming term. See the next section for details of how to refactor sections of
code.

There is one unsorted method. This is quickly rectified. To sort code alphabetically, select the
unsorted lines and choose Edit | Sort Selection... In the resulting dialog make sure that in the
Domain section the Lines radio button is selected. When you press [OK] the line sorting is
performed. (Sometimes subsequent adjustment to the indentation of the sorted code are required, if the
indentation was a mixture of tabs and spaces).

Chapter 19 DEBUGGING TECHNIQUES

The important category for this chapter's purpose is Long procedures, and over 25 lines is a fairly
good indicator. Obviously you will customise code observations to suit your situation and
coding style, and avoid being informed of 'deficiencies' that to you are not shortcomings at all.

229

Learn to program using Lazarus

unit r_string;
{$H+}

interface

resourcestring
 rsExample = 'This is an example string stored as a resourcestring';
 rsCompBrowserTitle = 'Component Browser';
 // other resourcestring declarations follow here …

implementation

end.

There are also 49 unnamed constants. Expanding this node shows that many of them are numeric
constants, which in this case are fine as they are. Again double-clicking on an entry jumps you
to its source declaration or use.
The identification of unnamed constants is very helpful if you want your application to be
structured in a way that makes it easy to be translated into other languages. You can use this
list as the basis of converting each string literal into a named resourcestring suitable for
internationalisation. Resourcestrings are a simple and effective way of organising literal strings
into named variables that can be processed by internationalisation tools such as poedit.
This is best done by creating a unit which holds nothing but resourcestrings in its interface

section. Such a unit is very simple:

Figure 19.6 The Code Observer node reporting observations about compbrowsermain

To convert a string literal identified by the Code Observer into a resourcestring, all you need to

do is select it in the Editor, right-click to show the context menu and choose Refactoring → Make
Resource String... This shows the Make ResourceString dialog (see Figure 19.7).

Chapter 19 DEBUGGING TECHNIQUES

230

Learn to program using Lazarus

Provided you have at least one unit in your project with a resourcestring declaration, the IDE
will find it and suggest it in the Resourcestring section as the location for the new resourcestring
it is about to create. Usually the default name suggested for the new resourcestring (made from
rs plus the initial word(s) of the string itself) is OK and you can just click [OK]. In the case
illustrated in Figure 19.7 Lazarus inserts the name of the new resourcestring constant in place of
the former string literal, and adds that constant as a new entry in the Resourcestring section
identified in the dialog. This automated process saves a lot of tedious graft in big projects where
there are many such strings that require localising and translating. When a resourcestring unit
is compiled Lazarus adds an .rst file to the project. In this case as well as an r_string.ppu,

Lazarus will generate an r_string.rst file too, corresponding to the r_string.pas source.

In this case Lazarus changed the source from

s := ' Palette Page: ' + aNode.Parent.Text;

to read as follows:

s := rsPalettePage + aNode.Parent.Text;

At the same time the relevant section of the r_strings unit was changed to the following:

resourcestring
 rsExample = 'This is an example string stored as a resourcestring';
 rsCompBrowserTitle = 'Component Browser';
 rsPalettePage = ' Palette Page: ';

Figure 19.7 The Make ResourceString dialog

Chapter 19 DEBUGGING TECHNIQUES

231

Learn to program using Lazarus

If you feel this has little to do with debugging, recall that every way in which your code
becomes more organised and more logically arranged, is a way in which it becomes easier to
maintain. Moreover, listing string constants all together in one place enables you to see at a
glance if you have duplicate constants. In a large program this is quite likely, though is
otherwise not detected. Weeding out duplicates and reducing all duplicates to a single
resourcestring used by various units reduces the overall memory footprint of your program,
which is also progress.

19.g Refactoring
A further useful Lazarus tool to help with modularising code is the Extract Procedure refactoring
tool, which you run by highlighting suitable code and choosing Refactoring | Extract
Procedure... from the context menu which pops up on right-clicking.
For a simple example, look at the setdemo_main unit from the setdemo program from Chapter
12, which contained a method called CreateButtons. It is a fairly short (17-line) function, so not
really a prime candidate for refactoring, but serves to illustrate the point here.
Select the lines in the CreateButtons procedure that are underlined in the following code.

function TMainForm.CreateButtons(setID: Char): TButtonArr;
const spacing = 10;
 aLeft = 40;
var i: integer;
 b: TSpeedButton;
begin
 for i := Low(TDigits) to High(TDigits) do
 begin
 b := TSpeedButton.Create(Self);
 b.Top := spacing;
 b.Left := aLeft + i * (b.Width + spacing);
 b.Caption := IntToStr(i);
 b.Tag := i;
 b.Name := setID + 'set' + b.Caption;
 case setId of
 'A' : b.Parent := pnlA;
 'Z' : b.Parent := pnlZ;
 end;
 b.OnClick:= @ButtonClick;
 Result[i] := b;
 end;
end;

When you right-click and choose Refactoring | Extract Procedure... you see the Extract
Procedure dialog shown in Figure 19.8.
Change the Name of new procedure field from NewProc to SetButtonProperties, leaving the Sub
Procedure radiobutton selected. When you click the [Extract] button, Lazarus inserts a sub-
procedure named SetButtonProperties into the code of CreateButtons, which now looks
like this:

Chapter 19 DEBUGGING TECHNIQUES

232

Learn to program using Lazarus

function TMainForm.CreateButtons(setID: Char): TButtonArr;
const spacing = 10;
 aLeft = 40;
var i: integer;
 b: TSpeedButton;

 procedure SetButtonProperties;
 begin
 b.Top := spacing;
 b.Left := aLeft + i * (b.Width + spacing);
 b.Caption := IntToStr(i);
 b.Tag := i;
 b.Name := setID + 'set' + b.Caption;
 case setId of
 'A' : b.Parent := pnlA;
 'Z' : b.Parent := pnlZ;
 end;
 b.OnClick:= @ButtonClick;
 end;

begin
 for i := Low(TDigits) to High(TDigits) do
 begin
 b := TSpeedButton.Create(Self);
 SetButtonProperties;
 Result[i] := b;
 end;
end;

Figure 19.8 The Extract Procedure dialog

In this case the improvement, if any, is slight. But it is one of the first code examples we have
seen that is extensive enough to serve as an example of refactoring, even though here there is
little to be gained. Certainly the logic in the for loop is easier to pick out immediately on
reading the code. Is an improvement in readability worth the effort of refactoring? Yes, and on
returning to this code some time later when you need to modify it, you will be glad you took
the trouble to make the program logic as clear as you could.

Chapter 19 DEBUGGING TECHNIQUES

233

Learn to program using Lazarus

Of course you can go overboard and refactor code that really does not need it. However, the
tendency is usually to write code that is too long and too dense, which can combine logical
routines that would be better written separately and independently of each other. Programming
involves careful thought about how the sections of code you design will communicate and
interact with each other. It also involves knowledge of how your code should communicate with
and exploit the code written by others in the support libraries (FCL, RTL, LCL).
Lazarus has been designed to free you from concern about communication with the OS, and you
should avoid all OS calls if you want your code to be cross-platform. All the platform-specific
LCL code is cleverly 'hidden' in widgetset units that keep it completely separate from the
generalised LCL code interface which is all you are normally aware of (unless you progress to the
point where you are contributing patches to the LCL).
If you come from a Delphi background, or if you port Delphi programs to Lazarus, this is often
an issue, since you may be used to making Windows API calls to do something that Delphi's VCL
did not specifically provide for. In Lazarus, such an approach dooms your application to be
Windows-specific, which these days is not usually what users want.

19.h Watching variable values
There are several ways to watch the changing 'values inside' the routines you develop, and unit
tests are one way to formalise that watching for the appearance of unexpected values. However,
other strategies are often desirable as well. The following sections look at some of the possibilities
for tracking the value of variables, functions and properties when you are getting the “wrong
answer”.
You don't want your program users to see any of this variable information, so variable watching
strategies have to apply during development and yet be invisible in the release. One way to
achieve this is to include variable-display code that can be switched on and off depending on the
situation.

19.i The {$DEFINE DEBUG} compiler directive
The FPC has a {$DEFINE ...} directive that allows you to define an identifier (DEBUG is
commonly used) that if present will activate some debugging code wrapped in an {$IFDEF ...}
… {$ENDIF} block. Lazarus provides the shortcut [Shift][Ctrl][D] which shows a dialog that
wraps selected code in the directive(s) you select. DEBUG is one of the predefined choices in this
dialog, also accessed via Source | Enclose in $IFDEF...
Suppose we need a function that reverses a string, and do not know that the RTL already
provides such a function. You might write such a function like this:

function StringReverse(const s: string): string;
var len, p: integer;
begin
 len:= Length(s);
 SetLength(Result, len);
 for p in [1..len] do Result[len - p] := s[p];
end;

Wisely you decide to debug this function in a test program, a new GUI project called
string_reverse. It has a label and an edit dropped on the main form, and the form has a
private method called StringReverse. The edit has an event handler for its OnChange event.
The main form unit needs to have LazLogger added to the uses clause in order to use the
DebugLn() procedure, which writes output to the console (or Terminal). This means on
Windows that the main program file needs to have a compiler directive instructing that this is a
console app (otherwise Windows developers will not see the debug output).

Chapter 19 DEBUGGING TECHNIQUES

234

Learn to program using Lazarus

The .lpr file, test_reverse will be as follows:

program test_reverse;

{$mode objfpc}{$H+}

{$IFDEF WINDOWS}
 {$apptype console}
{$ENDIF}

 uses Interfaces, Forms, main;

{$R *.res}

begin
 RequireDerivedFormResource := True;
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

The main.pas form unit will be as follows:

unit main;

{$mode objfpc}{$H+}

{$DEFINE DEBUG}

interface

uses SysUtils, Forms, StdCtrls, LazLogger;

type
 TForm1 = class(TForm)
 Edit1: TEdit;
 Label1: TLabel;
 procedure Edit1Change(Sender: TObject);
 private
 function StringReverse(const s: string): string;
 end;

var
 Form1: TForm1;

implementation

{$R *.lfm}

procedure TForm1.Edit1Change(Sender: TObject);
begin
 Label1.Caption:= StringReverse(Edit1.Text);
end;

Chapter 19 DEBUGGING TECHNIQUES

235

Learn to program using Lazarus

function TForm1.StringReverse(const s: string): string;
var
 len, p: integer;
begin
 len:= Length(s);
 SetLength(Result, len);
 for p in [1..len] do
 begin
 {$IFDEF DEBUG}
 DebugLn(['len: ',len,'; p: ',p,'; len - p: ',len-p]);
 {$ENDIF}
 Result[len - p] := s[p];
 end;
end;

end.

When you compile and run this test program you will see console output as follows
len: 1; p: 1; len - p: 0

just before the app raises an exception, caught here in the debugger (see Figure 19.9).

The versatile DebugLn() procedure has many overloaded variants. Here it shows us that (len-p)
has the unwanted value zero; unwanted because that is not a valid index for an ansistring
character. This is an example of an off-by-one bug, not an uncommon type of insect.
Our procedure needs amending so that the line of code that assigns the indexed character in
Result reads not as above but rather as follows:

Result[len + 1 - p] := s[p];

Having made this change, and verified that the amended function is good to go, we can
undefine the debug symbol, and then the Debugln() code will no longer be compiled into the
final app. This is done by removing the {$DEFINE ...} altogether, or with either of the following
amendments to the { $DEFINE debug} directive
 {$ DEFINE debug} // inserting a space turns a directive into a plain comment

 {$UNDEF debug} // this directive un-defines the debug symbol

As with all Pascal code, the capitalisation of the debug identifier is immaterial.
An alternative to use of the {$DEFINE ...} and {$IFDEF ...} directives is to leave all DebugLn
statements in place but simply comment them out manually once debugging is complete.
When returning to code for later maintenance, the debug support is already written, and only
requires un-commenting. The default shortcut for un-commenting code is [Shift][Ctrl][U].

Figure 19.9 test_reverse causing an access violation

Chapter 19 DEBUGGING TECHNIQUES

236

Learn to program using Lazarus

19.j Console debug functions
In the LazLogger unit Lazarus provides a number of debug functions that display strings to the
console, or convert numerous other types to strings for display in a console window alongside
the GUI display of the main program. (As always, Windows applications will require the
{$apptype console} directive to see this console in addition to the GUI windows).
A few of the most widely used LazLogger functions are given here.
All are overloaded (some quite heavily) which means that Debugln(), for instance, can display
between 1 and 18 strings in a comma-separated list! These functions accept either a comma-
separated list of strings
DebugLn('one', 'two', 'three');

or an array of const such as
DebugLn(['varOne = ',varOne,', varTwo = ',varTwo]);

or a format string followed by an array of arguments such as the Format() procedure accepts:
DebugLn('intVar = %d, stringVar = %s',[intVar, stringVar]);

You can see these functions have been designed to be as versatile as possible. They include:
• DebugLn() - roughly analogous to WriteLn()
• DbgOut() - roughly analogous to Write()
• DebugLnEnter() - identical to DebugLn(), but subsequent output is indented
• DebugLnExit() - identical to DebugLn(), but its own and subsequent output is un-indented

There are a number of string conversion functions provided for converting special types into
their string representation for debug output. Three of the available functions are:

• DbgStr() - which returns a 'normal' string, except that if it contains unusual characters
then each non-printing character is converted into #nnn format.

• DbgS() - which converts ordinal types including all integral types and booleans into
strings. It also converts pointers and extended values. Additionally TSize and TPoint
parameters are converted to show their x and y values and TRect parameters are converted
to show their Top, Left, Right and Bottom values. Several other less common types are
also accepted as parameters.

• DbgSName() - which returns the Name and ClassName of classes such as components.

If the above StringReverse() function is amended as follows:

function TForm1.StringReverse(const s: string): string;
var len, p: integer;
begin

 {$IFDEF debug}
 DebugLnEnter('StringReverse received parameter "%s"',[s]);
 {$ENDIF}
 len:= Length(s);
 SetLength(Result, len);
 for p in [1..len] do
 begin
 {$IFDEF debug}
 DebugLn(['len: ',len,'; p: ',p,'; len - p: ',len-p]);
 {$ENDIF}
 Result[len + 1 - p] := s[p];
 end;
 {$IFDEF debug}
 DebugLnExit('Exiting StringReverse, final value of p is %d',[p]);
 {$ENDIF}
end;

Chapter 19 DEBUGGING TECHNIQUES

237

Learn to program using Lazarus

19.k Program interruption
Occasionally it is helpful to interrupt a program to check output in the middle of a sequence of
code statements. A modal dialog prevents further code sequences from running until the dialog
is closed. One quick-and-dirty way to interrupt a running program to check value(s) at that
instant is to insert a ShowMessage() or ShowMessageFmt() call at a suitable point in your code
(a call you will later delete or uncomment, after debugging is finished). This requires the dialogs unit
in your uses clause.
Add dialogs added to the uses clause and change the StringReverse() function to the
following:

function TForm1.StringReverse(const s: string): string;
var len, p: integer;
begin
 len:= Length(s);
 SetLength(Result, len);
 for p in [1..len] do
 begin
 ShowMessageFmt('Value of (len - p) is %d',[len - p]);
 Result[len - p] := s[p];
 end;
end;

Figure 19.10 DebugLn output for the ReverseString function

then you will see output like that shown in Figure 19.10.

Chapter 19 DEBUGGING TECHNIQUES

238

Learn to program using Lazarus

When you run the program this time, just before an exception is raised you will be presented
with a dialog such as in Figure 19.11.

Figure 19.11 ShowMessageFmt used as a debugging aid

19.l Logging debug output to a file
Lazarus has a DbgAppendToFile() routine in the LCLProc unit which takes two parameters, a
logfile name, and a debug-string. It enables you to log a permanent, if simple file record of
debug output.
Add LCLProc to the uses clause, and change the ReverseString() function to the following,
before re-compiling and running the project.

function TForm1.StringReverse(const s: string): string;
var len, p: integer;
 tmp: string='';
begin
 len:= Length(s);
 SetLength(Result, len);
 for p in [1..len] do
 begin
 Result[len + 1 - p] := s[p];
 AppendStr(tmp, Format('p:%d,s[p]:"%s" ',[p,s[p]]));
 end;
 DbgAppendToFile('debug.txt',tmp);
end;

Typing 'rat' into Edit1 produced the following debug.txt log file:

p:1,s[p]:"r"
p:1,s[p]:"r" p:2,s[p]:"a"
p:1,s[p]:"r" p:2,s[p]:"a" p:3,s[p]:"t"

Logging may be required to debug both system and Lazarus message methods and message
events. More sophisticated logging is usually needed for that, such as provided by two
somewhat different open source packages. The second one listed is not principally a logging
library but an ORM framework for database programming. However it includes a versatile
logging implementation. Details about them can be found on the following wiki pages:
http://wiki.lazarus.freepascal.org/MultiLog
http://wiki.lazarus.freepascal.org/tiOPF

Chapter 19 DEBUGGING TECHNIQUES

239

Learn to program using Lazarus

19.m The debugserver tool
A very useful debugging tool, found in the Lazarus\tools\debugserver folder on a Windows
installation (and in an equivalent folder on other systems) comes as a ready-to-build
debugserver.lpi project. It requires you to add the dbugintf unit to the uses clause of your
project, which provides eleven SendXXX procedures which are used much like DebugLn(), only
instead of writing text output to the console they send text to the debugserver window (which
can be set to be 'Always on top'), and which has more functionality than many console windows. It
is particularly suited for checking the sequence and timing of message events since it records a
timestamp for every debug message received. The window contents can be saved to a log file, or
the messages can be cleared. It is a good example of a focused tool that does one task very well,
and you have the source code to see how it achieves this.
Load and build the debugserver project. Use your system file browser to run the debugserver
executable and set its window to be Always on top. Reload the string_reverse project in
Lazarus, add dbugintf to the uses clause, and change the ReverseString() function as follows.

function TForm1.StringReverse(const s: string): string;
var
 len, p: integer;
begin
 SendMethodEnter('StringReverse');
 len:= Length(s);
 SetLength(Result, len);
 for p in [1..len] do
 Result[len + 1 - p] := s[p];
 SendDebugFmt('result is "%s"',[Result]);
end;

When you run the project you will see the output of Figure 19.12 in the debugserver window.

Figure 19.12 The Debug message viewer listening
for reverse_string debug messages

On Linux the program performs flawlessly. A slight drawback is that on Windows if messages
are sent too close together in time (say successively in a tight loop) they get lost. In Figure 19.12
you'll see that the very first > Entering StringReverse message was lost (presumably because it
was chronologically too close to the opening Process test_reverse message).

Chapter 19 DEBUGGING TECHNIQUES

240

Learn to program using Lazarus

19.n Getting the compiler to catch bugs
Each Lazarus project gets its own project settings. Among these are options to instruct the FPC
exactly how the compilation of the source should be done. You access the Options for Project:
dialog from the Project | Project Options … menu ([Shift][Ctrl][F11]). The treeview on the left
of this dialog has two main branches, Project Options and Compiler Options. It is the pages under
Compiler Options that are relevant for debugging.
The Code Generation node when clicked shows a page which includes a group of Checks (see
Figure 19.13).

Figure 19.13 Part of the Code Generation page
of the Project Options dialog

The Checks section offers five possible checks the compiler can perform (extra compiler-generated
code is added to your project to achieve this).
It is a good idea to turn on Range checking during program development. This will generate
extra code that checks that array and string indexes are within bounds (similar to the Assert
example given in Section d). An out-of-range index in your program may cause memory
corruption or an unexplained crash. If you turn on the Range check for the original
ReverseString() example with the off-by-one bug, and recompile it, you will find when it
runs it stops with a different runtime error (201 rather than 203), and if you choose the
[Continue] button a new exception dialog appears as in Figure 19.14.

Figure 19.14 Compiler-added code showing up a range check error

Chapter 19 DEBUGGING TECHNIQUES

241

Learn to program using Lazarus

If you now choose [Break] the debugger will halt the program execution and take you to the
exact location in the source where this range check error was produced.
Similar sorts of compiler-generated code is added to your project if any of the other Checks are
enabled. Because they increase the size of the final executable, and slow the operation of the
program fractionally most developers remove such checks once the debugging phase is
complete, before compiling the release version.

19.o The heaptrc unit
The Linking page of the Project Options dialog includes several options related to debugging,
including a checkbox in the Debugging section labelled Use Heaptrc unit (check for mem-leaks) (-gh)
(see Figure 19.15).

This is a vital tool for developers, enabling you to identify otherwise disastrous memory leaks.
Such leaks not only point to faulty code (sections of allocated memory not being properly
deallocated), but can highlight faulty program logic, poorly coded manipulation of pointers and
similar shortcomings. There is really no reason not to turn on the use of the heaptrc unit to
identify such program flaws.
The unit gives a report at program termination, as additional console output for console
programs, or in a modal dialog (or series of dialogs) for GUI programs. If no memory problems
are found the report includes the statement
 0 unfreed memory blocks: 0

Unfortunately the modal dialog is still labelled Error in this case (though there is no memory
allocation error). See Figure 19.16

Figure 19.15 Part of the Linking page of the Project Options dialog

Chapter 19 DEBUGGING TECHNIQUES

242

Learn to program using Lazarus

Figure 19.16 Heaptrc reporting on a program which correctly deallocates all allocated memory

You activate the heap tracing functionality either by checking the Use heaptrc unit option in
the Project Options dialog as shown above, or by putting as the first entry in your
program's uses clause. As an alternative to showing heaptrc output in a modal dialog (or on a
console) when your program ends, you can opt to log the information to a file. If there are many
deallocation errors in a GUI program this is the preferred option, since otherwise you are forced
to click away possibly dozens of modal dialogs listing reams of memory error information.
To do this simply add
 SetHeapTraceOutput('/path/to/heaptrace.trc');

to the main program file.
To give a simple example, start a new Lazarus GUI project named trace, with a main form unit
called mainform. Set the Use heaptrc unit option as outlined above. Generate an OnCreate event
for the form, and complete it so the main form unit looks like the following:

unit mainform;
{$mode objfpc}{$H+}

interface
uses
 Forms, StdCtrls;
type
 TForm1 = class(TForm)
 procedure FormCreate(Sender: TObject);
 end;
var
 Form1: TForm1;

implementation

{$R *.lfm}

procedure TForm1.FormCreate(Sender: TObject);
var lbl: TLabel;
begin
 lbl:= TLabel.Create(nil);
 lbl.Caption:= 'This is a dynamically created label';
 lbl.Parent:= Self;
end;
end.

heaptrc

Chapter 19 DEBUGGING TECHNIQUES

243

Learn to program using Lazarus

Run this program, and after closing it you will see a series of modal dialogs, of which the first
will look like Figure 19.17.

Figure 19.17 Heaptrc output resulting from not freeing a component

The TLabel component lbl was created in the form's OnCreate event, but never freed. This
leads to 21 memory blocks (1696 bytes of memory) unallocated and orphaned at the end of the
program. Try running the program again, this time adding a SetHeapTraceOutput() call to the
main program file. For instance, the main program file might look like the following:

program trace;

{$mode objfpc}{$H+}

uses Interfaces, Forms, mainform;

{$R *.res}

begin
 SetHeapTraceOutput('d:\heaptrace.trc');
 RequireDerivedFormResource := True;
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

Running the program will now generate the specified .trc file rather than show a modal Error
dialog at program termination. You can examine this .trc file using the Tools | Leak View
menu option. Click on the ellipsis at the top of this tool to locate and open the generated .trc
file (see Figure 19.18).

Chapter 19 DEBUGGING TECHNIQUES

244

Learn to program using Lazarus

The Leak View tool parses the .trc file listing each memory deallocation fault in a separate
node. Expanding the nodes shows fuller information, including source code line numbers.
Forgetting to free a large object such as an instantiated component causes quite a number of
deallocation errors. The node expanded in Figure 19.18 mentions customlabel.inc, and cites
line 28 of the source:

This is a good indication that it is the label (or rather, not freeing it after use) that is the source of
the leak.

19.p The gdb debugger
You may wonder why the debugger installed with Lazarus is not mentioned until the end of
this chapter. One reason is that gdb, being a third party tool, and not designed for debugging
Pascal programs (it is much more at home in the world of C and C++ programs) is less than an ideal
companion for Lazarus, and so at times requires kludges and hacks to provide the full
information you might want from it.
A cross-platform debugger has to take account of the different executable formats (COFF, PE,
ELF and variants) and the different symbol table information formats (STAB, DWARF) that
Lazarus/FPC programs might use. Also gdb is being continuously developed itself, and so is
changing perhaps as fast as Lazarus changes.
Although there are drawbacks to using this C-oriented tool to debug Pascal-generated
executables gdb is a very capable debugger, and allows Lazarus programmers to watch
variables, view debug output, set breakpoints, step through code line by line and view
disassembly of Pascal code, and

lbl.Parent:= Self;

the level of its integration with Lazarus (considering it is an
entirely independent project having no obligation to the Lazarus project, nor orientation to its needs) is
remarkable. In view of this it is not surprising to find a few shortcomings in its display of
properties etc.

Figure 19.18 The LeakView tool showing line number information

Chapter 19 DEBUGGING TECHNIQUES

245

Learn to program using Lazarus

The debugger has several windows, of which the most useful for beginners are the Watches
([Ctrl][Alt][W]) and Local Variables ([Ctrl][Alt][L]) windows, accessed via View | Debug
Windows.

To run a project under the debugger you usually first set a breakpoint, or use Run | Run to
cursor ([F4]), which behaves as if you had set a source breakpoint in your source where the
cursor is currently located. To set a source breakpoint (a source location where the debugger will
pause program execution persistently, as opposed to a run-to-cursor execution pause which is attached
only to the cursor position) you click on the Editor gutter to the left of the source line where you
want to break. This places a red (?) icon in the gutter and highlights the source code line in red
(see Figure 19.19, the highlight being in gray, however).

Returning to the earlier test_reverse project, if you set a breakpoint as shown in Figure 19.19
in the original StringReverse function and Run | Run the program ([F9]) it will now stop at
that line in the source.
Use the View menu to show the Watches, Local Variables and Call Stack windows, and add
([Ctrl][A], or use the [+] toolbutton) to add the variables p and len to the Watch List. If you
now step through the source using [F8] you see the values of the variables changing. Figure
19.20 shows typical output.

Figure 19.19 A source breakpoint set at line 47

To run a program using the debugger it must not only be installed (which is the default for a new
Lazarus installation), but the program must be compiled with debugging information. This
makes the executable much larger (by a factor of about 10 in many cases). For this reason you may
prefer to get the compiler to generate the debugging information in a file separate from the
executable.
In the Linking page of Project Options (see Figure 19.15) you must check

Generate debugging info for GDB (slower / increases exe-size)
and you must make sure the following two options are unchecked

Strip symbols from executable (-Xs)
Link smart (-XX)

On the Code Generation page of the Project Options dialog the Optimizations radio group should
be set to Level 0 or Level 1, but not higher.

Chapter 19 DEBUGGING TECHNIQUES

246

Learn to program using Lazarus

Figure 19.20 Three debug windows open while stepping past a breakpoint

Fortunately the debugger has a forum section all to itself which can be found here:
http://www.lazarus.freepascal.org/index.php/board,12.0.html

This, together with the wiki page:
http://wiki.lazarus.freepascal.org/GDB_Debugger_Tips

are the best resources for exploring the capabilities of the debugger, or for getting help in using
it from people with more experience.

With this powerful tool, as much as with any part of Lazarus you will have fun. You will also
find that hovering the mouse over variables in your source code provides an automatic popup
hint window showing the current variable value, when running under the debugger.

Chapter 19 DEBUGGING TECHNIQUES

247

Learn to program using Lazarus

20.a Books about Pascal and Lazarus
It is impossible within the compass of an introductory book to cover even a fraction of what a
beginning programmer needs to learn. Nothing of substance has been written here about
databases, web access, data transfer technology and networking protocols, threads, interfaces,
serial, parallel and USB ports, messaging, graphics and games, mobiles, tablets and
touch/gestures, dlls and shared objects, component writing, generics, … But many of these
topics would require a book to themselves.

In addition to the internet resources indicated in Chapter 1 there are a host of books (many older
and fewer recent ones being published) about all aspects of programming, including specific
volumes devoted to Pascal or Delphi. Since Pascal is not a 'hot' language (many regarding it
disdainfully as useful only for teaching, if that) you can often find second-hand or remaindered
copies of books about Pascal and Delphi, which even if ten years old are often surprisingly
relevant. Few, if any, Pascal books are available in high street book shops – an online search is
the best place to begin.

Lazarus, The Complete Guide (M Gaertner, M van Canneyt, S Heinig, F Monteiro de Carvalho, J
Braun, I Ouedraogo) is the only Lazarus reference book available at the time of writing. It is
published in German and in English (ISBN 978-94-90968-02-1).

Essential Pascal (M Cantù) is a good short (140 page) introduction to the Pascal language of
Delphi, and nearly all of the book is applicable to Lazarus/FPC.
It can be ordered at:
http://www.lulu.com/content/2398448

Pascal authors to look out for (this is not by any means an exhaustive list) writing in English
include:

Charlie Calvert
Marco Cantù
Jeff Cogswell
Jeff Duntemann
Cary Jensen
Mitchell Kerman
Ray Lischner
Brian Long
Tom Swan
Bob Swart
Danny Thorpe

Several of these authors, even those not currently in print, have blogs or online resources
available. Of them all, probably Marco Cantù writes most helpfully for beginners.
He also contributes to Blaise Pascal Magazine, and to Embarcadero Delphi teaching events,
along with Cary Jensen and Bob Swart. Several of the FPC and Lazarus core developers
contribute articles to Blaise Pascal Magazine and the (German) Toolbox magazine, among them
Michaël van Canneyt and Felipe Monteiro de Carvalho.

 Chapter 20 FURTHER RESOURCES

248

Learn to program using Lazarus

249

Learn to program using Lazarus

Presumably people have always counted using their fingers, which may be why our arithmetic
nowadays is decimal – based on the number 10. A friend of mine amazed me with his
enjoyment in using a system based on the number 14 and explained that it worked just as well.
It worked.

The French mathematician Blaise Pascal enjoyed playing dice, and gambling. Naturally he
wanted to know when he might win. In his efforts to unravel the probability of a specific dice
roll outcome he began to develop a new science: statistics. He found that his discoveries did not
help in predicting specific outcomes, only what the average outcome would be given many dice
rolls. Although he failed to win a fortune through his new insights at gambling, his work was
the beginning of statistical mathematics. (You can read more of his story in Blaise Magazine,
issue 14).

In past eras people used pebbles or sticks, as well as their fingers, when counting. Bones were
used in Stone Age times as tally-sticks. These were in fact very simple tools for making
calculation easier. Many believe that later on with the invention of the abacus, the first real
computing device was born.

History of the computer

The word abacus (plural, abaci) is derived from the
Greek Abax, meaning “a table or board covered with dust” (a finger could write in the dust, or
tally up addition marks).
Abacus remains dating from about 3000 years before Christ have been uncovered.
The first abaci consisted of stones or tablets in which
grooves had been cut. A number of small stones could be pushed to one or other side of the
groove. In this way
numbers could be easily counted and remembered, and simple addition and subtraction
calculations could be carried out.
In China in the first abacus appeared about the year 12 AD. It was constructed as a wooden
frame containing several rows of beads on wires or rods (Figure 1). We presume that Roman
traders from Asia Minor brought this idea to the Chinese as they travelled.

The modern abacus is a very convenient and simple calculator and it is still in active use in
many parts of the world.

Figure 1: The Abacus

HISTORY OF THE COMPUTER

250

Learn to program using Lazarus

Liber Abaci (also written as Liber Abbaci, published in AD 1202) is a notable book on
mathematics by Leonardo of Pisa, who was later known by his nickname Fibonacci. In this
work Fibonacci introduced the Hindu-Arabic numerals into Europe (0, 1, 2 and so on), which
form such an important part of our decimal system today, and which helped to wean Europe
away from the Roman numerals (I, II, II, IV and so on) which had dominated arithmetic in
Europe until then. Fibonacci had learned this notation while studying with north African Arabs
who stayed with his father, Guglielmo Bonaccio, an Italian merchant.

Liber Abaci was not the first book to describe Arabic numerals for Western readers. The first
was the Codex Vigil Anus (completed in AD 976). The first French pope, Pope Sylvester II,
(pope from 999 to 1003 AD) energetically promoted Arabic mathematics and astronomy, and
reintroduced the abacus to Europe. Merchants and academics, and eventually the public at
large became convinced of the superiority of the new numerals over the cumbersome Roman
ones.

Liber Abaci means: “Calculation Book” although it is sometimes mistranslated as “The Book of
the Abacus”. Sigler writes that this is a misconception, since describing calculation methods
without use of the abacus is the book's entire theme. Even centuries after the book's publication
'algorists' (followers of the calculation methods described in Liber Abaci) continued to be in
conflict with 'abacists' (the traditionalists who stuck with use of the abacus in combination with
Roman numerals).

Figure 2: A page from the Liber Abbaci

HISTORY OF THE COMPUTER

251

Learn to program using Lazarus

Definition
The logarithm q, to the base a, of a number x, is the power to which you must raise the base a to
obtain x as the outcome, so:

Which can be written as:
Both the base a, and the argument x, must be greater than 0; moreover, a must be unequal to 1.

Around 1600.
John Napier, inventor of the logarithm,

Napier's rods

designed a hand-held calculation device with which you can make multiplications and divisions.
This device is known as

 (or Napier’s bones).

The Scotsman Napier also introduced the logarithm.
The logarithm is a mathematical function, usually written as the abbreviated term 'log'. The
logarithm of a number is a unique value, the exponent or power to which a particular base must
be raised to form the original number. For instance 10 must be raised to the power 2 to make 100.

2Thus the log10 of 100 is 2, algebraically: 100 = 10
There are infinitely many logarithms possible, corresponding to all possible bases. In practice
there are two useful base systems (found on most calculators):
Ÿ Logarithms with base 10
Ÿ Logarithms with base e
Ÿ The most commonly used logarithms are base 10 logarithms. (These are sometimes called Briggsian
logarithms after Henry Briggs who first introduced them as a variation of Napierian logarithms). To avoid
any ambiguity about the base used, logarithms can be written fully as log (100) = 2, (rather than 10

just log 100 = 2).
We refer to natural logarithms, or Napierian logarithms after their inventor, John Napier. The
natural logarithm is usually denoted ln (but you will also see log used in places where the natural, base
e, logarithm is intended). The logarithm is a third order arithmetic operation.

Figure 3: Natural and base 10 logarithmic functions

logarithmic functions

HISTORY OF THE COMPUTER

252

Learn to program using Lazarus

Instead of writing log(x) you can also write log (x) to make explicit the base to which the a

logarithm refers. However, the base (if absent) is assumed to be 10. For example, normally log(x)
is taken to mean log (x).10

The common (or Briggsian) logarithm, log, is the logarithm to base 10. Before the advent of
electronic calculators, tables of such logs were widely used to speed up calculations on large
numbers. Adding and subtracting logs from published tables, and finding the antilog of the
resulting value is much faster than multiplying or dividing by long multiplication or long
division. In this way multiplications were transformed to additions and powers to
multiplications, because:

log(xy) = log(x) + log(y)
ylog(x) = y*log(x)

The natural (or Napierian) logarithm is usually designated with ln, but mathematicians may
also use log. The natural logarithm has base e (where e = 2.718281828...):

eln(x) = log(x)

x xThe significance of using base e is the fact that the derivative of the function f(x) = e is again e .

Common or Briggsian logarithm

Natural or Napierian logarithm

We can represent the logarithmic function graphically. Here are graphs of the lines
y = ln x and y = log x

The logarithm to base a of a number x is the inverse of the exponential function with a as a base.
When the graph of the logarithm for base a is mirrored with regard to the line y=x, the function

x x = a is obtained.

HISTORY OF THE COMPUTER

253

Learn to program using Lazarus

1622

By using Napier’s logarithms William Oughtred invents the
sliderule.

.

William Oughtred (5 March 1574 – 30 June 1660) was an English mathematician.

Oughtred was born at Eton in Buckinghamshire (now part of Berkshire), and educated there
and at King's College, Cambridge, of which he became fellow. Being admitted to holy orders,
he left the University of Cambridge about 1603, for a living at Shalford. He was presented in
1610 to the rectory of Albury, near Guildford in Surrey, where he settled.
About 1628 he was appointed by the Earl of Arundel to instruct his son in mathematics. He also
offered free mathematical tuition to pupils, who included Richard Delamain, and Jonas Moore,
making him an influential teacher of a generation of mathematicians. He corresponded with
some of the most eminent scholars of his time.
It’s being said that he died of joy when he heard that Charles II was restored as king of
England.

After John Napier invented logarithms, and Edmund Gunter created the logarithmic scales
(lines, or rules) upon which slide rules are based, it was Oughtred who first used two such
scales sliding by one another to perform direct multiplication and division; and he is credited as
the inventor of the slide rule in 1622.

His original design of some time in the 1620s was for a circular slide rule; but he was not the
first into print with this idea, which was published by Delamain in 1630. Oughtred published a
book in 1632 about his sliderule and he became involved in a priority dispute with his former
student Delamain.

In 1631 he introduced the symbol „×“ for multiplications and „:“ for divisions as well as the
abbreviations "sin" and "cos" for the sine and cosine functions. Concering the abbreviations
"sin" and "cos" Albert Girard probably was a few years earlier.

Figure 4: William Oughtred

HISTORY OF THE COMPUTER

254

Learn to program using Lazarus

1623.
Wilhelm Schickard designs the first mechanical calculator.

Figure 5: Wilhelm Schickard

Wilhelm Schickard (22 April 1592 – 24 October 1635) was a German polymath who drew a
calculating machine in 1623, twenty years before Pascal's calculator was invented. He called it a
Speeding Clock or Calculating Clock (a misleading name, since it did not tell the time) on two
letters that he wrote to Johannes Kepler and explained that the machine could be used for
calculating astronomical tables. The machine could add and subtract six-digit numbers, and
indicated an overflow of this capacity by ringing a bell; to add more complex calculations, a set
of Napier's bones were mounted on it. Schickard's letters mention that the original machine was
destroyed in a fire while still incomplete. A working replica was eventually constructed in 1960.
Schickard's work, however, had no impact on the development of mechanical calculators

HISTORY OF THE COMPUTER

255

Learn to program using Lazarus

Figure 6: Original drawing of Schickard’s
„Rechenmaschine“

Figure 8: Pascal’s mechanical calculator, the Pascaline

1642.
Blaise Pascal builds a mechanical calculator (Pascaline).
Blaise Pascal (19 June 1623 – 19 August 1662), was a French mathematician, physicist, inventor,
writer and Catholic philosopher. Pascal had many contributions in mathematics (Pascal’s
Triangle), hydrolics (Pascal’s law on pressure), etc.
He invented a mechanical calculator in 1642. He conceived the idea while trying to help his
father who had been assigned the task of reorganizing the tax revenues of the French province
of Haute-Normandie. Pascal went through 50 prototypes before presenting his first machine to
the public in 1645. It was first called Arithmetic Machine, Pascal's Calculator and later
Pascaline, it could add and subtract directly and multiply and divide by repetition.

Its introduction launched the development of mechanical calculators in Europe first and then
all over the world, development which culminated, three centuries later, in the invention of the
microprocessor in 1971. Although Blaise Pascal was not the inventor of a programming
language, „our“ language Pascal was named after him in his honour.

Figure 7: The working replica

HISTORY OF THE COMPUTER

256

Learn to program using Lazarus

An Arithmometer or Arithmomètre was a mechanical calculator that could add and subtract
directly and could perform long multiplications and divisions effectively by using a movable
accumulator for the result. Patented in France by Thomas de Colmar in 1820 and manufactured
from 1851 to 1915, it became the first commercially successful mechanical calculator. Its sturdy
design gave it a strong reputation of reliability and accuracy and made it
a key player in the move from human computers to calculating machines
that took place during the second half of the 19th century.
Its production debut of 1851 launched the mechanical calculator industry
which ultimately built millions of machines well into the 1970s. For
almost forty years, from 1851 to 1887, the Arithmometer was the only
type of mechanical calculator in commercial production and it was sold
all over the world. During the later part of that period two companies
started manufacturing clones of the Arithmometer, they were: Burkhardt
from Germany which started in 1878 and Layton from the UK which
 started in 1883. Eventually about twenty European companies built
clones of the arithmometer until the beginning of WWII.

1673.
Gottfried Leibniz builds a digital .mechanical calculator
Gottfried Wilhelm Leibniz (or von Leibniz, July 1, 1646 – November 14, 1716) was a German
mathematician and philosopher. Early in life, he documented the binary numeral system (base
2), then revisited that system throughout his career. In 1671, Leibniz began to invent a machine
that could execute all four arithmetical operations, gradually improving it over a number of
years. This "Stepped Reckoner" attracted fair attention and was the basis of his election to the
Royal Society in 1673. The operating mechanism, invented by Leibniz, called the stepped
cylinder, drum or Leibniz wheel, was used in many calculating machines for 200 years. Also,
Leibniz is the most important logician between Aristotle and 1847, when George Boole and
Augustus De Morgan each published books that began modern formal logic.

Figure 9: Gottfried Leibniz Figure 10: The replica of Gottfried Leibniz’s Stepped Reckoner

1773.
Phillip Mathieus Hahn developes an improved calculator.
Pascal's and Leibniz’s designs were the basis for most of the mechanical calculators built during
the 18th Century. Special consideration deserves the German glergyman Phillip Mathieus Hahn
(1730-1790) who developed in 1773 the first functional calculator based on Leibniz's Stepped
Drum. Hahn's calculator had a set of 12 drums in a circular arrangement actuated by a crank
located in the axis of the arrangement.

1820.
Thomas de Colmar invents the arithmometer.

 Figure 11: Thomas de Colmard

HISTORY OF THE COMPUTER

257

Learn to program using Lazarus

1822.
Charles Babbage designs the 'difference engine'.
Charles Babbage, (26 December 1791 – 18 October 1871) was an English mathematician,
philosopher, inventor and mechanical engineer who originated the concept of a programmable
computer. Considered a "father of the computer", Babbage is credited with inventing the first
mechanical computer that eventually led to more complex designs. His Difference Engine was
designed to compute values of polynomial functions and would weigh 13,600 kg! It was never
completed during Babbage’s life.

1833.
Babbage designs the 'analytical engine'.
Soon after the attempt at making the difference engine crumbled, Babbage started designing a
different, more complex machine called the Analytical Engine. The engine is not a single
physical machine but a succession of designs that he tinkered with until his death in 1871. The
Analytical Engine could be programmed using punched cards. He realised that programs could
be put on these cards so the person had only to create the program initially, and then put the
cards in the machine and let it run. This machine was also intended to employ several features
subsequently used in modern computers, including sequential control, branching, and looping.
Charles Babbage is therefore known as the “father of the computer”.

Figure 13: The difference engine of Babbage

 Figure 12: The Arithmometer

HISTORY OF THE COMPUTER

258

Learn to program using Lazarus

1854. George Boole developed a logical calculus of truth values

George Boole (2 november 1815 - 8 december 1864) was an English mathematician
and philosopher. In 1849 he was appointed as the first professor of mathematics of the
university in Cork, Ireland. He invented a system for symbolic and logical reasoning,
now known as Boolean algebra. This algebra is used in mathematics, for designing
computer circuitry and programming. Boolean algebra contains the algebraic
structures with the logical operators AND, OR and NOT, based on the “truth values”
0 and 1. The operators are directly related to be conjunction, disjunction, and negation
concepts of the set theory. The operators and variables (called Booleans after George
Boole) are widely used in search engines to specify the search logic.

Examples of logic expressions:
1 and 0 = 0 (result only true when both variables are true)

1 or 0 = 1

 not 1 = 0

(result true when at least one variable is true)

(result is the inverse of the variable)

Figure 15: George Boole

1842. Ada Lovelace, the first programmer
Augusta Ada King, Countess of Lovelace (10 December 1815 – 27 November 1852), born
Augusta Ada Byron, was an English writer chiefly known for her work on Charles Babbage's
early mechanical general-purpose computer, the analytical engine. Her notes on the engine
include what is recognised as the first algorithm intended to be processed by a machine; thanks
to this, she is sometimes considered the "World's First Computer Programmer". The computer
language Ada, created on behalf of the United States Department of Defense, was named after
Lovelace.

Figure 14: Ada Lovelace,
Charles Babbage and a set of punched
cards to program the Analytical Engine

HISTORY OF THE COMPUTER

259

Learn to program using Lazarus

1890. Punched cards are used for data processing.
A punched card, punch card, IBM card, or Hollerith card is a piece of stiff paper that contains
digital information represented by the presence or absence of holes in predefined positions.
Although Semen Korsakow and Charles Babbage already proposed the use of punched cards
for information store, Herman Hollerith invented the recording of data on a medium that
could then be read by a machine. Now an obsolete recording medium, punched cards were
widely used throughout the 19th century for controlling textile looms and in the late 19th and
early 20th century for operating fairground organs and related instruments. They were used
through the 20th century in unit record machines for input, processing, and data storage.
Early digital computers used punched cards, often prepared using keypunch machines, as the
primary medium for input of both computer programs and data. Since the 1980s punch cards
have been superseded by electronic media read magnetically or optically.

Figure 16: An example of a punched card

Xerox Corporation is an American multinational document management corporation that
produced and sells a range of color and black-and-white printers, multifunction systems, photo
copiers, digital production printing presses, and related consulting services and supplies.

Xerox was founded in 1906 as The Haloid Photographic Company but after acquiring a
patent on the so-called xerographic process from Chester Carlson the company was renamed
Xerox. The American headquarters are seated in Norwalk Connecticut.

Figure17: Chester Carlson

1906.
The company Haloid (later XEROX) is founded

HISTORY OF THE COMPUTER

260

Learn to program using Lazarus

Carlson is born in Seattle on February 8, 1906 and moved with his family to San Bernardino in
California. His father was a barber who developed arthritis of the spine. When he was 14 years,
both his mother and his father got tuberculosis, so that Chester became the main source of
income.
Despite all these setbacks Chester succeeded in enrolling in a high school in 1930 and later took
a degree in Physics at the California Institute of Technology. After several jobs Carlson attended
night school to become a patent attorney. He always needed more copies of patents and in that
time there were only two possibilities: either to photograph the patents elsewhere or to
laboriously copy them by hand. Because Carlson was increasingly frustrated by the slow
mimeograph machine and the high cost of photography, this led him to think about a new way
of copying. He invented an electrostatic process that could reproduce words on a page in a few
minutes.

Experiments and many years of labor led to Carlson's first patent, issued in October 1937 for
"electrophotography". In subsequent years IBM, Kodak, General Electric and many others
rejected Carlson's idea. Two companies, however, snapped, Battelle and Haloid which were
inclined to invest money and manpower into the project. In 1948 the electrophotography was
demonstrated to the world.

Because the name electrophotography was not easy on the ear, a professor from Ohio came up
with "xerography" from the Greek words xeros (dry) and graphics (writing). Therefore Haloid
called the first copying machine Xerox Model A, the last X was added to the name to be
comparable to Kodak. Haloid changed its name officially in 1958 into Haloid Xerox and finally,
in 1961, in only Xerox. Xerox Corporation has placed the name "Xerox" solid as a trademark and
protected the name carefully.

Figure 18 Carlson’s original patent
application material

HISTORY OF THE COMPUTER

261

Learn to program using Lazarus

Figure : 19
A working replica of Chester Carlson's
first electro-static copying machine

The Palo Alto Research Center PARC (owned by Xerox), was started in 1970. A remarkable
number of ideas and inventions were developed here which have later been adopted by the
ICT industry.

1911.
The Tabulating Machine Company is founded.
In 1896 Herman Hollerith, inventor of the punch card, founded the Tabulating Machine
Company together with the Dutchman Jan Broeksma. After several mergers the Computing
Tabulating Recording Company was incorporated in 1911 in the U.S. state of New York. CTR
manufactured employee time keeping systems and punched card equipment.

HISTORY OF THE COMPUTER

262

Learn to program using Lazarus

In 1924 CTR Company is renamed International Business
Machines (IBM).
Citing the need to align its name with the "growth and extension of its activities CTR was
renamed the International Business Machines. The part of the organization operating under the
name Hollerith was responsible for the punched card systems used in the concentration camps
in Nazi Germany. IBM was best known for the manufacture of typewriters, punch card
machines, copiers and the big mainframe computers.

Nowadays everyone knows IBM
(nickname Big Blue) for its Personal Computers. IBM has many patents on its name such as the
hard disk and the floppy disk. The latter is hardly in use anymore.

An IBM invention for the electric typewriter was the typeball, introduced in the Selectic
typewriter in 1961. It was a spherical element with 88 characters on its surface and was able to
turn around in all directions to put those characters on paper, with a maximum speed of 15
characters per second. The ball replaced the traditional typebars (letter hammers), which could
become entangled when typing fast. The ball could be replaced easily to change to a different
font, which was not possible for traditional typewrites. Another difference was that the typeball
moved laterally in front of the paper as opposed to the traditional moving carriage.

Since the sixties IBM mainframes builds large computer servers. Programs at that time had
to be fed to the computer via punched cards. Since the second half of the seventies IBM
expanded its market leadership also with midrange servers for midsize businesses. In this
category IBM is still the market leader with its System i (i5/OS or Linux), System p (AIX or
Linux) and System x (Windows and Linux) servers.

IBM presented in August 1981 the Personal Computer, a small computer for consumers
with a 16-bit microprocessor from Intel, and PC-DOS 1.0, the first operating system from
Microsoft. This type of computer would be the standard in daily use. IBM would later
introduce an own operating system for Intel processors, OS / 2. This was (commercial) not very
successful, although in a number of companies still use it.

"

In 1957, IBM developed the FORTRAN
(FORmula TRANslation) scientific programming language.

The
Selectric typewriter was during the seventies also produced in Amsterdam.

The actual plant of CTRC

In 1991, the production and sale of printers placed in a separate division, Lexmark. It was sold in
1995. The consulting division of PricewaterhouseCoopers was acquired in 2002. They had 30,000
employees worldwide,

In December 2004 IBM sold the PC division to Chinese computer manufacturer Lenovo.
Lenovo paid $ 650 million cash and $ 600 million in shares for the division. Initially there was
uncertainty whether the U.S. government would approve the acquisition, the government
thought that Lenovo might be consigned to too sensitive U.S. technology. Proponents of the
takeover, however, said that any business would have computer technology at its disposal and
that Lenovo itself already possessed the technology. Eventually, on March 9, 2005 the deal was
approved by the Committee on Foreign Investment in the U.S. (CFIUS) and this acquisition was
a fact.

On June 6, 2005, IBM, in collaboration with the Ecole Polytechnique Fédérale de Lausanne
(EPFL), launched the Blue Brain Project. The aim of this study is to make a detailed model of the
neocortex (the part of the brain thought to be responsible for higher functions such as conscious thought),
running an artificial neural network on supercomputers.

IBM's motto was 'Think.' Apple's slogan was 'Think differently.'

 in the Netherlands 1700.

HISTORY OF THE COMPUTER

263

Learn to program using Lazarus

1927. Vannevar Bush constructs alarge-scale differential analysor.

Vannevar Bush was, without a doubt, one of the most influential scientists of the twentieth
century. Starting in 1927, Bush constructed a Differential Analyser, an analog computer that
could solve differential equations with as many as 18 independent variables. He had a political
role in the development of the atomic bomb as a primary organizer of the Manhattan Project.

But that is not the reason why Bush today is still known. His on-going reputation is due to an
article which was published in The Atlantic Monthly: 'As We May Think'. It described the
concept of what he called the memex, which he imagined as a microfilm-based "device in
which an individual stores all his books, records, and communications, and which is
mechanized so that it may be consulted with exceeding speed and flexibility. It is an enlarged
intimate supplement to his memory.“ In the article, Bush predicted that "wholly new forms of
encyclopedias will appear, ready made with a mesh of associative trails running through them,
ready to be dropped into the memex and there amplified".

This article inspired many pioneers in the computer technology and the article is oftes cited as a
conceptual forerunner of the World Wide Web. Bush is now regarded as one of the founders of
the information technology.

Figure 20: Vannevar Bush

1935. Konrad Zuse builds the Z1-computer.

1936. John Vincent Atanasoff and John Barry invent the first
electronic digital computing device for special purposes.

Konrad Zuse (1910–1995) was a German civil engineer and computer pioneer. He builds the Z1,
world's first program-controlled computer. Despite certain mechanical engineering problems it
had all the basic ingredients of modern machines, using the binary system and today's standard
separation of storage and control. The instructions were read from a perforated 35 mm film.

The Atanasoff–Berry Computer (ABC), conceived in 1937,was not programmable, being
designed only to solve linear equation systems. The ABC included binary math and Boolean
logic to solve up to 29 simultaneous linear equations, but it lacked a changeable, stored
program.
For digital computing the machine used vacuum tubes.

HISTORY OF THE COMPUTER

264

Learn to program using Lazarus

1937. Alan Turing, a British mathematician, developes the
theoretical 'Turing Machine'.
A Turing machine is a device that manipulates symbols on a strip of tape according to a table of
rules. The Turing machine is not intended as a practical computing technology, but rather as a
hypothetical device representing a computing machine. Turing machines help computer
scientists understand the limits of mechanical computation. He laid the foundation for
developing programmable computers for general purposes.

Turing is also famous because his success of breaking the „Enigma Code“
during Wolrdwar II, enabling the allies to decipher secret messages
exchanged by the German military.

1939. Bell Labs develops a Complex Number Calculator (CNC).
The Bell Telephone Laboratories or Bell Labs originally was the research and development
subsidiary of Western Electric and the American Telephone & Telegraph Company (AT&T), the
American national telephone company, also called Bell System. Its principal work was to design
and support the equipment that Western Electric built for Bell System operating companies.
Bell Laboratories was the premier facility of its type, developing a wide range of revolutionary
technologies from telephone exchanges to special coverings for telephone cables, the transistor
and more general telecommunications () and information theory.

Over 40,000 inventionswere made since the foundation in 1925. Many Bell-developers were
awarded: seven Nobel Prizes in Physics for eleven developers and 28 IEEE Medals of Honor,
almost a third of the total awarded since1917.

Bell Labs was founded in 1925 by Walter Gifford (the chairman of AT & T) and then took
over the work of the research department of Western Electric with Frank Jewett as first
president. Bell Labs was 50% owned by AT & T and 50% of Western Electric.

including radio astronomy

The Complex Number Calculator (CNC) is completed. In 1939, Bell Telephone Laboratories
completed this calculator, designed by researcher George Stibitz. In 1940, Stibitz demonstrated
the CNC at an American Mathematical Society conference held at Dartmouth College. Stibitz
stunned the group by performing calculations remotely on the CNC (located in New York City)
using a Teletype connected via special telephone lines. This is considered to be the first
demonstration of remote access computing.

Figure 21:
TheBelll Labs Complex

HISTORY OF THE COMPUTER

265

Learn to program using Lazarus

In the President Ronald Reagan administration, split the monopolist AT & T to achieve
more competition in the telecom market. This separation yielded apart from 'Ma Bell' (the
reduced AT & T), a total of six "Baby Bells", which offered local telephone services in their
region. Bellcore was split off from Bell Labs to serve as research and development branche for
the local phone companies.
In 1996 AT & T Bell Labs, together with most of the equipment production facilities, merged
into a new company named Lucent Technologies. AT & T retained a small number of
researchers that became AT & T Laboratories.

1984

In januari Jan Hendrik Schön, a German physicist, was dismissed by Bell Labs, because
his publications were found to contain fraudulent data. It was the first known case of fraud in
the history of the laboratory. More than a dozen of Schön's publications were based on
fabricated or altered data, including a document on very small transistors, which was seen as a
breakthrough.

At its peak, Bell Labs had research and development facilities all over the United States, the
most important ones in New Jersey. Nowadays Bell Labs has its headquarters in Murray Hill,
New Jersey. Since 2006 Bell Labs has been owned by the French group Alcatel-Lucent.

From the point of view of computer development, some of the most significant research spin-
offs to emerge from Bell Labs have been the invention of the transistor, the laser, the
development of information theory, the UNIX operating system, the C programming language,
and the C++ programming language.

2002

1943. De Colossus Mark I deciphering computer was

Figure 22: Colossus Mark II was used for cryptanalysis
of high-level German communications (1944)

HISTORY OF THE COMPUTER

266

Learn to program using Lazarus

1944. The Harvard Mark I computer is developed (US).

Figure 23: The Harvard Mark I – an enormous electro-mechanical computing machine,
built at IBM and installed at Harvard in 1944

1947.
Grace M. Hopper finds the first real bug.

Rear Admiral Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an American
computer scientist and United States Navy officer. A pioneer in the field, she was one of the
first programmers of the Harvard Mark I computer, and developed the first compiler for a
computer programming language. While she was working on a Mark II Computer at Harvard
University in 1947, her associates discovered a moth stuck in a relay and thereby impeding
operation, whereupon she remarked that they were "debugging" the system. She
conceptualized the idea of machine-independent programming languages, which led to the
development of COBOL, one of the first modern programming languages.

Figure 24: The first actual case
of a bug being found

HISTORY OF THE COMPUTER

267

Learn to program using Lazarus

Hopper was born Grace Brewster Murray and married in 1930 professor Vincent Foster
Hopper. In 1934, she earned a Ph.D. in mathematics from Yale and was promoted to associate
professor in 1941. In 1943, Hopper was sworn in to the United States Navy Reserve. She served
on the Mark I computer programming staff headed by Howard H. Aiken, at Harvard's Bureau
of Ordnance Computation Project, where she became an expert at the heavy mathematics then
required for programming, and literally wrote the operating manual. Hopper and Aiken
coauthored three papers on the Mark I and II also known as the Automatic Sequence
Controlled Calculator.

In 1949, Hopper became an employee of the Eckert-Mauchly Computer Corporation as a senior
mathematician and joined the team developing the UNIVAC I. Her conviction that computer
programs should be written in English was invariably answered that “computers don't
understand English”. In the early 1950s the company was taken over by the Remington Rand
corporation and it was while she was working for them that her original compiler work was
done. The compiler was known as the A compiler and its first version was A-0. Three years
later she and her team surprised the computer world at that time with the compiler B-0 that
could translate English program instructions to machine language.

She is best known for her 1952 invention of Flow-Matic, the first compiler-software that
translates instructions written in English into machine language for the target computer.
Compilers have allowed the development of computers that seem to "understand" English, a
breakthrough which lets computers be programmed by people who might lack an advanced
degree in mathematics.

Figure 25: Grace Hopper, a gifted mathematician

In the spring of 1959 Hopper served as the technical consultant to the committee that defined the new
language, COBOL. The new language extended Hopper's FLOW-MATIC language with some ideas from
the IBM equivalent, the COMTRAN. Hopper's belief that programs should be written in a language that
was close to English rather than in machine code or languages close to machine code (such as assembly
language) was captured in the new business language.

During her career Grace Hopper worked successively for
university, industry and the military. She was one of
the first software engineers, and was known for her
inspiring personality and great perseverance. She predicted that software will be more
expensive than gardware, which was unimaginable at that time.

HISTORY OF THE COMPUTER

KIM can youmake contact?

268

Learn to program using Lazarus

For her contribution to computer science Grace Hopper received numerous awards:

*

*

*

*

In she received the title “senior programmer”,

one of the first people ever to receive this title.

In she won the inaugural "computer sciences man of the year" award from the Data

Processing Management Association. and in 1971 a new annual award for young
computer scientists was subsequently named after her.

In the White House promoted her to Commodore status and then two years later this

was merged with Rear Admiral and she became Admiral Grace Hopper.

In , one year before her death, Grace Hopper received the National Medal of

Technology “for the success of her pioneering work in developing the
programming language, that significantly simplified information technology,
and opened the door to a new universe of computer users.”

Grace Hopper received nearly 50 honorary degrees from universities worldwide during her
lifetime. But the most striking honory titles may be the nick names given to her: Grand Lady of
Software, Grandma COBOL and Amazing Grace.

1950

1969

1983

1991

1946.
Two electrical engineers at the University of Pennsylvania, John
Mauchley and J. Presper Eckert, built ENIAC
ENIAC (Electrical Numerical Integrator And Calculator) was the first large-scale, fully
electronic, general purpose digital computer. The ENIAC was designed to calculate artillery
firing tables for the U.S. Army's Ballistic Research Laboratory, and completed in 1946. It used
nearly 18,000 valves (vacuum tubes) for storage and computation, weighed 30 tons and
occupied an area of 167 square metres.

ENIAC could perform 357 10-digit by 10-digit multiplications per second, or35 divisions or
square roots per second. It cost nearly $500,000, and needed a 150 kW power supply (mainly for
the vacuum tubes). Only much later were computers able to be smaller, lighter and less power-
hungry, when vacuum tubes were replaced by transistors and still later by microchips.

Programming the ENIAC was a difficult task because the valves had to be connected differently
for each program. Only in future would fully programmable hardware be introduced.
The ENIAC was designed to quickly calculate trajectories of missiles and grenades for wartime
use. The ENIAC was the supercomputer of its time. Using an analog Differential Analyser an
able mathematician could compute the trajectory of a missile in about fifteen minutes. The
ENIAC completed this task in thirty seconds, which was a revolutionary development at the
time. The ENIAC filled a large room. Today the same work can be performed by a chip a few

millimetres square. The ENIAC was irreparably damaged by
lightning in 1955.

HISTORY OF THE COMPUTER

269

Learn to program using Lazarus

Figure 26: The ENIAC Computer

For many years the ENIAC was wrongly credited as the world's first programmable electronic
computer. However, two years earlier towards the end of the Second World War, at Bletchley
Park in England the Colossus was being used to decrypt secret German telexes. These
messages, intercepted by the Allies had been encrypted with the Lorenz machine.
Colossus was used successfully for decryption from January 1944 onwards. Because British
intelligence classified all details of this code-breaking operation, the existence of Colossus was
suppressed, and so all the credit went to the ENIAC. After the war, all trace of what occurred at
Bletchley Park was destroyed. The 10 Colossus machines were dismantled, and all technical
drawings were burned. Such was the culture of secrecy at Bletchley Park that no word of what
happened began to emerge until the mid 1970s.
Surprisingly it was not until 1996 when the U.S. National Security Agency declassified some
wartime documents describing the Colossus (sent originally to Washington by US liaison
officers stationed at Bletchley Park), that incontrovertible evidence of some of its capabilities
was first published. Following these revelations the previous UK Official Secrets Act
restrictions on talking about the Colossus were gradually lifted.

HISTORY OF THE COMPUTER

270

Learn to program using Lazarus

Figure 27: The three inventors pictured together

The transistor has become the most important component used in semiconductor electronic
devices, serving to amplify electronic signals. The transistor is the fundamental circuit
component in all modern computers. Shockley, Bardeen, and Brattain were jointly awarded the
1956 Nobel Prize in Physics for this accomplishment.

Figure 28: Transistors can be used singly as
individual components, but usually many
transistors are combined together into an
integrated circuit.

1947. Three engineers at Bell Labs: John Bardeen, Walter Brattain and William
Shockley, invented the transistor.

Figure 29: A replica of the original
transistor at the Bell Labs museum

HISTORY OF THE COMPUTER

271

Learn to program using Lazarus

John Bardeen (1908-1991).

Walter Houser Brattain (1902-1987).

Bardeen was an American physicist and electrical engineer, the only person to have received
the Nobel Prize in Physics twice: first in 1956 with William Shockley and Walter Brattain for the
invention of the transistor, and again in 1972 (with Leon Cooper and John Robert Schrieffer) for
a fundamental theory of superconductivity known as the BCS theory.
Bardeen was born in Madison (Wisconsin), the son of Charles Russell Bardeen (a professor of
anatomy) and a teacher named Althea Harmer.
Aged only fifteen he went to the University of Wisconsin, graduating in 1928 and completing
his master's thesis in electrical engineering in 1929. After working as a geophysicist in
Pittsburgh he began to study for a doctorate at Princeton University, where he received his Ph.
D. in mathematical physics in 1936.
After World War II, he took up a lucrative appointment in solid-state physics at Bell Labs where
his collaboration with Shockley and Brattain led to the development of the point-contact
transistor. Shockley later excluded him from work on developing the junction transistor, and he
left Bell Labs to become professor of electrical engineering and physics at the University of
Illinois where he spent the rest of his working life.

Brattain was an American physicist who is known as co-inventor (with John Bardeen) of the
point-contact transistor. He devoted much of his life to research on surface states, mainly
carried out at Bell Labs. After the invention of the transistor he became unhappy working
under Shockley, and transferred to another Bell Labs department where he remained until his
retirement in 1967.

William Bradford Shockley (1910-1989).
Shockley, an American physicist and inventor, trained as a scientist and received his doctorate
in solid state physics from the Massachusetts Institute of Technology in 1936. He worked as
part of a research group at Bell Labs in New Jersey, publishing a number of papers on solid
state physics. At the end of the war in 1945 Bell Labs formed a solid state physics group led by
Shockley and chemist Stanley Morgan, which included John Bardeen and Walter Brattain. Their
attempts to make a solid-state alternative to radio valves as amplifiers based on Shockley's
ideas of using an external electric field to influence semiconductor conductivity failed until
Bardeen suggested a theory involving surface states. Brattain and Bardeen's success in
producing the first amplifying point-contact transistor (without Shockley) led Shockley to work
on ideas for a junction transistor without Brattain and Bardeen. He obtained a patent for this
invention in 1951. He left Bell Labs and became Director of Shockley Semiconductor Laboratory
which led to the development of Silicon Valley as a focal area for microelectronics development
as many of his former employees, distressed by his abrasive style, left to form their own
successful companies.
Shockley will be remembered by many for his racist statements, and his outspoken support for
eugenics, such as his suggestion that all people with an IQ of less than 100 should be paid to
undergo voluntary sterilisation. In later life, Shockley became a professor at Stanford
University, and Time Magazine named him as one of the 100 most influential people of the
twentieth century. He died in 1989 from prostate cancer.

HISTORY OF THE COMPUTER

272

Learn to program using Lazarus

1951.
The UNIVAC (Universal Automatic Computer) is delivered to the
U.S. Census Bureau.

The UNIVAC computer was a brand of American business computers built by a division of Remington
Rand which had been founded in 1950. This company specialised in large mainframe computers. A
UNIVAC was used in 1951 to forecast the presidential election results. Today the company is called Unisys.

The Computer Centre of the Netherlands in Heerlen used Univac 1100/42 and 1100/60 mainframes in the
1970s and 1980s to automate psychiatric and health insurance records. To cache data the UNIVAC 1100
series used a magnetic drum mass storage system (also called drum memory), a six foot long metal cylinder
weighing several tons, spinning at high speed. At the time these Fastrand drums exceeded the capacity of
any other random access mass storage disk or drum.

Figure 30: A UNIVAC 1100
Series computer

1952.
IBM develops its first computer, the IBM 701 EDPM.

The system used electrostatic storage, consisting of 72 Williams tubes (each of 1024 bit
capacity), giving a total memory of 2048 words of 36 bits each. Each Williams tube was 3 inches
in diameter. The memory could be doubled by adding another set of 72 Williams tubes, or by
replacing the entire memory with magnetic core memory. The Williams tube memory and the
later magnetic core memory each had a memory cycle time of 12 microseconds. The Williams
tube memory had to be regularly refreshed, so refresh cycles had to be inserted into the timer of
the 701. An addition operation required five 12 microsecond cycles of which two were refresh
cycles.
A multiplication or division required 38 cycles (456 microseconds). The instructions were 18
bits long including the opcode and a single 12 bit address..

Known as the Defense Calculator while in development, the new machine emerged from the
IBM Poughkeepsie Laboratory later that year and was formally unveiled to the public on April
7, 1953 as the IBM 701 Electronic Data Processing Machines (the plural „Machines“ was used
because the 701 was comprised of 11 compact and connected units).

HISTORY OF THE COMPUTER

273

Learn to program using Lazarus

1957.
John Backus and his team develop the programming language
FORTRAN

John Warner Backus (1924-2007)

(FORmula TRANSlation), a compiled language that was useful for the scientific and academic
community.

John Backus was a leading American computer scientist who pioneered the field of programming
language. He led the team that developed FORTRAN, implementing the first widely used high-
level language. He invented the Backus-Naur-formalisme (BNF), now used universally as a way
to describe the syntax of computer languages (as well as the syntax of document formats and
communication protocols) where precision and lack of ambiguity in the definition is of
paramount importance. He also carried out research in the field of function-level programming,
designing the canonical function-level programme language FP, and helping to popularize it.

The first computers were programmed using virtually unreadable machine code instructions which
had to be entered one at a time, which was a tedious and error-prone procedure. When John
Backus started working at IBM their computers were generally programmed in assembly language
which was somewhat more readable than machine code, but still preserved a one-to-one
correspondence with machine code instructions. High-level programming languages were not yet
in use.

Figuur 31: John Backus

Backus was dissatisfied with the difficulties involved in computer programming. In 1953 IBM
authorised him to lead a research team charged with developing better methods of programming.
The result of these efforts was a FORTRAN compiler for the IBM 704 computer, which was
released commercially in 1957. In some cases a single Fortran instruction gave rise to twenty lines
of raw machine code. Abstractions of this sort enabled system programmers using FORTRAN to
produce working programs much more quickly than using assembly language. FORTRAN was
also the first computer language which non-specialists could master.

Although FORTRAN was not the first high-level language, it was the first for which a compiler
was implemented and as a result it became widely used. For the first time there was a language
non-computer specialists could use to get computers to solve problems outside the world of
computing, and FORTRAN was taken up by both scientists and engineers. Backus and his team
established a standard for the language in 1958 and introduced the term "software" for the first
time.

HISTORY OF THE COMPUTER

274

Learn to program using Lazarus

Algol-60 was developed as a successor to Fortran, partly because one of the designers of
Fortran, John Backus, participated in its development along with Dutchmen Edsger W.
Dijkstra and Aad van Wijngaarden.
The lack of support for Algol from computer manufacturers means is use has been limited
largely to academia. A very influential innovation in this language was support for randomly
placed block structures in which variables can have a local scope.
The U.S. trade association ACM decided that this would be the default language for
representing algorithms (pseudo code) in the pages of its journal Communications of the ACM.

Algol-W was developed by Tony Hoare en Niklaus Wirth as a simplified Algol-60.
Wirth developed a compiler for the IBM 360 to popularize the language.

Algol-68 was designed as a successor to Algol-60, with the goal of making it a universal
programming language, able to run on any computer for any programmable purpose. The final
report contained an elaborate formal specification, the Van Wijngaarden grammar, which
described the language in a machine- and compiler-independent way. This grammar provides
formal criteria for reasoning about the correctness of programs and compilers written in Algol.
Several members of the design team, including Dijkstra, Hoare and Wirth, thought the
language and specification to be too large and complex for a practical compiler to be designed
for it, or for programmers to be able to use it easily.

1960.
The ALGOL (ALGOrithmic Language) is created.programming language

The name Algol covers a set of very powerful programming languages, designed between 1958
and 1973. The name is an acronym for Algorithmic Language. Algol was born from the desire for a
universally usable, machine-independent programming language which would be easy for people
to understand, by combining normal mathematical notation with expressions taken from natural
languages such as English or Dutch. Part of this endeavour was unsuccessful: a universal
programming language has not been accepted. But the many programming languages that have
been developed since Algol's appearance all build on ideas introduced in one of the Algol versions.

There are several programming languages named Algol, among them Algol-58, Algol-60,
W-Algol and Algol-68. Algol-58 (originally called IAL) was developed at the same time, and with
similar goals to Cobol and Fortran. Algol has never become a completely finished product, serving
rather as an inspiration for many other languages.

Despite a revised 1973 specification which removed some difficult constructs and which was
much more understandable, the general view tended to be that a universal programming
language may be too high a goal, and that a commission designing it on paper (without
producing any practical implementation of it) might not be the best development method.
Programming languages developed since then have nearly all been limited to certain types of
computers, certain types of applications, or certain programming paradigms. Ada is an
exception to this trend.

Algol-68 has never had a fully implemented compiler or interpreter. However, there are some
compilers which implement subsets of Algol-68 that are much richer than, say Pascal. These
were popular in the 1970s and 1980s in academia. Today the language is sometimes used for
pseudocode. Some Algol-68 language constructs have been newly introduced into existing
languages (such as combining static typing with higher-order functions and lambda
expressions).

HISTORY OF THE COMPUTER

275

Learn to program using Lazarus

1963.
Douglas Engelbart develops the mouse.
At the Stanford Research Intitute (SRI) Engelbart gradually obtained over a dozen patents. He
and his team developed computer-interface elements such as bit-mapped screens, the mouse,
hypertext, collaborative tools, and precursors to the graphical user interface. He conceived and
developed many of his user interface ideas back in the mid-1960s, long before the personal
computer revolution, at a time when most individuals were kept away from computers.
Engelbart applied for a patent in 1967 and received it in 1970, for the wooden shell with two
metal wheels (computer mouse). He never received any royalties for his mouse invention.
During an interview, he says "SRI patented the mouse, but they really had no idea of its value.
Some years later it was learned that they had licensed it to Apple for something like $40,000."

1964.
John G. Kemeny and Thomas E. Kurtz, both mathematics professors
at Dartmouth College, develop the BASIC language.

John George Kemeny (1926-1992)

That same year also saw the first computer mouse in production. In addition, IBM
introduced System 360, its first computer 'family'.

(Beginners All-purpose Symbolic Instruction Code) The BASIC programming
language is usually implemented as an interpreted language, originally designed to
help people to learn programming quickly. BASIC was based on FORTRAN II and
Algol-60. There are numerous different implementations still in use, most versions
producing interpreted code (depending on an installed library) rather than producing
compiled executables.

(Hungarian: Kemény János György). Kemeny was a Hungarian-American mathematician,
computer scientist and teacher, known best for co-development of the BASIC language in 1964
with Thomas Kurtz. Kemeny pioneered the use of computers in education, serving as the 13th
president of Dartmouth College from 1970 to 1981. He chaired the presidential commission that
examined the Three Mile Island incident in 1979.

Thomas Eugene Kurtz (born 1928)
Dr. Kurtz's first experience with computing in 1951 at a summer session of the Institute for
Numerical Analysis at the University of California, Los Angeles. His interests included since
numerical analysis, statistics and computer science.

Kurtz graduated from Knox College in 1950 and he was awarded a Ph. D. from Princeton
University in 1956, after which he went to Dartmouth College to work in their Mathematics
Department. Kurtz, working with Kemeny from 1963, developed the first version of the
Dartmouth Time-Sharing System (a system for simultaneous computing) and the BASIC
language. Kurtz was director of the Kiewit Computation Center at Dartmouth from 1966 to
1975, and of the Office of Academic Computing from 1975 to 1978. From 1980 to 1988, Kurtz
directed the Computer and Information Systems Program at Dartmouth, a pioneering
multidisciplinary graduate program for IT professionals which helped the industry to train new
talent. He then returned to teaching as a full-time mathematics professor, with a strong
emphasis on statistics and computer science.

In 1983, Kurtz and Kemeny co-founded a company called True BASIC, Inc. to market True
BASIC, an updated version of the BASIC language. Dr Kurtz was also board chairman and
director of Educom and NERComP and was a member of the Pierce Panel of the Presidential
Science Advisory Committee.

HISTORY OF THE COMPUTER

276

Learn to program using Lazarus

1967.
The first computers using integrated circuits are built.
The integrated circuit (or IC, or chip, or microchip) represented a major improvement over
traditional discrete circuits assembled manually from many components soldered to a circuit
board. Integrated circuits are monolithic, meaning that numerous components are formed
simultaneously by photolithography (through patterned diffusion of trace elements into a thin
semiconductor substrate). The microscopic size of the components and their interconnections
means that many thousands of components can be concentrated in a small region (up to a
million transistors per square millimetre). Cost is low because the chips, with all their
components, are printed as a unit by photolithography rather than being constructed one
transistor at a time. Furthermore, far less material is used to construct a packaged IC.
Performance is high because the components switch quickly and (as a result of the small size
and close proximity of the components) consume little power.

1968.
The Intel company is founded.
Intel is an American company specialising in the manufacture of chips, motherboards, software
and other components needed for computers, computer networks and communication systems.
Intel is mainly known for the microprocessors used in many of today's personal computers
including the 8086, 286, 386 486 and the Pentiums.
The company was founded in 1968 by Robert Noyce and Gordon Moore.

Figure 32 and 33: Robert Noyce (left),
Gordon Moore (right)

“Moore's Law” states that continuing technological advance allows the number of
transistors in an integrated circuit to double every two years.
Gordon Moore, a founder of chip maker Intel, first made this prediction in 1965. Moore's Law
has applied to the present (2011), but experts say that these improvements in transistor packing
will slow soon before they cease, since ever-diminishing miniaturization depends not only on
technological progress, but also on limits imposed by fundamental physical (atomic) barriers.
When Moore made ​ ​ the prediction in 1965, he suggested a doubling every 12 months. In
1975, he altered the prediction by assuming that the rate of growth would slow to a doubling
every two years.

The original prediction was about the density of transistors, but later he also adjusted at this
point to refer to the density of transistors that could inexpensively be placed on a chip.
Intel did not possess a good copy of the Electronics magazine in which Moore first made this
prediction in April 1965, and so placed an eBay ad in the hope of receiving a copy in good
condition. A British engineer, David Clark, was the first to respond to Intel's advert and
received $10,000 in April 2005 (40 years later) from Intel for his well-preserved copy!

HISTORY OF THE COMPUTER

277

Learn to program using Lazarus

Intel's third employee, Andrew Grove, led the company as CEO from early 1960s to the late
1990s and is still chairman of the board.

Moore and Noyce first wanted to name their company “Moore Noyce” but that name did not
sound as good as calling it Intel (abbreviated from INTegrated Electronics). Intel was then the
name of a hotel group, from whom they had to buy the name.

Intel began making memory for computers before they switched to the manufacture of
microprocessors. Andrew Grove described this shift in his book "Only the paranoid Survive".

Intel developed their first microprocessor (the Intel 4004) in the 1970s.
IBM produced the first personal computer using Intel 8086/8088 processors in 1981 (See IBM
Personal Computer).

During the 1990s Intel Architecture Labs (IAL) was responsible for many hardware
developments such as the PCI bus, Universal Serial Bus (USB) and the architecture for multi-
processor servers.

Intel licensed manufacture of its 8086 line to competitor Advanced Micro Devices (AMD)) in
1982, but cancelled the contract in 1986. The two corporations have been fiercely competitive
with ongoing lawsuits between them subsequently.
Officials of the European Commission visited the German branch of Intel in 2008 following a
complaint from AMD accusing Intel of abusing its monopoly position.
On May 13, 2009 the then European Commissioner Neelie Kroes fined Intel €1.06 billion, the
largest fine ever imposed by the EU for antitrust practices.

In 2003 Intel had 78,000 employees and operations in more than forty countries.

Recently the growth in developing ever-faster maximum chip clock speeds has slowed. It is no
longer possible to go much higher than 3.8 GHz economically. The chip manufacturers'
solution to this 'ceiling' has been to place multiple processors (also called cores) on a chip.
Multicore processors are now standard in most newly built computer equipment. Dual or quad
cores are widespread in consumer computers, though it is only possible to take advantage of
this capability if software is rewritten to run in parallel threads.
When Gordon Moore retired in 2006 he announced that his law would not always apply.
“There are now limits which we will reach and not exceed.” Although alternatives such as
nanotechnology may replace conventional electronics, Moore sees a number of limitations
including the size of miniaturized circuits all being on the same scale.

HISTORY OF THE COMPUTER

278

Learn to program using Lazarus

1969.
ARPAnet, the forerunner of today's Internet begins.
The ARPANET (ARPA Network) was the first operational packet switching computer network,
the predecessor of the Internet, created in the late 1960s by the U.S. Department of Defense
(DoD) Advanced Research Projects Agency (ARPA).

The reason for ARPANET's creation was economic: computers were expensive to buy, so it was
beneficial if laboratories working on projects with a military purpose could share each other's
equipment, even though spread out. Because in the late 1960s neither equipment nor
communication lines were very reliable, it was a requirement for ARPANET that in the event of
inevitable local technical problems as many operations could continue as possible.
It is a popular misconception that the ARPANET was intended as a communications network in
times of nuclear war. There was the idea of a network that could survive a nuclear war
(suggested by Paul Baran, who proposed a similar packet switching architecture) but this suggestion
did not play a role in ARPA's decision to set up a network.

The first concrete plans for the ARPANET were drafted in 1968, and in 1969 ARPA decided to
outsource the implementation to the firm Bolt, Beranek and Newman.
A major problem in the designing ARPANET was that computers of very different sorts needed
to be inter-connected. The designers of ARPANET solved this potential incompatibility by
adding a minicomputer at each network location to work as an interface message processor
(IMP).
This IMP interfaced the computer and the network connect. These IMPs were 16-bit DDC-516
computers from Honeywell.

Figure 34 The ARPA Net

HISTORY OF THE COMPUTER

279

Learn to program using Lazarus

The IMP can be considered the forerunners of today's routers, although they were the size of a
refrigerator (small compared to most computers of the time).
There were four of these MIPs active on the West Coast of the USA by 1969. The first sites were
the University of California at Los Angeles (SDS Sigma 7), the University of California at Santa
Barbara (IBM 360/75), Stanford University (SDS 940) and the University of Utah (DEC PDP-10).

In 1970 the number of sites increased to fifteen and by in 1971 23 computers were connected.
Gradually, the ARPANET was connected to other networks.
The ARPANET became the backbone of the ARPA Internet.

ARPANET was originally developed for logging on another computer (Telnet) and sending and
receiving files between computers (FTP). After commissioning a third application, e-mail,
developed very quickly. Initially this was achieved via text files uploaded by one computer, but
fully interactive e-mail programs were quickly developed.

In the 1980s ARPANET lost its military function as a network. US defence had developed a
private network, MILNET, which is not connected directly to the internet.
The ARPANET was finally decommissioned in 1988.

HISTORY OF THE COMPUTER

280

Learn to program using Lazarus

1971.
Intel develops the first microprocessor.
 That same year IBM introduced the floppy disk.

develops the programming language Pascal,
named after the French mathematician Blaise Pascal.

1972 Niklaus Wirth

Niklaus Wirth (born in Winterthur, Switserland in 1934) has developed several programming
languages.

Wirth studied electronics at the Eidgenössische Technische Hochschule (ETH) in Zürich
where he graduated in 1959. He then obtained his doctorate at the University of Laval (Québec-
Canada) and he studied at the University of Berkeley in the United States.

He taught at Stanford University and the ETH in Zürich, where from 1968 until his
retirement in 1999 he was Professor of Computer Science.

Wirth earned his Masters title with a fundamental study of the various dialects of the
programming language Algol, from which he developed a new, formalized dialect: Algol-W
(1968).

In 1970 Wirth introduced , a formally defined, statically-typed programming

language. The language was primarily intended for teaching programming, but on account of
its simplicity and the fast, free compilers that became available, it quickly attracted a large
number of users beyond those beginners it was first designed for.

In 1980 Wirth began a new computer project, since he needed a computer language that,
unlike Pascal, was also suitable for writing system-level operating systems. This language
became Modula (later Modula-2). Like Pascal, Modula is a formalized, functional language with
strong type-checking. Unlike Pascal, Modula solved a number of practical problems faced by
software developers. Wirth introduced in Modula the concept of modular programming, in
which functions and variables are neatly arranged in modules facilitating their reuse via explicit
export and import.

Pascal

Under pressure from the rapidly emerging concepts of object oriented programming (OOP)
Wirth developed another language, Oberon, in the 1990s. Oberon distinguishes itself from all
other languages because it is both a programming language and an operating system.

In the introduction to this language Wirth argues strongly against the usual tenor of object
oriented languages, which in his view usually offer the wrong solutions to the problems raised.
Wirth made Oberon a simpler and more compact language than competing languages are.
Oberon was the first language to introduce software components, and is therefore sold
commercially under the name Component Pascal.

Pascal is in some respects a competitor to the slightly older C language. The two languages
have clear differences in their assumptions, which Brian Kernighan (one of the designers of C)
once summarized in his 1981 paper „Why Pascal is not my favorite programming language“.
Incidentally, Wirth had already dealt with many of the issues identified by Kernighan in
Modula 2, while other aspects were later added to ANSI C, because they were shown to clarify
its main structure.

As a simplification, you might say that “Wirth-languages” are based on the idea that the
compiler must make the programmer think clearly about what he is doing, and force him to
structure his code accordingly, whereas C-like languages leave more responsibility in the
hands of the programmer.

Figure 35: Niklaus Wirth in 1969

HISTORY OF THE COMPUTER

281

Learn to program using Lazarus

Compilers for Wirth-languages generally produce code of similar performance to C compilers,
and sometimes produce executables that are smaller and faster than that produced by
equivalent C code.

Many programming courses are based on course material developed by Wirth, and if you
compare the simple examples of these programming courses as pseudocode, the pseudocode
for Pascal is almost indistinguishable from that for Modula 2.
Since his retirement in 1999, Wirth has advised an ETH Zürich spin-off company, Oberon
Microsystems, that markets his latest creation, Oberon (more precisely the Component Pascal
dialect). In 2005 they released BlackBox Component Pascal as an open source version.

Figure 36: Niklaus Wirth in 1984

A selection of Niklaus Wirth's comments on programming:

A good designer must rely on experience, on precise, logic thinking; and on pedantic
exactness. No magic will do.

But active programming consists of the design of new programs, rather than
contemplation of old programs.

But quality of work can be expected only through personal satisfaction, dedication and
enjoyment. In our profession, precision and perfection are not a dispensible luxury, but a
simple necessity.

Clearly, programming courses should teach methods of design and construction, and the
selected examples should be such that a gradual development can be nicely demonstrated.

Experience shows that the success of a programming course critically depends on the
choice of these examples.

I have never designed a language for its own sake.

In the practical world of computing, it is rather uncommon that a program, once it
performs correctly and satisfactorily, remains unchanged forever.

Indeed, the woes of Software Engineering are not due to lack of tools, or proper
management, but largely due to lack of sufficient technical competence.

It is evidently necessary to generate and test candidates for solutions in
some systematic manner.

Many people tend to look at programming styles and languages like religions: if you
belong to one, you cannot belong to others. But this analogy is another fallacy.

My being a teacher had a decisive influence on making language and systems as simple as
possible so that in my teaching, I could concentrate on the essential issues of programming
rather than on details of language and notation.

My duty as a teacher is to train, educate future programmers.

Nevertheless, I consider OOP as an aspect of programming in the large;
that is, as an aspect that logically follows programming in the small and requires sound
knowledge of procedural programming.

*

*

*

*

*

*

*

*

*

*

*

*

*

HISTORY OF THE COMPUTER

282

Learn to program using Lazarus

* Our ultimate goal is extensible programming (EP). By this, we mean the construction of
hierarchies of modules, each module adding new functionality to the system.

Program construction consists of a sequence of refinement steps.

Programming is usually taught by examples.

Software development is technical activity conducted by human beings.

The idea that one might derive satisfaction from his or her successful work, because that work
is ingenious, beautiful, or just pleasing, has become ridiculed.

The possible solutions to a given problem emerge as the leaves of a tree, each node
representing a point of deliberation and decision.

Usually its users discover sooner or later that their program does not deliver all the desired
results, or worse, that the results requested were not the ones really needed.

*

*

*

*

*

*

Figure 37: Niklaus Wirth

HISTORY OF THE COMPUTER

283

Learn to program using Lazarus

1970
Xerox PARC

The Architects of Information

Xerox Corporation assembles a world-class team of experts in information
and physical sciences to become

,

establishing the company's Palo Alto Research Center under the leadershipof Dr. George Pake
(c(in the centre of the picture above). The charter for Xerox PARC is to create The Office of the Future".

1971
laser printing
demonstrates a brand new way to print documents. demonstrates a completely new way to
print documents. Xerox PARC researcher Gary Starkweather modulated a laser beam so that
each part of a bit-mapped electronic figure could be stored on a photosensitive xerographic
copy cylinder. The electrostatically charged cylinder then picks up charged toner particles
according to the bit-mapped pattern of charge, which are then transferred to the paper, and
fused permanently into ink by a heating element. The invention of laser printing allowed
scalable prints to be made from digital documents in a variety of fonts, which created a multi-
million dollar printing industry for Xerox. Hewlett-Packard, IBM, Canon, Brother and other
companies quickly followed suit with their own variations on the laser printing process, and
colour laser printers began to appear in the mid-1990s.

Figure 38: Palo Alto Research Center, established under the leadership
of Dr. George Pake (centre) who puts the first spade into the ground.

1970
Xerox PARC (Palo Alto Research Center)

1972
object-oriented programming
Xerox PARC designs the first object-oriented programming language, Smalltalk, creating an
integrated development environment that enables programs to be improved without having to
write them all over again from scratch. Smalltalk pioneered code reuse. This innovation was a
true revolution in the software industry and influenced all later programming systems.

HISTORY OF THE COMPUTER

284

Learn to program using Lazarus

1973.
Ethernet, the first local area network (LAN) is developed.
Ethernet distributed computing.
An internal Xerox memo proposes a system of interacting workstations, files, and printers,
linked via one coaxial cable within a local area network, where individual components can join
or leave without disturbing the data traffic. The memo's author coins the term “Ethernet” to
describe the network. Ethernet grows into a global standard.

Ethernet (IEEE 802.3) is a network protocol that governs communication between computers on
a Local Area Network (LAN). Ethernet is now widespread and has been released in several
variants. Other protocols can run above the Ethernet layer, of which TCP/IP is the best known
and most widely used.

Ethernet was one of the many pioneering projects developed at Xerox PARC (Palo Alto
Research Center). The generally accepted story is that Ethernet was invented in 1973, when
Robert Metcalfe wrote a memo to his bosses at PARC about its potential. Metcalfe says that
Ethernet matured over subsequent years. Robert Metcalfe and David Boggs (Metcalfe's
assistant) published a document entitled Ethernet: Distributed Packet Switching For Local
Computer Networks in 1976.

Metcalfe left Xerox in 1979 wanting to promote networks (LANs) for use with personal
computers, and founded the company 3Com. He was successful in convincing DEC, Intel, and
Xerox to work together in agreeing a standard for Ethernet. The standard was published in
September, 1980. The two main alternatives were Token ring (which was developed by IBM),
and ARCNET. Both have fared well with many Ethernet products coming to the market. 3Com
experienced enormous growth during this period in the 1980s and 1990s.

Figure 39: An Ethernet cable and connector

1973.
Superpaint frame buffer
Xerox PARC computer scientists record the first video image on the first computer paint system
— a graphics program and frame buffer computer — paving the way for the earliest computer
animations, and later earning its inventors Emmy and Academy Awards.

1973.
The Alto personal workstation
The Xerox Alto personal workstation with its client-server architecture moves computing
beyond the hierarchical world of large, centralised mainframes. This evolving PC will
subsequently employ the world's first bit-mapped display, sport a graphical user interface
(GUI) with windows and icons, a what-you-see-is-what-you-get WYSIWYG editor, local area
network connections and file storage, and commercial mouse.

HISTORY OF THE COMPUTER

285

Learn to program using Lazarus

1974.
The first 'personal computers', the Scelbi and the Mark-8, are
introduced.
The Mark-8 was a microcomputer designed in 1974, based on the Intel 8008 CPU (which was
the world's first 8-bit microprocessor). The Mark-8 was designed by the graduate student
Jonathan Titus and billed as “loose kit” in the July 1974 issue of the magazine Radio-Electronics.
The cover article introduced the Mark-8 as a Do It Yourself construction project, offering a $5
booklet containing circuit board layouts, with Titus himself arranging for $50 circuit board sets
to be made by a New Jersey company for delivery to hobbyists. Prospective Mark-8 builders
had to gather the various electronics parts themselves from a number of different sources A
couple of thousand booklets and some hundred circuit board sets were eventually sold. The
phrase “Your Personal Minicomputer” first appeared here.

As the microcomputer revolution had yet to happen; the word 'microcomputer' was still far
from being common fare. Thus, in their announcement of their computer kit, the editors quite
naturally placed the Mark-8 in the same category as the era's other 'minisize' computers

Scelbi (Scientific Electronic Biologicals, pronounced “sell-bee”) Computer Consulting was a
personal computer hardware and software manufacturer in Milford, Connecticut, founded in
1973 by Nat Wadsworth and Bob Findley. Initially they sold hardware (called the Scelbi-8H),
based on the first 8-bit microprocessor from Intel, the 8008. The 8H came with 1K random-
access memory, and you could either buy the Scelbi-8H fully assembled or in the form of a kit
of parts for self-assembly. Some sources consider Scelbi as the first (March 1974) personal
computer that could be bought as a kit, with advertisements in QST, Radio Electronics and later
in BYTE magazine.

Scelbi soon had several competitors such as the Mark-8 mentioned above which was also based
on the 8008 processor. Firms like PROVIDED began selling systems based on more powerful
microprocessors, such as the 8080 used in the MITS Altair 8800. The Scelbi-8B was then
introduced, with 16K memory (the limit of 8008). Initially, no programming help was available
for the Scelbi-8H. Wadsworth wrote a book, Machine Language Programming for the 8008 and
Similar microcomputers that taught the assembly language and machine language
programming techniques needed to program the 8H. The book contained a code example for a
floating point package, making it one of the earliest examples of what would later come to be
called “open source”. Because of the similarities of the machine language used by both the 8008
and the 8080, the book was also purchased by users of other computers.

1974.
WYSIWYG in the Bravo word processor
Introducing cut-and-paste bitmapped editing, Xerox PARC coins the catchy phrase describing
its benefits: what-you-see-is-what-you-get (pronounced “wizzy-wig”). Xerox PARC also
demonstrates the seminal Bravo word processing program (a precursor of Microsoft Word) and
device-independent imaging (which leads to the development of Page Description Languages
and influences the subsequent design of Postscript).

1974.
Solid-state lasers
Xerox PARC demonstrates the first gallium-arsenide (GaAs), distributed feedback, solid-state
laser. In 1982, Xerox PARC demonstrates the world's first high power solid-state semiconductor
diode laser. This was later brought to market by Spectra Diode Labs (acquired subsequently by
JDS Uniphase in 2001).

HISTORY OF THE COMPUTER

286

Learn to program using Lazarus

The Scelbi company found that they made more money selling software books than hardware,
so by the late 1970s the company had discontinued making hardware and switched to well
documented software published in book form, including many games, a monitor, an editor, an
assembler, and a high-level language dubbed SCELBAL (a dialect of BASIC that incorporated
Wadsworth's floating-point package) to compete with Altair BASIC.

Figure 40: The Scelbi-8H

1975.

Figure 41: Bill Gates and Paul Allen in 1983

Paul Allen and Bill Gates found Microsoft.
Microsoft (originally Micro Soft) was started in Albuquerque, New Mexico in 1975 by Allen and
Gates who had been buddies and fellow Basic programmers at Lakeside School in Seattle.
Their first product was a Basic interpreter.
Paul Allen later bought a CP/M clone operating system for $50,000 called QDOS (Quick and
Dirty Operating System). This became Microsoft Disk Operating System, MS-DOS, introduced
in 1981. Microsoft licensed their system to multiple computer companies requiring the use of
the MS-DOS name, with the exception of the IBM variant (PC-DOS), which was installed on all
its new PCs. Through this 1981 deal Microsoft's income soared.

Paul Gardner Allen (Born in Seattle, 1953)
According to Forbes magazine, he is one of the richest people in the world with an estimated
fortune of $13 billion. In high school he became friends with Bill Gates who was two years his
junior. Both teenagers were computer geeks. After high school, Paul Allen went to Washington
State University. He left after two year's study to develop software for personal computers.
In 1983, Paul Allen with diagnosed with Hodgkin's disease, following which he resigned from
Microsoft in 2000. Radiation treatment effected a complete cure. In November 2009, he was
diagnosed with a non-Hodgkin's lymphoma.

Figuur 42: Bill Gates

Bill Gates (born Seattle, 1955)
Bill Gates was born the son of a lawyer and a schoolteacher. He has two sisters. He was sent by
his parents to the Lakeside Prep School in Seattle where aged 13 he first started to program a
computer (a DEC PDP-10 on which the school rented time from General Electric).

HISTORY OF THE COMPUTER

287

Learn to program using Lazarus

Gates with Paul Allen, a friend and later a business partner, were hardly able to tear themselves
away from this computer terminal. The pair even hacked into the system that recorded the
amount of computer time used, and altered it.
The Computer Centre Corporation in Seattle struck a deal with Lakeside programming group
(Gates, Allen and two other students) offering them unlimited computer time on the Lakeside
terminal in return for their help in identifying bugs and weaknesses in the system. The
Computer Centre Corporation went out of business in 1970, but the Lakeside programmers
were hired by Information Sciences Inc. to create a payroll program in exchange for free
computer time and royalties on the software. Gates and Allen then worked together on Traf-O-
Data, a program which measured traffic flow which earned them about $20,000. Gates then
went to college, but dropped out in his first year, 1975, to form Micro-soft, since his heart was
not in his studies.

During a visit to Mozambique in 2003, Gates pledged $168 million from the Bill & Melinda
Gates Foundation to fund research into malaria, to develop new vaccines and drugs effective
against strains of the malaria parasite which are resistant to currently available treatments.

Together with the Rockefeller Foundation, several companies (including Dow Chemical) and the
Norwegian government, Gates' Foundation has invested tens of millions of dollars in the Svalbard Global
Seed Vault. Here millions of seeds such as wheat, rice and corn are stored in a huge bunker on a
Spitsbergen mountain for the protection of future crop diversity.

In 2005, Gates and his wife received the TIME Magazine Persons of the Year award. Gates has
said that after his death his three children will each inherit $10 million, and his remaining
billions will be given to charity.

On January 6, 2008 the 52-year-old billionaire gave his last major speech in Las Vegas before
retiring from Microsoft saying his farewell at the Consumer Electronics Show (CES). CES is the
biggest consumer electronics trade show held annually in Las Vegas. Gates had opened this IT
fair eleven times presenting his vision of new Microsoft Plans.

Figure 43: A police photograph of Bill Gates
taken following a traffic violation.

HISTORY OF THE COMPUTER

288

Learn to program using Lazarus

IBM begins mass production of its
first personal computer the IBM 5100.

1975.

The MITS Altair 8800 personal computer is introduced.

Figure 44: The Model 5100, IBM's first non-mainframe computer,
believed to be the world's first portable computer.

The Model 5100 weighed nearly 12 kilos, so is better described as a “luggable” rather than a
portable computer. There were few personal computers available in 1975, and nothing that
even came close to the capabilities of the 5100. It was a very complete system - with built-in
monitor, keyboard and disk storage. It was a very expensive system costing up to €15,000, but
was designed for professional and academic researchers, not for commercial or hobbyist use.

The MITS Altair 8800 was a microcomputer based on the Intel 8080A processor. Ed Roberts'
company PROVIDED manufactured the Altair 8800 as a kit, and sold it through the American
Popular Electronics magazine for $397 dollars. Its designers expected to sell a few hundred kits
to hobbyists, but to their surprise, they sold ten times that number within the first few months
of advertising it. Today the Altair is widely recognized as marking the beginning of personal
computer development which mushroomed in subsequent years. The internal computer bus (S-
100 bus) and the first programming language for this unit (Altair BASIC) were sourced from
Microsoft

Figure 45: The MITS Altair 8800

HISTORY OF THE COMPUTER

289

Learn to program using Lazarus

Steve Wozniak, nicknamed 'Woz' (born in Sunnyvale, 1950) is an American engineer who

founded the computer company in 1977 with Steve Jobs and Ronald Wayne.

Wozniak and Jobs knew each other at high school where they were considered nerds because
they were both interested in electronics.
Steve Wozniak made a so-called “blue box” which enabled its owner to make free phone calls
from an ordinary telephone.

After high school they both worked at computer companies in Silicon Valley, Wozniak at
Hewlett-Packard and Jobs at Atari. They remained in touch when Wozniak received his
computer engineering degree from the University of Berkeley.

Wozniak was Apple's technical expert in the early days of the company, responsible for the first
versions of the operating system and hardware of the Apple I and the more famous Apple II,
which was the most advanced PC produced until it was eclipsed by the success of the
Commodore 64.

Apple

Stephen Wozniak and Stephen Jobs establish Apple Computer
Corporation to establish and sell the Apple I in kit form.

1975.

1975.
Graphical user interface (GUI)
Xerox PARC debuts the first GUI, a user interface which used icons, pop-up menus, overlapping
windows and could be controlled easily using a point-and-click technique. That GUI famously (or
infamously) influenced the development of all subsequent personal computer interfaces.

Figure 46: Steve Wozniak

Figure 47: The Apple II with two disk drives

HISTORY OF THE COMPUTER

290

Learn to program using Lazarus

Steven Paul Jobs (born in 1955) is an American business magnate and inventor. He is best
known for being the co-founder and chief executive officer of Apple. Jobs also served as chief
executive of Pixar Animation Studios, and became a member of the board of the Walt Disney
company in 2006, following the acquisition of Pixar by Disney.
In the late 1970s, Jobs, with Apple co-founder Steve Wozniak, Mike Markkula and others
designed, developed, and marketed one of the first commercially successful lines of personal
computers, the Apple II series.
In the early 1980s, Jobs was among the first to see the commercial potential of the mouse-driven
graphical user interface, which led to the creation of the Apple Macintosh computer. After
losing a power struggle with the board of directors in 1985 Jobs resigned from Apple and
founded NeXT, a computer platform development company specializing in the higher
education and business markets. Apple's subsequent 1996 buyout of NeXT brought Jobs back to
the company he cofounded, and he has served as its CEO since 1997.
In 1986, he acquired the computer graphics division of Lucasfilm Ltd which was spun off as
Pixar Animation Studios. He remained CEO and majority shareholder until its acquisition by
the Walt Disney company in 2006. Jobs is currently a member of Disney's board of directors.
Jobs' business history has added to the image of the idiosyncratic, individualistic Silicon Valley
entrepreneur, emphasizing the importance of design and understanding the crucial role
aesthetics play in public appeal. His work driving forward the development of products that
are both functional and elegant has earned him a devoted following.

Jobs is listed as either primary inventor or co-inventor of over 230 patents (some pending)
relating to a wide range of computer applications including portable devices, user interfaces
(including touch-based interfaces), speakers, keyboards, power adapters, clasps and lanyards.

1977.
Apple Computer introduceert de Apple II. 1977.

Figure 48 Steven Jobs

291

Learn to program using Lazarus

1977.
Radio Shack introduces the TRS-80

In the late 1970s and early 1980s the then newly merged companies Tandy and Radio Shack
named several series of their computers TRS-80. TRS is an acronym made from the names
Tandy Radio Shack (formed from the initials of these two companies), and the number 80
referred to the Z80 microprocessor, on which the first model was based.
There were different series:
Ÿ The Z80-based home models. (Model I, III and IV)
Ÿ The Z80-based business models. (Model II and 16)
Ÿ The laptop style TRS-80 Models 100 and 200
Ÿ The TRS-80 Color Computer. ('CoCo' 1, 2, and 3)
Ÿ The TRS-80 MC-10.
Ÿ TRS-80 Pocket Computer (PC1, PC2, PC3 and PC4).
Ÿ PC-compatible computers.

The models based on the Zilog Z80 processor were extremely popular in the late 1970s. The
Color Computers were based on the Motorola 6809 processor. Their Motorola 6847 video
display controller provided a high resolution color display which was a great improvement
over the blocky, monochrome displays of the Z80 models. The MC-10, or Micro Color
Computer, was a miniaturised version of the Color Computer, equipped with a 6803 processor.
The TRS-80 brand of Pocket Computers were also released as American models made by Sharp
and Casio. Later on, the PC-compatible computers modeled after the IBM line of 80x86-based
personal computers were released. The Tandy 2000 had better graphics, a faster 80186 processor
and larger disk drive capacity than the original IBM PC.

The TRS-80 Model 1 was the first of the series. It had a thick keyboard connected to a separate
monochrome monitor. The computer equipped with ROM which included the Basic language
and 4 KB of RAM. Software and data could be stored on compact cassette recorder connected to
the main unit. The first simple version of BASIC was soon replaced by a more complete version
licensed from Microsoft (level 2). The Model I could also be extended with a so-called
Expansion Interface (EI) which provided more memory (up to 48KB), a parallel printer
connection, up to four disk drives (single sided, single-density 5¼ inch floppy drives), and a
RS232 serial connection. In addition to BASIC, you could also program in assembly or machine
language. Many hobbyists extended the Model I with hardware modifications such as
increasing the processor speed (from 1.7 to 2.5 MHz). A TRS-80 Users Association was started
in the Netherlands in October 1978 which published a bi-monthly magazine Remarks.

Figure 49:TRS-80 Model 4P Figure 50: A disassembled TRS-80 Model 4P keyboard

HISTORY OF THE COMPUTER

292

Learn to program using Lazarus

1978.
Dan Bricklin and Bob Frankston write the first spreadsheet
application: Visicalc and found Software Arts Inc. in 1977.

Daniel (Dan) Bricklin (born in 1951) is the American co-creator, with Bob Frankston, of the
VisiCalc spreadsheet program, which ran first on the Apple II. Bricklin soon produced versions
for the Tandy TRS-80, Commodore PET, Atari 800 and IBM PC. Soon after its launch Visicalc
became a best seller at $100.

The program was created by Dan Bricklin, refined by Bob Frankston, developed by their
company Software Arts Inc. and distributed by Personal Software (later renamed VisiCorp) for
the Apple II computer, transforming the Apple II from a hobbyist's toy into a much desired,
useful financial tool in the business world.

Bricklin had noticed his Harvard professor's frustration when drawing a financial model
on the blackboard.
If he found an error, or wanted to change a parameter, the corresponding data needed a lot of
annoying delting and rewriting. Bricklin could foresee the value of computerising these
sequences of calculations, and realised at an electronic spreadsheet would enable almost instant
recalculation of underlying formulas.
Bricklin also founded Software Garden, Inc., of which he is currently president, and Trellix
Corporation.

Figure 51: Dan Bricklin

VisiCalc was the first spreadsheet which became available for personal computers. The
spreadsheet is widely regarded as the “killer application” which took the personal computer
from being a hobbyists' toy to being an essential and widely used business tool.

Figure 52 A small Visicalc spreadsheet.

Initially, the TRS-80 was bought only by computer enthusiasts, but the appearance of
spreadsheet and word processor applications (Visicalc and Scripsit) led to its widespread
adoption by small businesses, and this formed the start of the PC era.

The Model III when it appeared had either one or two integrated floppy disk drives, and a
more advanced Basic. Unlike the Model 1, the keyboard, floppy drive(s) and monitor were all
contained in a single enclosure.
The Model II was a different type of computer that was aimed at business users, and had larger
8 inch floppy drives.
The Model 4 (April 1983, with "4" written as an Arabic numeral), was the successor of the
Model III, and included the capability to run CP/M.

HISTORY OF THE COMPUTER

293

Learn to program using Lazarus

Figure 53: Dan Fylstra

Dan Fylstra is a pioneer of the computer industry. In 1975 he was a founding associate editor of
BYTE Magazine. In 1978 he co-founded Personal Software which became the distributor of a
new program called VisiCalc, the first widely used computer spreadsheet. In his marketing
efforts Fylstra ran teaser ads in Byte that asked (oddly enough for an entirely new product)
“How did you ever do without it?”

Once VisiCalc caught on, people came into computer stores asking for VisiCalc and then
also the computer (the Apple II) they would need to run the program. VisiCalc sales exceeded
700,000 units by 1983, and Fylstra's software products company, later called VisiCorp, was the
leading personal computer software publisher in 1981 with revenue of $20 million, as well as in
1982 with $35 million (exceeding Microsoft which became the largest such firm in 1983).
Fylstra is the former president of Sierra Sciences, and is currently president of software vendor
Frontline Systems. In 1998 he joined the Libertarian Party.

The successors to Visicalc
Despite the fact that an electronic spreadsheet was a revolutionary idea, Bricklin was advised
that it was unlikely that he would be assigned a patent, so he missed the chance to gain a lot to
do with his invention.
It is said that at that time the law on patent did not apply to software, so the product could only
be copyrighted, and after some time the copyright would fail to protect the product (though
simple look-and-feel tests for copyright infringement were developed later).

More powerful clones of VisiCalc soon came along: SuperCalc, Microsoft Multiplan, Borland's
Quattro Pro, Lotus 1-2-3, Microsoft Excel, OpenOffice.org Calc, and AppleWorks' spreadsheet
module gnumeric.
Lotus 1-2-3 was the first successful VisiCalc clone for the IBM PC.

Because of Visicalc's lack of a patent protection, none of the companies that developed
competing software needed to pay royalties to VisiCorp.

1977.
VLSI circuit design
Xerox PARC (with Caltech) defines a new type of Very Large Scale Integration circuit design,
which provides greater computing power in more compact machines, reduces design time, and
leads to a new generation of computer-aided design tools in which many thousands of
transistors and other components can be compressed into a single integrated circuit to make
microprocessors.

1978.
Worm programs
While experimenting with distributing computations across machine boundaries, PARC
scientists invent a “worm” program that searches out other computer hosts and replicates itself
in idle machines.

HISTORY OF THE COMPUTER

294

Learn to program using Lazarus

1980.
Optical storage
Non-erasable, magneto-optical storage device technologies, developed at Xerox PARC initially
to enable high-speed data access on the Alto, are commercialized through Optimem (which
evolves into Cipher Data Products).

1979.
Corporate ethnography
Initiating collaboration among computer scientists, engineers, anthropologists, sociologists,
psychologists, and other social scientists, PARC pioneers the use of ethnography for human-
centred technology design, work practice redesign, and more. This approach leads to
improvements in many workscapes, office products, and processes.

1979.
Natural language processing
To enable computerised spell-checking, dictionaries, and other computer text tools, Xerox
PARC invents computational linguistic technologies based on understanding the structure of
language. These lead to computer-automated visual recall, intelligent retrieval, and linguistic
compression... and later enable deep meaning-based language parsing systems for search, text
analytics, and more.

1980.
Programming language development
Xerox files the software copyright for Smalltalk-80 – one of three software copyrights in
existence. Meanwhile, Interlisp, the Mesa programming environment, and its successor, Cedar,
are implemented in Xerox systems, enhancing reliability and supporting rapid development.

Figure 54: The IBM PC

1981.
IBM introduces the IBM PC, a personal computer
IBM introduced their IBM PC in August 1981. It was a 16-bit computer with a 20-bit address
bus, based on the 8086/8088-microprocessors running at 4.77 MHz. This PC was designed and
built by IBM, but built from standard components that were not specific to the IBM PC. Only
the BIOS firmware was specifically developed for the IBM PC and contained a BASIC
interpreter. The first computers stored their data and software on floppy disks.
IBM wanted other companies to produce ISA bus expansion cards for the for the PC and
therefore published the specifications in a $49 book.

They also released a PC version with a 10 MB hard drive, called the IBM PC XT (for
eXtended Technology). In 1984 they released the IBM PC AT (Advanced Technology), based on
the Intel 80286 processor. These ran at 6 MHz and had a
20 MB hard disk as standard.

The IBM PC was the basis for the popular IBM-PC
 compatible computers or clones. Since 1984 the
IBM personal computer division has released several
series of personal computers for home and business use,
such as the PCjr, PS/1, PS/2, PS/ ValuePoint, ThinkPad,
Aptiva, PC Series, NetVista and ThinkCentre.
Ultimately, IBM sold their PC division to Lenovo
in 2005. IBM introduced x86-based servers starting
with certain PS/2 server models, which were
succeeded by the IBM PC Servers, Netfinity,
 eServer xSeries and today's current
IBM System x.

HISTORY OF THE COMPUTER

295

Learn to program using Lazarus

1981.
Microsoft brings out MS-DOS version 1.0.
MS-DOS stands for Microsoft Disk Operating System. It was one of the first operating systems
for personal computers.

When IBM started development of the IBM PC it had intended to use its own operating system,
and use only Microsoft's Basic interpreter.
When the proprietary operating system negotiations proved problematic, IBM turned to
Microsoft who contracted to write an operating system. Bill Gates decided not to start writing a
new system, but rather look to license or buy another company's product.

The operating system that Paul Allen found was QDOS (a CP/M derivative, the Quick and
Dirty Operating System), which Microsoft bought for $50,000 and then modified to meet IBM's
needs. IBM called it PC-DOS.
Under Microsoft's contract with IBM, Microsoft could also sell PC-DOS independently to
others. Microsoft did this under the name MS-DOS. When IBM PC clones hit the market, MS-
DOS was sold with almost all of them, and thus Microsoft started its dominance in the world of
computer operating systems.

MS-DOS in Windows
Windows 3.0, Windows 3.1, Windows 95, Windows 98 and Windows ME all used MS-DOS to
start, after which the graphical interface takes over, running on top of MS-DOS. MS-DOS is not
a multitasking operating system, meaning that only one program can run at a time. The use of
virtual mode (in practice, the V86-mode of the 80386 processor and higher) made it possible for
different MS-DOS programs to each run in their own virtual machine. This method was
problematic, however, because many MS-DOS programs then tried to directly control the
hardware. This was possible in advanced systems, but at the expense of stability (since setting
up the hardware wrongly, caused the computer to crash).
Windows 3.x and 9x operating systems allow direct communication with the hardware, (unless
a driver virtualizes access). Windows NT operating systems do not allow direct hardware
access. There must always be drivers that enable hardware access for MS-DOS programs
running under NT. The Windows NT operating systems, however, cannot control how third-
party hardware drivers implement this.

Figuur: 55: The dir command in MS-DOS version 1.0

HISTORY OF THE COMPUTER

296

Learn to program using Lazarus

MS-DOS versions:
Date Version Features
August 1981 1.0 Introduction of autoexec.bat
March 1982 1.1 Date and time change from the command line

Support for double-sided disks
March 1982 1.25 First OEM-version

New command: VERIFY
March 1982 2.0 Support for hard drives and subdirectories

Open multiple files at the same time Printer buffer introduced
ANSI-driver introduced

Octob. 1983 2.1
984 3.0 Support for networks

1985 3.1
Decer 1985 3.2 XCOPY command introduced
April 1987 3.3 NLSFUNC and FASTOPEN introduced

Support for hard drives larger than 32 MB
June 1988 4.0 DOSSHELL Introduced
June 1991 5.0 Introduces QBasic, MIRROR, UNDELETE,

EDIT, UNFORMAT and memory optimization
1993 6.0 DoubleSpace (disk compression) introduced with Defrag (Disk Defragmenter) and antivirus

1993 6.1 Version number only for IBM PC-DOS users
1993 6.2
1993 6.21 Version released without DoubleSpace due to Stac Electronics suit for patent infringement
1994 6.22 DriveSpace replaces DoubleSpace Scandisk
1995 7.0 included with Windows 95 The computer usually starts with MS-DOS "hidden" in Windows

Long file name support for Windows 95 (not MS-DOS mode)
1997 7.1 included in Windows 95 OSR2 and in Windows 98 FAT32 introduced
2000 8.0 Included in Windows Me SYS-command removed Command-line boot capability removed

Aug 1
March

August

introduced

Figure 56: The last standalone
DOS – MS-DOS 6.22

The development of MS-DOS as an independent operating system was discontinued after
version 6.22, the last standalone version. From version 7.0 MS-DOS was no longer a separate
operating system, but integrated directly into Windows. DOS was still quite visible in Windows
95 and 98. By Windows ME however, most traces of DOS had been erased.
A Chinese DOS fan (Wengier) has released the most comprehensive standalone version of
DOS. This is MS-DOS 7.1. Microsoft introduced Windows 95 OSR2, which was free for anyone
to download, but currently this is not possible anymore.

The acronym DOS stands for Disk Operating System, or an operating system for devices with
disk drives. With the advent of computers with floppy disks an operating system was needed
that after the bootstrap opening cycle could load a command processor and other software
utilities.

HISTORY OF THE COMPUTER

297

Learn to program using Lazarus

The History of DOS
In 1973 Gary Kildall of Digital Research wrote one of the first disk operating systems in the
programming language PL/M. He called it CP/M (Control Program for Microcomputers).
Six years later, in 1979, Apple had developed its own operating system with Apple DOS 3.2.

In 1980 Tim Paterson of Seattle Computer Products (SCP) developed a DOS for the 8086
based on CP/M, because Digital Research had delays in releasing the CP/M-86 operating
system. This SCP operating system was named QDOS which stands for Quick and Dirty
Operating System because it was built in only two man-months. Despite its rapid development,
it operated very well.

In October 1980 Paul Allen from Microsoft contacted SCP with the request that
Microsoft sell SCP's QDOS to an unnamed client (which later turned out to be IBM).
Microsoft would pay $50,000 for the rights to SCP. Two months later SCP renamed QDOS to 86-
SCP and brought it out as version 0.3. Microsoft bought the (non-exclusive) rights to SCP's DOS.

In February 1981 a prototype of the IBM personal computer was running "MS-DOS" for
the first time and in July 1981 Microsoft bought all rights to SCP's DOS and officially
renamed it the MS-DOS operating system.

EDLIN is a line editor included in Microsoft operating systems and was the first program that
allowed text files to be edited under MS-DOS. The program works like the MS-DOS command
line (making it difficult to use by modern standards). It is not a full word processor, but
intended for editing configuration files, etc.

The program was written by Tim Paterson in two weeks in 1980 on the assumption that it
would have a life of about six months. Those who use Windows XP, Windows Vista, Windows
7 or Windows 2003 Server, can see that EDLIN is still included, as its successor the EDIT
program.

DOS (Disk Operating System)

How DOS operates
After the POST (Power On, Self Test) process, the PC starts with a number of DOS programs
including the AUTOEXEC.BAT file. This file specifies the processes to be run as DOS starts.
After running AUTOEXEC.BAT, the user is placed at the command line, where commands can
be typed.

CP/M successors include:
. MS-DOS
· DR-DOS (successor to CP/M-86)
. FreeDOS
· OpenDOS
· PC-DOS (5.0, 6.0, 6.1, 6.2, 6.22, 6.3, 7.0, 8.0)
. PTS-DOS

1982.
Fibre Optics
The first optical-cable-based local area network became operational in 1982.
Eventually fibre optic media came to enhance all commercial communications,
particularly over large distances, for computer networks, phone lines, internet
communications and cable TV networks. Optical fibre suffers less signal attenuation
and less interference compared to copper cables, and has an inherently high data-
carrying capacity. General Telephone and Electronics had already sent the first live
telephone traffic through a fibre optic cable (at 6 Mbit/s) in Long Beach, California in
1977.

HISTORY OF THE COMPUTER

298

Learn to program using Lazarus

Macintosh

Figure 57: The first 1984 Macintosh

1984.

Mac or Macintosh is the name of a series of computers developed
by the American company Apple.
The first Macintosh was introduced in 1984 primarily as a cheaper sequel to the Apple Lisa, the
computer which introduced a visual, mouse-driven user interface which, though ahead of its
time, was too expensive to be a commercial success.

The name was coined by Jef Raskin, who named his favorite Apple
McIntosh.
To avoid problems with the US audio brand McIntosh, the name was spelled Mac (with an
'a').The first Apple Macintosh (later branded the Macintosh 128K) appeared in 1984, with a full
graphical user interface, called Mac OS.

The development of the Mac was begun in 1979 under the leadership of Jef Raskin at
Apple, who introduced several ideas from Xerox PARC. Steve Jobs, Bill Atkinson and other
Apple staff visited the Xerox PARC lab, after which Apple adapted several different ideas from
Xerox PARC's mouse-driven Alto workstation.
However, the Apple team developed the overlapping window interface, the ability to move or
remove icons, the “cut-and-paste” metaphor, and a menu bar that looked the same in each
program.

Douglas Engelbart's 1963 introduction of the mouse was taken up fully in the Macintosh
GUI. User did not need to type cryptic commands at the command-line. After turning on the
Macintosh computer, you saw (on a nine inch black-and-white display) a symbolic desktop,
with icons for a cabinet, sheets of paper, folders for storing them, and a waste bin where they
could be thrown away.
Apple kept the operating system out of sight as much as possible.
The Mac was based on a Motorola 68000 series processor, and consisted of a system (called
System) that loaded as much as possible into RAM, a file management program (called the
Finder) and a growing number of extensions. Modifications to the system could be
implemented by control panels which set various parameters, the Control Panel.
The Macintosh was introduced on January 22, 1984 with a one-minute commercial during the
U.S. Super Bowl game. Approximately half the population of the United States saw this. Two
days later it was officially introduced by Apple Computer founder Steve Jobs. The first Mac
cost between $1,995 and $2,495.

1983.
a-Si for printing
Amorphous silicon can be applied in much thinner layers and at lower temperatures than the
crystalline silicon used in the 1970s. This led to new (or cheaper) applications. Xerox used a-Si
thin-film transistors to drive a small Corjet ionographic printhead. The technology enabled
Xerox to offer lower-cost multifunction machines and, in 1988, the first wide-format
engineering laser plotter. Amorphous silicon has become the material of choice for the active
layer in thin-film transistors (TFTs), which are most widely used in large-area electronics
applications, such as the liquid-crystal displays (LCDs) used in large-format computer monitors
and flat-screen TVs.

HISTORY OF THE COMPUTER

299

Learn to program using Lazarus

In many ways the Macintosh was the forerunner of what is now called the PC. Computers
without mouse control and overlapping windows were hardly on sale anymore around 2002.

Figure 58: Power Mac G3 B&W from 1999

The first Macintosh ran at a clock speed of 7.83 MHz. By 2003 that speed had been increased by
a factor of 500.

The original Mac operating system (MacOS) was phased out around 2002 and replaced by
the BSD Unix-based Mac OS X. The first version of this derived from the mouse-based Unix
variant NeXTStep and debuted in 2001 (Mac OS X 10.0). More recent versions of Mac OS X have
lost emulation of the Classic.

On June 5, 2005 Steve Jobs announced that Apple would begin to switch from PowerPC to
Intel microprocessors
on account of the high power consumption and high heat produce by the G5 processors from
IBM. Apple introduced the first Intel Macs with Core Duo processors in January 2006, the last
Power Mac being produced in August 2006. The switch to Intel was also indicated by a name
change: the MacBook becoming the iBook, the PowerBook becoming the MacBook Pro and
Power Mac becoming the Mac Pro.

Figure 59: The iMac (2009)

Figure 60: Douglas Engelbart, inventor of the mouse

Douglas Engelbart was born in Portland, Oregon in 1925 to Carl and Gladys Engelbart. He
grew up in Oregon, graduating from Franklin High School in Portland in 1942 and going on to
study electrical engineering at Oregon State University.
Shortly before the end of World War II, however, he was conscripted into the US Navy where
he served for two years as a radar technician in the Philippines.
He then completed his studies at Oregon State University, graduating in 1948. In 1953 he
obtained an MS degree from the University of California, Berkeley, and in 1955 he obtained a
Ph. D. at the same university.
He formed a start-up, Digital Techniques, to commercialise some of his doctoral research on
storage devices, but after a year decided instead to pursue the research he had dreamt of since
1951, when he had first been inspired by reading Vannevar Bush's seminal article “As We May
Think”, taking a position at Stanford Research Institute (SRI) in Menlo Park in 1957, where he
received funding from ARPA to found the Augmentation Research Center at SRI, where he
recruited a new research team.

HISTORY OF THE COMPUTER

300

Learn to program using Lazarus

This conception of the inventor is in stark contrast to the appearance of the first mouse that
came standard with a computer: the Xerox Star was marketed with a single-button mouse.
Computers, including those from Apple, had single-button mice for a long time. Only with the
appearance of the IBM PC and compatible personal computers were mice given more buttons.
The mouse as an input device, for managing graphical user interfaces had led to the
subsequent booming development of operating systems such as the Mac OS X and Windows.

Engelbart invented not only the mouse, but was also the driving force behind hypertext,
network software, teleconferencing, and the windowed graphical user interface - as it was first
commercially applied by Xerox, and later by Apple and Microsoft. Many of these techniques
were applied in the 1960s to the then revolutionary NLS (online system).
Engelbart showcased the mouse, chord keyboard, video conferencing, email, hypertext, and
other ARC inventions at “The Mother of All Demos” on December 8, 1968 where now
commonplace technologies were first introduced as experimental ideas to about 1,000 computer
professionals. Engelbart was also involved in the development of Arpanet, the Internet
precursor that came into use in 1969.

Engelbart himself earned nothing for his inventions. For him, they were just footnotes in a
much larger project: to help humanity solve increasingly complex problems.
Engelbart slipped into relative obscurity after 1976. Fewer funds were available for the
Augmentation Research Center, and many of his employees moved to Xerox PARC,
disagreeing with his vision of a collaborative, networked future for computing.

Engelbart now leads a somewhat reclusive life, but is still active. With his daughter Christina he
founded the Bootstrap Institute, now housed in a modest office with computer mouse
manufacturer Logitech.
He received several honors, including the Lemelson-MIT Prize, the Turing Award (both 1997)
and from the hands of former President Bill Clinton, the National Medal of Technology (2000).
In 2001 the British Computer Society awarded him the Lovelace Medal. Engelbart holds 20
patents.

He was awarded US a patent in 1970 for a wooden box with two metal wheels, which was
described as an “X-Y position indicator for a display system”. He nicknamed the device a
“mouse” because the cord (tail) emerged at the back of the device. The on-screen cursor was
termed a bug, but that name has not stuck.

It was first developed in 1963 by Douglas Engelbart and William English at (SRI). “It was Bill
English,” says Engelbart, “who screwed together the first working prototype single-handedly,
because English was one of those rare people whose hands can make anything that his eyes
have visualised.”
The first mouse made by Engelbart and English had only one button fitted. “But,” Engelbart
explains, “We quite quickly moved to fitting three buttons on our mice. We used simple
switches such as those that were available commercially at the time. No one had heard of
miniaturisation, so compared to today's switches those first mouse buttons were quite crude.
Three buttons was simply the maximum possible because of this physical limitation. Had the
switches been smaller I would definitely have mounted more buttons on the mouse. For more
buttons automatically mean more opportunities.”

HISTORY OF THE COMPUTER

301

Learn to program using Lazarus

The development of the mouse

Trackball

A mouse was initially connected to the computer via the serial port. Later a PS/2 interface was
used in IBM PCs. Today mice typically connect using a USB cable connector, or they work
wirelessly via radio, infrared or Bluetooth.
The mouse works best if moved over a specially manufactured small mouse mat (or mouse
pad). This is usually made from a layer of hard plastic with a foam backing underneath.

Displacement unit

Optical mouse

A mouse works digitally and the movement is measured using a unit called the mickey (named
after the famous Walt Disney mouse). The mouse driver might determine, for example, that the
mouse has been moved left three mickeys.

A mechanical mouse has a mouse ball made of dense, hard material which rolls as the mouse
moves over a flat surface. This rolling movement is transmitted by friction to two wheels
mounted on axes perpendicular to each other. Two light beams monitor the movement of each
axle, converting the movement into electronic pulses. This information is processed by the
mouse driver and eventually turned into a corresponding cursor movement on the monitor.
The ball picks up dirt in use which gets deposited on the axles, impeding the movement and
accuracy of the mouse. The ball and the axles therefore need periodic cleaning. To this end,
mechanical mice are designed to be easily disassembled.

An alternative to the mechanical mouse that is less sensitive to dirt and wear and works even
on surfaces that are not perfectly smooth is the optical mouse. This contains an LED (or laser in
the case of a laser mouse) and a mini CCD camera which measures the mouse's movement
relative to the stationary layer below the mouse optics. This provides more reliable and more
manageable on-screen cursor movements.
The first optical mouse (invented by Steve Kirsch of Mouse Systems Corporation) depended on
a specially patterned mouse pad, showing a grid of lines which were scanned by a dual photo
sensor as the mouse moved over the pad. This type of specialised mouse pad is no longer
needed, since the modern optical mouse detects tiny irregularities present in the subsurface.
However, most optical mice still have problems with highly reflective, transparent or absorbing
surfaces.

Another variant is the trackball or rollerball mouse in which the ball is placed on top of the
mouse. This has several advantages:

Ÿ Less space is required, because the mouse unit does not move.
Ÿ The ball is not contaminated by rolling on a dirty surface.
Ÿ The movement can be accurately controlled with a finger rather than the whole hand.
Ÿ The user is less prone to repetitive strain injury or RSI.

There are also disadvantages:
Ÿ Dragging (moving the mouse while a button is held down) is more difficult.
Ÿ Large distance movements are a little more time consuming.

HISTORY OF THE COMPUTER

302

Learn to program using Lazarus

Pen tablet

The Penmouse

Another type of 'mouse' is the pen-tablet combination, where the tablet provides a surface that
can be written on by the pen (or icons that can be selected with the pen). The pen tablet is
primarily intended for artistic drawing or in medical and chemical laboratories where a panel
of icons is used to give an overview say of particular cell types or chemical compounds.
The pen tablet provides an alternative to the mouse to control the cursor and clicking. The pen
can do more than just indicate the cursor position. The pressure of the pen, the position (angle)
of the pen or the rotation of the pen can all be monitored, provided suitable software is
installed. From 2007 the most popular drawing software used pen pressure variations to
enhance its drawing capabilities.

There are different types of pen mice:
Ÿ A pen-tablet combination (see above).
Ÿ A pen with a tiny normal mouse as its nib.
Ÿ A pen that passes all movements wirelessly to the computer. Unlike the pen-tablet,

this type of mouse pen works on all surfaces. It requires an internal battery.

Figure 61: Inside a mouse

Head, eye, foot and hand devices
There are also devices that can be put on the head, so that your head movements will control
the cursor.
There are several systems in which a camera looks at the pupil of the eye, and moves the cursor
on-screen based on the position of the eye, though these systems do not yet work satisfactorily.
Then there is the foot mouse, where you control the cursor with your feet.
It is also possible to use a webcam that scans hand movements as a mouse. Currently a few
games consoles use this system.

Touchpads are used in many laptops to replace the conventional mouse.

HISTORY OF THE COMPUTER

303

Learn to program using Lazarus

Multi-button mice

Scroll wheel mice

The first computer that provided a mouse as standard, the Xerox Star, only had a single button,
and this style of mouse remained the norm for a long time with the Apple Macintosh series.
Apple has only recently succumbed to the temptation of a multi-button mouse.
Most mice produced in the 1980s for the original IBM PC and its clones had one button, except
the Microsoft mouse. This had two buttons, one for point-and-click selection, and the other for
invoking a so-called context-sensitive menu.
Today, three buttons are standard, but variations occur in specific applications such as
Computer Aided Design and Computer Aided Manufacturing.

Incorporating a scroll wheel into mouse functionality is a relatively recent addition, where it
usually replaces the centre button, and is then programmed to scroll the contents of a window
horizontally or vertically, (or resize it). This is particularly useful when you view lengthy blocks
of text or browse Web pages and don't want the cursor location to change.

The original middle button function is still available simply by depressing the central scroll
wheel. This scroll wheel dual function avoids the need for a separate third button. Some earlier
two-button DOS programs used simultaneous pressing of both buttons to invoke a third
function, and under the X Window System this functionality is preserved. If a two-button
mouse is connected, pressing both buttons simultaneously functions identically to pressing the
middle button on a three button mouse.

Figure 62: The internals of a mechanical mouse

1. Mouse movement rolls the ball
2. Rollers record X and Y movements
3. Optical encoding disks with light holes
4. LED light source shines through the disk holes
5. Light-sensitive sensors transmit movement data to the computer

Other enhancements to functions are possible by combining a mouse click with a keypress such
as [Ctrl] or [Alt] using the keyboard. This is common on Mac OS with a one-button mouse,
where control-click (clicking while the [Ctrl] key is pressed) is equivalent to clicking with the
right button on a multi-button mouse.

HISTORY OF THE COMPUTER

304

Learn to program using Lazarus

1985.
Microsoft markets its first 16-bit Windows version, followed by a 32-
bit version in 1993 and a 64-bit version in 2003.
Windows is the name of Microsoft's line of personal computer operating systems. It was launched
in 1985 and has dominated the personal computer market since the launch of Windows 95 in 1995.
In 2004, Microsoft had 90% of the personal computer market. Microsoft's original design for
Windows was probably influenced by previous initiatives by Xerox and Apple, which had foreseen
the advantages of a graphical user interface for computer users.

1985.
Intel makes the 80386 microprocessor.
The Intel 80386, also known as the i386, or just 386, was a 32-bit microprocessor introduced by
Intel in 1985. The first versions had 275,000 transistors and were used as the central processing
unit (CPU) of many workstations and high-end personal computers of the time. As the original
implementation of the 32-bit extension of the 8086 architecture, the 80386 instruction set,
programming model, and binary encodings are still the common denominator for all 32-bit x86
processors, this is termed x86, IA-32, or i386-architecture, depending on context.
The 80486 and P5 Pentium line of processors were descendants of the 80386 design.

HISTORY OF THE COMPUTER

305

Learn to program using Lazarus

Figure 65: An overview of Microsoft Windows development up to 2010

1987.
Collaborative workspaces and tools
A novel conference room at Xerox PARC, “COLAB", help inspire the development of
document-based collaboration products for local and remote team members. for computational
The room provided support for shared and private consultations and calculations through a 36
inch touch screen, and a million-pixel interactive personal “live board” which displayed
multimedia images.

1986.
Multi-beam lasers
Xerox PARC is home to the world's first dual-beam laser printer, which prints twice as fast as
single-beam models. Multi-beam lasers become a key factor in the development of high-speed,
high-resolution production printing systems

1987.
Unicode and multilingual computing
Xerox PARC designs a 16-bit encoding system to represent any script from any language in the
world, to be used in documents, user and file names, and in network services, in all
combinations. This lead to the ISO/IEC 10646 and the corresponding Unicode industry
standard which allowed computers to represent text consistently from country to country.

1988.
Ubiquitous computing
The phrase “ubiquitous computing” was coined at Xerox PARC to describe a vision in which
anyone anywhere, using a mobile device, could access resources and control digital
environments seamlessly. Xerox PARC invents and builds Fundamental Enabling Devices, such
as the palm-sized PARCTab, notebook-sized PARCPad, (a lightweight portable document
reader), and a flexible computational infrastructure to enable fully interoperable wireless
communication between devices.

1989.
Embedded data glyphs
After inventing data glyphs, Xerox PARC pioneers the development of embedded data schemes
that transforms paper, and other surfaces, into computer-readable interfaces. Applications
evolve which include check verification, smart paper, and tracking tables

HISTORY OF THE COMPUTER

306

Learn to program using Lazarus

1989.
Encryption Systems
Encryption research at Xerox PARC enables the release of an NSA-endorsed electronic device
that encoded computer signals mathematically so that they would travel safely over ordinary
local area networks. Performing hardware-level encryption, these encryption systems (later
commercialized through spinout Semaphore Communications) work much faster than most
software-based products.

1989.
Information visualization
Taking a unique approach to the visualization of information, Xerox PARC invents techniques
that use human cognitive perception capacities to help people make sense of large amounts of
diverse information. The approach results in 3-D Rooms, a hyperbolic browser, and other
“Focus+Context” visualization techniques that present three-dimensional views of database
information.

1990.
Multi-user virtual world
Xerox PARC creates LambdaMOO – one of the longest continuously operating, real-time multi-
user “dungeons” or online environments. LambdaMOO provides a foundation for the U.S.
Department of Defense's collaborative computing systems. It later resulted in a company that
provides live, Web-based meeting and presentation solutions (which ultimately became
Microsoft Live Meeting).

1990.
X-ray imaging
Using amorphous silicon displays and digital x-ray imaging, Xerox PARC builds the first x-ray
imager. Continuing research will result in the formation of the dpiX company, which will
market the world's highest resolution active-matrix, liquid-crystal, flat-panel displays and a
digital x-ray system for medical imaging that eliminates traditional film.

Figure 66: The Intel DX4 chip

1989.
Intel introduces the 80486 microprocessor
The 80486 is a clock-tripled i486 microprocessor with 16 kB L1 cache. The product was
officially named the IntelDX4, but OEMs continued using the i486 naming convention.

HISTORY OF THE COMPUTER

307

Learn to program using Lazarus

1992.
Internet standards
The MBone multicast backbone is co-founded and first implemented at Xerox PARC to deliver
real-time multimedia over the Internet. Xerox PARC scientists will also play a key role in co-
designing the IPv6 protocols that govern and define how the Internet works, and help develop
the HTTP-NG protocol based on Inter-language Unification (ILU) from Xerox PARC.

1992
Collaborative filtering
Collaborative filtering is implemented at Xerox PARC, inspired by the idea to involve human
input (such as past user preferences and collaborators' feedback) in helping information
systems auto-filter content. Today, this approach enables recommender systems.

1993.
Intel introduces the Pentium microprocessor
Following Intel's previous series of 8086, 80186, 80286, 80386, and 80486 microprocessors, the
company's first P5-based processor was released as the original Intel Pentium on March 22,
1993.

1993.
Live artistic performance on Internet
Performing at Xerox PARC, the band “Severe Tire Damage” is the first musical group to
broadcast live video and audio on the Internet, using the MBone.

1995.
Unistrokes
Xerox PARC's input technology for palm-sized devices, which enables single-stroke touch-
screen input, is patented.

1996.
Intel introduces the Pentium Pro microprocessor.
Pentium is a registered trademark that is included in the brand names of many of
Intel's x86-compatible microprocessors, both single- and multi-core.
The name Pentium was derived from the Greek pente (πέντε), meaning 'five', and the
Latin ending -ium, a name selected after courts had disallowed trademarking of
number-based names like "i586" or "80586" (model numbers cannot always be
trademarked). The P5 was first released under the Pentium brand in 1993. In 1995,
Intel started to employ the registered Pentium trademark also for x86 microprocessors
with radically different microarchitectures (e.g., Pentium Pro, II, III, 4, D, M, etc.). In

Figure 68: A CPU viewed from inside

HISTORY OF THE COMPUTER

308

Learn to program using Lazarus

F
ig

u
re

 6
7
:

U
lt
ra

 L
o
w

-P
o
w

e
r

In
te

l4
8
6
™

 S
X
 E

m
b
e
d
d
e
d
 P

ro
c
e
s
s
o
r

B
lo

c
k
 D

ia
g
ra

m

HISTORY OF THE COMPUTER

309

Learn to program using Lazarus

1997.
Blue laser
Xerox becomes the first printing company to create a blue laser. The reduced wavelength of a
blue laser may ultimately allow much higher-resolution printing than is possible with standard
red and infrared lasers.

1998.
Intel introduces the Celeron.
The Celeron brand marks a new line of low-priced Intel microprocessors. With the 2006
introduction of the upper Core 2 brand, there idea was to discontinue use of the Pentium
trademark, but Intel developed a line of mid-range dual-core microprocessors under the
Pentium Dual-Core name at the request of laptop manufacturers. The Pentium brand thus lost
its upper position and was repositioned between the Core 2 and Celeron Dual-Core lines as of
2007. In 2009, the Dual-Core suffix was dropped, and newer x86 microprocessors began to
carrying the plain Pentium name again.

1997.
Intel introduces the Pentium II microprocessor.

1999.
Intel introduces the Pentium III microprocessor.

2000.
Electronic reusable paper
“Electronic reusable paper” is a document display technology invented at Xerox PARC. It is thin,
flexible, and portable, like paper, but can display different text and graphics when an electric
charge is applied to it.

Figure 69: Schematic
representation of a CPU

HISTORY OF THE COMPUTER

310

Learn to program using Lazarus

2000.
Digital rights management (DRM)
Xerox PARC's concepts for trusted systems and digital property rights lead to ContentGuard, a
joint venture, which develops DRM software and offers content owners greater control and
flexibility over the distribution of their material. To enable authorization of content access in a
universal language, Xerox PARC develops eXtensible rights Markup Language (XrML).

2001.
Biomedical systems
Establishing a biomedical initiative, Xerox PARC partners with The Scripps Research Institute
to develop instrumentation and information systems for accelerating discovery in the life
sciences. In 2002, PARC demonstrates an operational prototype of the Fiber Array Scanning
Technology Cytometer for screening blood samples about one thousand times faster than
automated digital microscopy.

2002.
To broaden PARC's ability to innovate, build breakthrough technology platforms, and develop
business concepts for many different organizations, PARC is established as an independent
company.

2003.
The space shuttle Columbia explodes fifteen minutes before it is scheduled
to land on February 1, 2003, resulting in the death of all seven crew members.
Apple opens the iTunes store April 28, 2003.
The Safari Internet browser is released June 30, 2003.
The Internet VoIP service Skype goes public August 29, 2003.
President George W. Bush signs CAN-SPAM into law December 16,
2003, establishing the first United States' standards for sending commercial e-mail.

2004.
Google jumps into the Social Networking with the release of Orkut in January 2004.

Mark Zuckerberg launches Thefacebook February 4, 2004,

which later becomes Facebook.

Google announces Gmail on April 1, 2004. Many people take it as an April Fools joke.
Apple introduces Mac OS X 10.4 code named Tiger at the WWDC on June 28, 2004.
Microsoft Windows XP Media Center Edition 2005 is released on October 12, 2004.
Firefox 1.0 is first introduced on November 9, 2004.

Blizzard's World of Warcraft game, the most popular
and successful MMORPG is released November 23, 2004.
IBM sells its computing division to Lenovo

Group for $1.75 billion on December 08, 2004.

Microsoft purchases the software developer GIANT Company Software,
Inc. on December 16, 2004. The companies software would later become Windows
Defender.

HISTORY OF THE COMPUTER

311

Learn to program using Lazarus

2007.
Apple introduces the iPhone to the public at
the January 9, 2007
Macworld Conference & Expo.

Dropbox is founded.

HISTORY OF THE COMPUTER

312

2006.
The blu-ray is first announced and introduced at the 2006 CES on January 4, 2006.
Apple announces Boot Camp, which will allow users to run
Windows XP on their computers April 5, 2006.
Intel releases the Core2 Duo Processor E6320 (4M Cache, 1.86 GHz, 1066 MHz FSB)

Toshiba releases the first HD DVD player in a computer computer with the introduction of the
Toshiba Qosmio 35 on May 16, 2006.

Twttr, now known as Twitter is officially launched July 15, 2006.
U.S. President George W. Bush signs the USA Patriot Act into law October 26, 2006,
giving law enforcement reduced restrictions on searching telephone, e-mail, and other forms of
communication and records.Sony releases the PlayStation 3 November 11, 2006.

Nintendo releases the Wii November 19, 2006.
Google introduces Patent search December 13, 2006, which searches over 7 million patents.

2005.
Google Maps is launched February 8, 2005.

YouTube is founded and comes online February 15, 2005.

Microsoft Windows XP Professional x64 Edition is released on April 24, 2005.
Star Wars Episode III: Revenge of the Sith is released May 19, 2005.
Apple announces it plans on switching its computer to the Intel processors June 6, 2005.
Microsoft announces it's next operating system, codenamed "Longhorn" will be named

Windows Vista on July 23, 2005.
IBM officially announces on July 14, 2005 that all sales of OS/2 will end on December 23, 2005 and that
all support from IBM for OS/2 will end on December 16, 2005.
On September 12, 2005 eBay acquired Skype for approximately $2.6billion.
AMD and Intel both release their first versions of a dual-core processor.

Learn to program using Lazarus

2007 (Continuation 1)
Microsoft releases Microsoft Windows Vista and Office 2007
Estonia becomes the first country to conduct an election over the Internet March 4, 2007

Adobe introduces Adobe AIR on March 19, 2007.

Google releases Google Street View
May 25, 2007 that allows visitors of Google Maps to view of an area looks like

Google releases Android November 5, 2007.

The One Laptop Per Child (OLPC) is introduced to the public November 16, 2007.

Amazon.com releases the first Kindle in the United States November 19, 2007.

Apple introduces Mac OS X 10.5 code named Leopard October 26, 2007.

313

Learn to program using Lazarus

2007 (Continuation 1)
Steve Jobs is inducted into the California Hall of Fame on December 5, 2007.

2008.
Acer officially acquires Packard Bell January 31, 2008.
Microsoft releases Windows Server 2008 February 27, 2008.
AOL ends support for the Netscape Internet browser March 1, 2008.
Intel announces the Intel Atom family of processors March 2, 2008.
Arthur C. Clark passes away March 19, 2008 (age 91)

Apple introduces Mac OS X 10.6 code named Snow Leopard and MobileMe

T-Mobile's G1 phone (HTC Dream) is the first phone to be released with Google Android

The first Intel i7 is released to the public in November of 2008.

Google releases the first public version of Chrome December 11, 2008.

HTC Dream is the first phone to be released

with Google Android

314

Learn to program using Lazarus

2009.
A person under the fake name of Satoshi Nakamoto introduces the

Internet currency Bitcoin.

Microsoft Internet Explorer 8 is introduced March 19, 2009.
Apple removes support for AppleTalk in August 28, 2009 with its
introduction of Mac OS X v10.6 that also is the first version of the
Mac OS that no longer supports PowerPC processors.

Microsoft launches the Bing search engine June 3, 2009.

The analog TV signal begins to be phased out as broadcasts moved to high-definition

Google announces the Google Chrome OS July 7, 2009.

Microsoft releases Windows 7 October 22, 2009.
Steve Jobs is named CEO of the decade by Fortune Magazine November 5, 2009.
Palm introduces WebOS.

USB 3.0 begins being released in November of 2009.

Google releases the Chrome OS as open source with the name Chromium OS

2010.
Oracle announces it has completed the acquisition of Sun Microsystems January 27, 2010.

Apple introduces the iPad on January 27, 2010.
Apple surpases Microsoft as the most valuable technology company May 26, 2010.

Apple introduces the iPhone 4 on June 24, 2010.

Microsoft announces plans to release Windows Phone 7 October 11, 2010.

 Microsoft first releases the Kinect for the Xbox 360 in November 4, 2010.
Mark Zuckerberg is named TIME Person of the Year 2010.

2011.
On January 6, 2011 Aaron Swartz is arrested by federal authorities in connection with
systematic downloading of academic journal articles from JSTOR.
Hitachi sells its hard drive division to Western Digital in March of 2011.

Microsoft releases Internet Explorer 9 March 14, 2011.
 The United States government even holds a hackathon in 2011 to improve city transit systems.

Microsoft announces plans on May 10, 2011 to acquire Skype for $8.5 billion in cash.

The first Chromebooks with Chrome OS begin shipping on June 15, 2011.

Microsoft introduces Office 365 June 28, 2011.
Steve Jobs resigns as Apple's CEO due to health reasons on August 24, 2011.
Steve Jobs passes away on October 5, 2011 (Age: 56)

315

Learn to program using Lazarus

M O T I O N

2013.
The Furusawa group at the University of Tokyo succeeds in demonstrating
complete quantum teleportation of photonic quantum bits on September
11, 2013, bringing quantum computer even closer to reality.

Apple introduces iOS7 on September 18, 2013.

Blaise pascal Magazine orders to create software
for Leap Motion for Pascal

Leap Motion is introduced.

316

2012.
Boing Boing, Computer Hope, Craigslist, Google, Reddit, Tumblr, Twitter, Wikipedia, and more than
115,000 other websites go dark in protest of the Stop Online Privacy Act (SOPA) on January 18, 2012.

Google and several other companies migrate to IPv6 on June 6, 2012.
The space craft Curiosity lands on Mars August 5, 2012.

Apple iPhone 5 goes on sale September 21, 2012.

YouTube breaks an Internet record as over 8 million concurrent live viewers watch Felix Baumgartner
break his own record by jumping from the edge of space (128,100 feet) on October 15, 2012.

Apple introduces the iPad mini October 23, 2012.

Microsoft Windows 8 and Microsoft Surface is released October 26, 2012.

Microsoft unveils the Xbox One on May 21, 2013, a new gaming console to replace the Xbox 360.

Learn to program using Lazarus

317

Learn to program using Lazarus

INDEX of selected words

+, 49
-, 49
/, 49
*, 49
**, 49
=, 50
<, 50
>, 50
<=, 50
>=, 50
<>, 50
<<, 51,
>>, 51
:=, 107

.csv, 113

.dbf, 113

.inc, 16

.lfm, 96,99

.lpi, 12

.lpk, 101

.lpr, 10

.lps, 12,99

.po file, 100

.rtf, 130

.txt, 195

{$apptype console}, 47,191
{$ASSERTIONS ON}, 226
{$DEFINE DEBUG}, 234
{$H+}, 39
{$IFDEF ...}, 15
{$M+}, 81
{$mode ...}, 11
{$mode, 69,73
{$R *.res}, 100
{$TYPEINFO}, 81
{$UNDEF debug}, 236

Comment directive
{ToDo ...}, 16, 142

Symbols

File types

Compiler directives

A
abstract (class), 87,173,176
Add unit to Uses Section dialog, 93
Add method, 172
Adding external tools to the IDE, 138
Additional Palette page, 119,150
address, 26,33,35
AfterPost method, 85
algorithm, 180,210,211,212
alias type, 20
aliases, 34
Align property, 115,194
Alignment property, 115,125
ambiguity, 43
anagrams, 204
analogue data, 3
ancestor, 87,88
Anchors property, 108,113
and, 51
anonymous types, 37
ANSI characters, 29
ansichar, 20,40
AnsiProperCase function, 40
ansistring, 18,25,34,38,39
apostrophe, 28
Append, 46
application, 6,82,100
Application.OnException, 59
Application.ProcessMessages, 210
Application Settings, 101
arguments, 63
arithmetic on pointers, 35
array constants, 31,37
array property, 75,76,79
array, 34,40,59,117
ASCII, 197
assembler, 3
assertion, 225
AssertNull, 216
Assign method, 172
Assigned function, 35,136
AssignFile, 46,47,48,59,82
assignment operator :=, 27,107
assignment, 27,28
asterisk, 99
automatic destruction, 92,103
AutoSize property, 106,109

318

Learn to program using Lazarus

B

C

backup folder, 14
backup, 14
BeforeInsert, 85
begin, 14,53
beginning programmer, 7
BevelInner, 164
BevelOuter, 164
binary arithmetic, 2
binary files, 45
binary, 2,28
bit pattern, 3
bit, 2
BlockRead, 196
Blowfish algorithm, 180
books about Pascal and Lazarus, 248
boolean expression, 21,50
boolean type, 20,21,27
BorderIcons, 109
BorderStyle, 120,164
brackets (parentheses), 23
breakpoint, 246
Brook framework, 8
bug-avoidance, 222
bug-hunting, 222
bugs, 6,17,171,222
business rules, 167
byte, 3,20
byteBool, 22

C and C++, 34,37
cache, 208
Call Stack window, 246
calling a routine, 62
camel-casing, 17
CanClose parameter, 158
Canvas property, 89,92
Capacity, 172
Caption property, 114,125
cardinal, 20,169
caret, 33
carriage return, 29
case-sensitive operating systems, 17
cast, 118
Char, 20
character array, 34
CharCase, 125
checkbox component, 115,119
Chr function, 24
cipher, 180
circuit, 2
circumflex symbol, 33
class function, 72
class method, 72,123
class, 4,18,23,35,43,69,70,180
ClassName property, 122

C

CloseFile, 46,47,48,82
Code Completion, 91,103,105
Code Explorer, 229
Code Observer, 79,228
COFF format, 245
Color property, 110,115
Columns property, 121,169
combinations, 49
command-line, 10
CommaText property, 175
comments in code, 14,16
Common Controls Palette page, 121
comparison, 27
compilation, 4,5
compiler checks, 25
compiler directives, 16,17,234
compiler messages, 223
component browser tool, 130
Component Palette, 10,111
Components property, 111
ComponentStyle property, 82
computer languages, 3
console program, 10,11,96
console window, 9,10,47
const, 19,27,28,31,44,64,212
constant declaration, 28
constructor, 71,79,92
control characters, 29
Controls, 91
CopyFrom, 176
core developer of Lazarus, 7
Count property, 172
CPU, 2,4,5,19
crash, 19,192
Create, 71
CreateForm, 103
cross-platform, 6,11
CustomDrawn library, 86

data access, 167
Data Controls Palette page, 112
data hiding, 69,85
data structures, 34
data, 3,19
DataField, 112
datamodule, 167
DataSource, 112
date dialog, 163
DateToStr function, 24
dBase, 113
DbgAppendToFile, 239
DbgOut, 237
DbgS, 237
DbgSName, 237
DbgStr, 237

Clear method, 172
closed source, 6

D

Learn to program using Lazarus

319

D
debugging windows in IDE, 246
debug, 17
debugger (gdb), 60,245
DebugLn, 236,237
DebugLnEnter, 237
DebugLnExit, 237
debugserver, 240
Dec, 21,35
decimal, 28
declaration, 20
default array property, 172
default parameter, 65,95
DefaultExt, 193
Delete, 172
Delimiter, 175
Delphi, 5,8,18,95
dereference a pointer, 33
descendent, 88
Designer (Form Designer), 10,96,103,106
Destroy, 71
destructor, 71,79
Dialogs Palette page, 193
Dialogs unit, 105
digital code, 3
digital information, 2
digitisation, 3
DirectoryExists, 188
display controls, 114
DLLs, 34
docking, 10
documentation, 1,7,54
dot notation, 41
double quotes, 28
double (type), 19,20
DupeString, 42,66
duplicate constants, 232
DWARF format, 245
dynamic array, 35,39,79,211

EchoMode property, 124
Editor, 10
EDivByZero, 60
EIntOverflow, 202
ELF format, 245
Enabled property, 124
encapsulation, 85,147,227
encoding conversion, 192
encoding, 40
end, 14,53,55
endless loop, 200
engineering notation, 28
enumerated type, 21,22,23,44,57
Eof, 46,48,58
EOLn, 47
error message, 27

E

E
escape key, 29
event handler, 84
event properties, 75,84
event-based paradigm, 11
event-driven model, 82
Events (OI page), 85
events, 75,82,83
example projects, 8
except, 60
exception, 60,188,191,203,204
Exception.CreateFmt, 59
Exclude, 119
executable program file, 5
executable size, 11
Execute, 193
Exit, 66,195
expressions, 20,27
extended (type), 19,20,202
Extract Procedure dialog, 232

factorial, 200
Fail, 216
Favorites (OI page), 109
FCL, 5,19,62
feedback, 206
Fibonacci, 224
fields, 43,70
file access, 188
file copying example, 177
file extension, 12
file, 41,46
FileExists, 46
FileMode, 46,196
FileName, 193
FileOpen, 188
FilePos, 46
FileSize, 46
FillChar, 36,98
FillRect, 92
Filter, 193
finalization, 97
finally, 137
Find in Files dialog, 212
Firebird database, 113
flag, 21
floating point types, 19,126
flow of control, 189
fmOpenRead, 177
fmOpenReadWrite, 177
fmOpenWrite, 177
focus rectangle, 124
focus, 124
FocusControl property, 114
Font property, 108
Font.Style property, 115

F

Learn to program using Lazarus

320

F
for loop, 213
form definition file (.lfm), 96
Form Designer, 10
Form Editor, 10
format specifiers (%d etc.), 48
Format, 48,106,203
FormatDateTime, 106
formatting, 5
forum for discussion, 211
FPC (Free Pascal Compiler), 4,5,6
FPCUnit, 215
fpGUI, 86
frame, 166
Free Pascal Compiler (FPC), 4,5,6
FreeBSD, 86
freeze, 19,205
fsBold, 108
function, 62,65

gdb debugger, 221,245
GetMem, 34
Git, 142
global variable, 26,80,103
goal, 141
grammar, 14
grouping several components, 106
GUI (graphical user interface), 9
GUI program, 10,11

hardware, 2,4,6
heap memory, 71,79
Heaptrc unit, 242
help, 7
hexadecimal, 28
hierarchy, 69
high level language, 4,5
High, 21,154
highlighter, 135
Hints, 223
hourglass cursor, 205

icon, 101
IDE (Integrated Development
Environment), 1,5,12
Identifier Completion, 105
identifier, 20
image file, 100
implementation, 75,97
in operator, 44
Inc, 21,35

G

H

I

I
Include, 119
indentation, 15
indexed properties, 86
IndexOf, 175
infinite loop, 200
information theory, 2
information, 3
Inheritance (OI page), 112
inheritance, 69,85
inherited, 71,79,92
initialised variable, 31,37
initialization, 97
Insert, 172
installing Lazarus, 7
instance, 72,79
InstanceSize, 74
instructions in code, 2,3,19
Int, 24
int64, 20
integer, 20,126
Integrated Development Environment
(IDE), 1,5,12
interface, 4,10,43,75,96,97,98
Interfaces unit, 86
internationalisation, 5,230
IntToStr, 24
IOResult, 46
ItemIndex, 90,93,118
Items property, 126

keyboard, 9
keyword, 4,20
KOL, 86
Kylix, 8

layout, 115
Lazarus forum, 7
Lazarus project, 9
LazLogger unit, 235,237
lazutf8 unit, 40
LCL, 5,19,23,62,101
Leak View tool, 245
Left property, 93,109
Length, 59
lib folder, 14
library, 19,101
limits of data, 218
LineEnding, 47,98,186
linker, 5
Linking, 242
Linux Terminal, 10
Linux, 6,18,86,110
literal text, 16
LoadFromStream, 176

K

L

Learn to program using Lazarus

321

L
local declaration, 62
local variables, 246
logical operators, 21
longBool, 22
longint, 20
longword, 20
loop, 155
low level access, 33
low level instructions, 4
Low, 21,154
LowerCase, 40

Mac OS X, 6,203
Mac, 18,86,110
machine code, 3
Macpas, 69
mailing list for Lazarus/FPC, 7
main form file, 102
main form, 82
main program file, 10,99
malware, 188
math unit, 127
MaxLength, 125
memory footprint, 74
memory leak, 72,137
memory management, 71
memory, 19,20,26,33,71
Mercurial, 142
message loop, 82
MessageDlg, 203
Messages (Window), 10,37
messages, 83
metadata, 101
method pointer, 84
methods, 62,69,73
Misc Palette page, 126
modal dialog, 65
Modified, 99
modular design, 62
Modularising functionality, 227
mouse, 9
MS SQLServer, 113
MultiLog, 239
MultiSelect, 121
MySQL, 113

Name property, 82,122
names in Pascal, 16,107,143
natural language, 4
NDA, 171
New, 34
newline, 29
newsgroup, 211
Niklaus Wirth, 4,11,227

M

N

nil, 35,85
not, 47,49,50
notification, 82
Now, 106
null-terminated, zero-indexed character
array, 34

Object Inspector (OI), 10,107
Object oriented file access, 188
object oriented programming (OOP),
4,69,85,111
Object Pascal, 4,18
objects, 4
objfpc, 18,69,73
octal, 28

N

O

Odd, 98
OffsetRect, 64
OI (Object Inspector), 10,107
OnAcceptFilename, 178,194
OnActivate, 129
OnChange, 85,135,186
OnClick, 82,84,118,155,178
OnCloseQuery, 158
OnCreate, 82,117,167,171
OnDestroy, 167,171,186
one-line comment, 16
OnKeyUp, 85
OnMouseDown, 85
OnMouseMove, 122
OnResize, 85
open source development, 6,7,171
operand, 49
operating system, 4,6,9
operators, 27,49
optimisation, 207,212,220
Options for Project dialog, 101
Oracle, 113
or, 51
Ord, 21,24
ordinal type, 20,21
ordinality, 21
OS calls, 234
out parameter, 64
overflow, 202,204
overload(ing), 24,94,95
override, 79,85,88,89,91,94
Owner, 82,92,103,160

Learn to program using Lazarus

322

P
package, 101
Paint, 89,91,94
Palette (Component Palette), 10
Panels Editor, 121
parameter, 42,62,63,94
Parent property, 93,118,160
parentheses, 25
parse, 211
Pascal expression, 27,49
Pascal language, 1,4,5,19
Pascal types, 19
PasswordChar property, 124
patches, 6
patterns of bits, 3
PChar type, 25,33,34
PE format, 245
permutations, 204
persistent medium, 188
personality, 156
Pi, 63
PInteger, 33
platforms, 4,15
poedit, 230
pointer, 26,33,35
polymorphism, 69,79,85,86,94
popup hint window, 247
Position, 176,181
Postgres, 113
Pred, 21
predeclared types, 19
premature optimisation, 220
private, 62,80
procedural paradigm, 11
procedural type, 75,83
procedure, 62,65
ProcessMessages, 82,83,205
processor, 2,4
profiler, 220
program file, 96
program icon, 100,101
program interruption, 238
programming environment, 12
programming interface, 176
programming, 1,3
progress bar, 205
project directory structure, 143
project group, 12
Project Inspector, 26,100,101
project name, 10
Project options, 173,202
Properties (OI page), 108
properties, 23,43,75
property declaration, 75
protected, 80
pseudo-code, 211
public domain, 6
public, 80
published, 80

Q

S

QuestionDlg, 179,195
quote character, 28,29
qword, 202

R
RAD (Rapid Application Development), 141
radio button, 90
raise, 59
RAM, 26,188
Random function, 181
Randomize, 181
RandomRange, 181
range check, 241
Read, 46,47,176
readability, 15,16,54
ReadComponent, 176
ReadLn, 15,47,48
ReadOnly, 124,126
real types, 19
record constant, 41
recursion, 62,200,210
refactoring, 232
reference, 64
registers, 4
release, 6,17,242
required package, 101
RequireDerivedFormResource, 100
reserved word (keyword), 4,14,15
Reset, 46,47,48,59
resize message, 82
resource file, 96
resourcestring, 230,231
Restricted page, 110
Result (predefined variable), 63
return, 29
reusability, 111
ReverseString, 40,66
Rewrite, 46
root node, 132
Round, 24
routines, 62
RTL, 5,19,62
RTTI component, 80,112,125
RTTI, 80,172
Run Time Type Information (RTTI), 80,172
Run, 82
run-time error, 188,189,191

Save Project, 10
SaveToStream, 176
scope, 96,105
Seek, 46,176
SeekEOF, 47
SeekEOLn, 47
Self (predefined variable), 74
semicolon, 14,55,62
set intersection, 147
set property, 108

Learn to program using Lazarus

323

S
set type, 44
set union, 146
SetHeapTraceOutput, 244
SetLength, 39
sets, 44,144
Shape, 120
shl, 51
short term memory, 26
shortint, 20
shortstring, 34,38
Show Compile dialog, 13
Show method, 159
ShowAccelChar, 114
ShowMessage, 65,104
ShowModal, 159
shr, 51
signal, 2
simple type, 19,36
SimplePanel, 121
SimpleText, 121
single quote, 28
single type, 19,20
Size, 176
SizeOf, 72,181
sizing grip, 116
skeleton code (template), 12,14,31
sLineBreak constant, 30
smallint, 20
software, 2,6
sort code alphabetically, 229
Sort method, 175
Sorted property, 121,175
Sorting lines, 173
source code, 8
Source Editor, 10
splitter component, 166
SQLdb, 113
SQLite, 113
Sqrt, 63
square brackets, 44
square root, 63
ssAutoBoth, 194
STAB (debug format), 245
stack (memory), 31,37,58,71,188
standard events, 85
Standard Palette page, 114
state, 214
statements in Pascal, 20
static array, 36
static variable, 31,48,71
statusbar in Editor, 11,13
stdctrls unit, 116
strict, 80
StrictDelimiter, 175
string constants, 28
String Editor dialog, 90
string, 29,35

S
strong typing, 19,24
StrPas, 24
structured types, 19,36,41
strutils unit, 40,50,194
Style property, 44,108,120,126
subrange type, 20,23
Succ, 21
support, 7
SVN version control software, 142
system codepage, 40
system event, 82,85
system unit, 15,98
SysUtils, 40,50,106,180,188

tab, 29
TabOrder, 114,119
TabStop, 114,119
Tag property, 82
TAlignment, 118
TApplication, 82
TApplicationProperties, 189
task list, 142
TBevel, 120
TBorderStyle, 23
TButton, 108,110
TChart, 111
TCheckGroup, 117
TCollection, 113,168,169
TCollectionItem, 168,169
TComboBox, 126
TComponent, 81,157
TComponentClass, 131
TCompressionStream, 187
TControl, 157
TCustomXXX classes, 81
TDatamodule, 167
TDataset, 112
TDataSource, 112
TDateTime, 20,106,180
TDBEdit, 129
TDBGrid, 112
TDividerBevel, 120
TEdit, 124,129
template, 12,17
test-driven development (TDD), 142,220
text files (*.txt), 45,47
Text property, 124
TextFile, 47
TFileNameEdit, 177,194
TFileStream, 176,177,188
TFloatSpinEdit, 126
TFont, 44
TFontStyle, 119
TFontStyles, 44
TForm, 23,157

T

Learn to program using Lazarus

324

T
TFormBorderStyle, 23
TFrame, 166
TGraphicControl, 89,91
TGroupBox, 163
theme, 6
TImage, 101
TIObject, 125
tiOPF library, 239
title bar, 10
TLabel, 114
TLabeledEdit, 124,125,151
TLCLComponent, 157
TList, 113,168
TListBox, 121,194,211
TListView, 123
TMemo, 124,130,173,194,211
TMemoryStream, 180,188
TModalResult, 195
TNotifyEvent, 84,85
TObject, 69,71,118
ToDo file, 100
ToDo functionality, 16,142
Top property, 93,109
TOpenDialog, 193
TOpenPictureDialog, 193
TPanel, 23,152,163
TPersistent, 81,157,168,172
TRadioGroup, 90,117,118,173
translation, 5
TRect, 64
TResourceStream, 188
Trunc, 24
try...except...end, 192
try, 59,137
try...finally...end, 175
TSaveDialog, 193
TSavePictureDialog, 193
TSpeedButton, 153
TSpinEdit, 126
TSQLQuery, 113
TSQLTransaction, 113
TStaticText, 119,120
TStatusBar, 121
TStream, 113,168,176
TStringGrid, 111
TStringList, 113,137,168,172
TStrings, 113,121,173
TStringStream, 180,188
TSynEdit, 124,130
TSynMemo, 124,130
TTestCase, 215
TTextLayout, 119
TTIGrid, 170,172
TTIPropertyGrid, 125
TToggleBox, 125
TTrackBar, 101,180
TTreeNode, 132

T
TTreeView, 123,130
TUpDown, 180
Turbo Pascal notation, 29
tutorials, 7
TWinControl, 157,160
type conversion, 24,188
type declaration, 20
typecast, 25
typed constant, 31,37,48
typed pointer, 33,34
types, 19
typinfo unit, 137,149

Ubuntu, 6
UI (user interface), 5
unassigned, 35
underscore (underline character), 16,17
Unicode, 29,192
uninitialised-variable bug, 26,225
unit file, 96
unit tests, 223
unit, 14,16,96,97
Unix, 15,18,40
unknown identifier, 96
untyped files, 46
UpperCase, 40
user interface (UI), 5
uses clause, 14,96
utf8, 40,192
UTF8ToSys, 192

Val, 24
value parameter, 64
Value property, 126
var parameter, 63
var (variable declaration), 19,26,64
variable, 17,19,21,26
VCL, 234
version control system (VCS), 142
versions, 6
vertical divider, 121
View menu, 10
virtual method,
1,3,8,9,12,13,14,31,76,79,87,88,89
virus, 188

U

V

Learn to program using Lazarus

325

W

X

Z

Warnings, 27,37,38,223
Watches, 246
Watching variable values, 234
web programming, 8
while, 47,58
Width property, 109
window handle, 82
Window menu, 10
windowed control, 82,119
Windows API, 22,34,234
Windows OS, 6,15,18,40,86
Windows, 86
Wirth (Niklaus), 4,11,227
with...do, 42,70
word, 20
wordBool, 22
WordWrap, 119
Write, 46,48,176
WriteComponent, 176
WriteLn, 15,47,48

XML, 12
xor, 51

zero-based array of Char, 38
zero-based array, 37

Learn to program using Lazarus

326

