
BLAISE PASCAL   MAGAZINE 94/95
Multi platform /Object Pascal / Internet /  JavaScript / WebAssembly / Pas2Js / Databases 

CSS Styles / Progressive Web Apps  
Android / IOS / Mac / Windows & Linux       

 MaxBox: Json Automation
Webcore Miletus from TMS an alternative for Electron

Latest Version of Free TMS Webcore for macOS/Linux/Windows 
Creating Components during Runtime

New Pas2Js: Lazarus Webform , implementing API’s for Chromium
CODE SNIPPETS Printing with Delphi

Web Service Part 3
The flippos collector problem

FastReport Lesson 2 The Query Wizard
I18n with kbmMW 1 – Internationalization



ARTICLES

ADVERTISERS

2

Pascal is an imperative and procedural programming language, which Niklaus Wirth designed (left below) in 1968–69 
and published in 1970, as a small, efficient language intended to encourage good programming practices using 
structured programming and data structuring. A derivative known as Object Pascal designed for object-oriented 
programming was developed in 1985. The language name was chosen to honour the Mathematician, Inventor of the 
first calculator:  Blaise Pascal (see top right).

Barnsten         Page   86
Components4Developers      Page 124
Delphi Company       Page   96
Lazarus Handbook - Pocket (softcover)    Page   42
Lazarus Handbook - Hardcover      Page   49
Subscription+Hardcover Lazarus Handbook     Page   12
Subscription+Library USB Stick     Page   20
Super Offer Bundle       Page   41

BLAISE PASCAL   MAGAZINE 94/95
Multi platform /Object Pascal / Internet /  JavaScript / WebAssembly / Pas2Js / Databases 

CSS Styles / Progressive Web Apps  
Android / IOS / Mac / Windows & Linux       

Publisher: PRO PASCAL FOUNDATION in collaboration © Stichting Ondersteuning Programmeertaal Pascal - NetherlandsNiklaus Wirth

Blaise Pascal Magazine 94/95  2021

From your Editor       Page     4
Humor         Page     5/95
MaxBox: Json Automation      Page     6
Webcore Miletus from TMS an alternative for Electron   Page   13
Latest Version of Free TMS Webcore for macOS/Linux/Windows  Page   65
Creating Components during Runtime     Page   21
New Pas2Js: Lazarus Webform , implementing API’s for Chromium  Page   50
CODE SNIPPETS Printing with Delphi      Page   87
Web Service Part 3        Page   97
The flippos collector problem       Page   43
FastReport Lesson 2 The Query Wizard     Page   66
I18n with kbmMW 1 – Internationalization     Page 111



Anton Vogelaar 
ajv @ vogelaar-electronics.com

Siegfried Zuhr 
siegfried @ zuhr.nl

Bob Swart
www.eBob42.com 
Bob @ eBob42.com 

Daniele Teti
www.danieleteti.it
d.teti @ bittime.it

B.J. Rao 
contact @ intricad.com

Peter van der Sman
sman @ prisman.nl

Wim Van Ingen Schenau -Editor 
wisone @ xs4all.nl

Rik Smit
rik @ blaisepascal.eu

Detlef Overbeek - Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Howard Page Clark
hdpc @ talktalk.net

Heiko Rompel
info @ rompelsoft.de

Kim Madsen
www.component4developers.com

Paul Nauta PLM Solution Architect 
CyberNautics
paul.nauta @ cybernautics.nl

Vsevolod Leonov
vsevolod.leonov@mail.ru

Jeremy North
jeremy.north @ gmail.com

Boian Mitov
mitov @ mitov.com

Andrea Magni www.andreamagni.eu 
andrea.magni @ gmail.com
www.andreamagni.eu/wp

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

Peter Johnson
http://delphidabbler.com
delphidabbler @ gmail.com

John Kuiper
john_kuiper @ kpnmail.nl

Wagner R. Landgraf
wagner @ tmssoftware.com

Mattias Gärtner
nc-gaertnma@netcologne.de

Primož Gabrijelčič
primoz @ gabrijelcic.org

David Dirkse
www.davdata.nl
E-mail: David @ davdata.nl

Benno Evers
b.evers @ everscustomtechnology.nl 

Bruno Fierens
www.tmssoftware.com
bruno.fierens @ tmssoftware.com

Stephen Ball
http://delphiaball.co.uk
@DelphiABall

Michaël Van Canneyt,
michael @ freepascal.org

Dmitry Boyarintsev 
dmitry.living @ gmail.com

Marco Cantù
www.marcocantu.com
marco.cantu @ gmail.com

Peter Bijlsma -Editor 
peter @ blaisepascal.eu

Holger Flick
holger @ flixments.com

Contributors

Danny Wind
dwind @ delphicompany.nl

All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless otherwise noted and may not be copied, distributed 
or republished without written permission. Authors agree that code associated with their articles will be made available to subscribers after publication by placing it 
on the website of the PGG for download, and that articles and code will be placed on distributable data storage media. Use of program listings by subscribers for 
research and study purposes is allowed, but not for commercial purposes. Commercial use of program listings and code is prohibited without the written permission 
of the author.

Copyright notice

Editors       Correctors 
Peter Bijlsma, W. (Wim) van Ingen Schenau, Rik Smit        Howard Page-Clark, Peter Bijlsma
Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavour to ensure that what is published in the magazine is correct, we cannot accept responsibility for any errors or omissions. 
If you notice something which may be incorrect, please contact the Editor and we will publish a correction where relevant.
Subscriptions ( 2019 prices )

Subscriptions can be taken out online at www.blaisepascal.eu or by written order, or by sending an email to office@blaisepascal.eu 

Subscriptions can start at any date. All issues published in the calendar year of the subscription will be sent as well.
Subscriptions run 365 days. Subscriptions  will not be prolonged without notice. Receipt of payment will be sent by email. 
Subscriptions can be paid by sending the payment to:
ABN AMRO Bank Account no. 44 19 60 863 or by credit card or Paypal 
Name: Pro Pascal Foundation-Foundation for Supporting the Pascal Programming Language (Stichting Ondersteuning Programeertaal Pascal) 
IBAN: NL82 ABNA 0441960863 BIC ABNANL2A VAT no.: 81 42 54 147 (Stichting Programmeertaal Pascal)
Subscription department 
Edelstenenbaan 21  / 3402 XA IJsselstein, The Netherlands 
Mobile: + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

Editor - in - chief
Detlef D. Overbeek, Netherlands Tel.: Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Internat.
excl. VAT

Internat.
incl. 9% VAT Shipment

WIKIPEDIAMember and  donator of
Member of the Royal Dutch Library

Printed  Issue
±60 pages

Printed  Issue inside Holland (Netherlands)
60 pages

Electronic Download Issue
60 pages

€ 155,96 

€ 250,00 

€ 250 

€ 70 € 64,20

€ 80,00

€ 70,00

3Blaise Pascal Magazine 94/95  2021



From your editor 

4Blaise Pascal Magazine 94/95  2021

Looks like we are finally getting the virus 
under control, 
maybe we can get back to more normal 
circumstances.
I have been working like most of you very 
hard on our new projects: 
end of the year we will publish Blaise 
Pascal Magazine 100, 
which I think is a milestone.
So we are preparing to do something very 
special for all of our readers.
We of course will try to organize a party, 
and writing about that
we soon will organize (plan) a real 
meeting event in the Netherlands
so we can meet each other again.

This double issue has a lot of special 
subjects, very often about programming 
for the internet.
Like: a game which is a colouring 
chameleon page, created in Lazarus, you 
can find it on our website at: 
https://www.blaisepascalmagazine.eu/
colorgame/

and the Latest Version of Free TMS Webcore for 

macOS/Linux/Windows at page 65
and the article New Pas2Js: Lazarus Webform , 

implementing API’s for Chromium at page 50, 
and Web Service Part 3 at page 97.

Mentioning the Internet brings up the 
progress Martin Friebe has achieved by 
embedding the Website Form for 
Chromium and we soon will have the first 
trials available.

Still a lot of work.

- but we see a probability before the end 
of the year that you will be able to create 
with Lazarus -  and design your own 
website in ”What you see is what you get” 
mode:
and also added: an 
Object Inspector including 
CSS ability, 
Code Completion for 
      CSS and JavaScript and a 
Debugger for that site, coding in the 
browser etc.

Now I’m impatiently waiting to be able 
to implement WebAssembly in Pas2Js. 
We planned to create a book and 
lessons how to use Pas2JS. 

I will of course announce that.

Mattias Gärtner is very hard working on 
the new version for Lazarus and Michael 
van Canneyt and the team will try to 
update to the next version of FPC.

The latest news is that I am writing a 
book about FastReport for the use and 
completed with lessons and examples.

Now as ever: 
if you have any ideas, comments or 
suggestions or ideas, let me know…



From our Technical advisor: Cartoons from Jerry King

5Blaise Pascal Magazine 94/95  2021



6

maXboxJSON Automation 
Page1/6

JSON Automation with Json4Delphi

As you can see the sample is an object node and 
data is the cnode. 
JSON for Delphi supports also older versions of 
Delphi (7 or above) and its Object Pascal native 
code, using classes like TList, TStrings and 
TStringList is a great adavantage for speed, 
scripting and comprehension.
So how do we get the branch in our example:

 

So the branch is an object-array. Arrays in JSON 
are almost the same as arrays in Pascal or C. In 
JSON, array values must be of type string, 
number, object, array, boolean or null. In 
JavaScript, array values can be all of the above, 
plus any other valid JavaScript expression, 
including functions, dates or undefined. In 
Delphi we use of course strong types with 
overloading functions not dynamic string types!

 type
   = ( , , , , TJsonValueType jvNone jvNull jvString jvNumber
 jvBoolean jvObject jvArray,  , );

   = ( , , );TJsonStructType jsNone jsArray jsObject
   = ( );TJsonNull null
   = ( );TJsonEmpty empty

On the other side JSON is a text format for 
representing objects and arrays, there is no 
such thing as a "JSON object" like a Object 
Pascal Object. Therefore we have to find out in 
our J4D library the type from the formal syntax:

function (TJsonBaseAnalyzeJsonValueType
                   const String : ): ;S TJsonValueType
var : ; : ;Len Integer Number Extended

begin
  := ;Result jvNone
  := ( );Len Length S
    >=   if then beginLen 2
     ( [ ] = )  ( [ ] = ) if andS S Len1 '{' '}'

 then  := Result jvObject
      ( [ ] = )  ( [ ] = ) else if andS S Len1 '[' ']'

 then  := Result jvArray
      ( [ ] = )  ( [ ] = ) else if andS S Len1 '"' '"'

 then  := Result jvString
      ( , )   := else if thenSameText S Result jvNull'null'

      ( , )  ( , ) else if orSameText S SameText S'true' 'false'

 then := Result jvBoolean
      ( , ) else if FixedTryStrToFloat S Number
 then  := ;Result jvNumber
  end
    ( , ) else if FixedTryStrToFloat S Number
 then  := ;Result jvNumber
end;

 := ;stjson '{"data":{"results":[{"Branch":"ACCT590003"}]}}'

   := . ();ajt TJson create
   . ( );ajt Parse stjson

writeln botostr ajt IsJsonObject stjson( ( . ( )));

writeln botostr ajt IsJsonString stjson( ( . ( )));

 ( ( . ( )));writeln botostr ajt IsJsonArray stjson
cnode ajt JsonObject items:= . . [ ]. ;0 name
 ( )writeln cnode

 TRUE
 FALSE
 FALSE
 data

First we create an object and parse it:

Now in Json4Delphi we can ask the type:

 (writeln 'branch of data: 

' 'data' 'results' 'Branch+ [ ]. [ ]. [ ]. [ajt asobject asarray asObject0
']. );asstring
 branch of data: ACCT590003

Author: Max Kleiner

  maXbox starter 85  
    There are two kinds of data scientists: 
 1) Those who can extrapolate from incomplete data.
2.....

Next topic is a Json-tree. Normally the packed 
collection data we use is imported from a file or
folder but we can also parse and stringify a 
const as json4delphi data or test data:

 Const StrJson=

'{ '+
'   "destination_addresses" : [ "Paris, France" ], '+
'   "origin_addresses" : [ "Amsterdam, Nederland" ], '+
'   "rows" : [  '+
'      {      '+
'         "elements" : [  '+
'            {  '+
'               "distance" : { '+
'                  "text" : "504 km", '+
'                  "value" : 504203   '+
'               },  '+
'               "duration" : {  '+
'                  "text" : "4 uur 54 min.",  '+
'                  "value" : 17638  '+
'               },  '+
'               "status" : "OK"  '+
'            }   '+
'         ]   '+
'      }  '+
'   ],   '+
'   "status" : "OK"  '+
'}';

                  Reading json data in maXbox or  
     Lazarus should be easy with the right  
              class. Json data can be read from a 
            string, file or it could be a Json web link
         see later on. 
        But what's Json  JSON (JavaScript Object
     Notation) is a lightweight data-interchange 
   format. It is easy for humans to read and write 
at least as a text. It is easy for machines to parse 
and generate, but not so easy to interpret for 
humans. 

Let’s start with a simple sample:

Blaise Pascal Magazine 94/95  2021



7

       Again we can see the formal   
    syntax. Similar to other formed
  programming languages, an Array 
          in JSON is a list of items surrounded 
         in square brackets ([]). Each item in 
      the array is separated by a comma. 
    A JSON object (a string to parse you  
  remember) is a key-value data format that is 
typically rendered in curly braces{}. Our 
JSON object above looks something like this:

 {  '+
'               "distance" : { '+
'                  "text" : "504 km", '+
'                  "value" : 504203   '+
'               },  '+
'               "duration" : {  '+
'                  "text" : "4 uur 54 min.",  
'+
'                  "value" : 17638  '+
'               },  '+
'               "status" : "OK"  '+

'            }  

JSON arrays are ordered collections and can 
contain values of different data types and this 
is more flexible than in XML. I don't think that 
JSON syntax is very complicated and I prefer it 
over XML and YAML.
Ok. let’ s do two ways of accessing our 
distance map data from above:

  := . ();  ajt TJson create
     . ( ); ajt Parse StrJson

     ( ( . ( ))); writeln botostr ajt IsJsonObject StrJson
     ( ( . ( ))); writeln botostr ajt IsJsonString StrJson
     ( ( . ( ))); writeln botostr ajt IsJsonArray StrJson
      ( + . . [ ]. );writeln jt JsonObject items'get third name: ' 2 name
     ( + . . [ ]. ); writeln ajt JsonObject items'get four name: ' 3 name
     ( println 'dist: ‘

 + [ ]. [ ]. [ ]. [ ].ajt asarray asObject asarray'rows' 'elements'0 0
 asobject asobject asstring[ ]. [ ]. );'distance' 'text'

 get third name: rows
 get four name: status
 dist: 504 km

We can also access array or multi-dimensional 
array values by using a for loop and index 
numbers:

  := . ;   jOb ajt JsonObject //reference passing
      :=   . -    for to do begincnt jOb count2 2
       := . [ ]. ;  Clabel job items cnt name
       ( + )  writeln clabel'iterate: '

       := . [ ]. ;  JsArr job values Clabel asArray
        :=   . -    for to docnt2 jsarr count0 1
         := . [ ]. ;   jsobj jsarr items cnt2 asobject
         :=   .   for to docnt3 jsobj count0
           ( [ ]. [ ]. .  writeln jsobj asarray asobject'elements' 0
         items cnt3[ ]. )name
     ; end
   . ;ajt Free

 :     iterate rows
     distance
     duration

If you prefer direct access for example of the 
status:

 (println 'elements status: 

' 'rows' 'elements'+ [ ]. [ ]. [ ]. [ajt asarray asObject asarray0 0
]. [ ]. );asobject asstring'status'

  : elements status OK

maXbox
JSON Automation 

Page 2/6JSON Automation with Json4Delphi

For a big data collection it’s important to know 
your memory allocation and free them as many 
as possible or keep the object lifetime short:

Blaise Pascal Magazine 94/95  2021



8

                        As a next and last sad example
          we get the data from web. 

      Let us first try to read the Json data
   from a web link.

Ref:  <class 'pandas.core.frame.DataFrame'>

RangeIndex: 82661 entries, 0 to  82660
Data columns (total 5 columns):

 #   Column     Non-Null Count  Dtype
---  ------     --------------  -----

 0   country    82661 non-null  object
 1   date       82661 non-null  object
 2   confirmed  82661 non-null  int64
 3   deaths     82661 non-null  int64
 4   recovered  82661 non-null  int64
dtypes: int64(3), object(2)

memory usage: 3.4+ MB

A Json Parser is then used to format the Json 
data into a properly and readable Json Format 
with curly brackets. That can easily view and 
identify its key and values. To get the Json type 
of class, struct or array, we need to use 
ajt.parse() method first. 
For slicing (filter) the data we copy the range 
from response timeseries.json:

  := ( + + , );start pos ACOUNTRY response'"' '"'

  := ( + + , );stop pos ACOUNTRY2 response'"' '"'

  ( + ( ( )))writeln itoa length response'Len Overall: '

  := ( , , - );resrange Copy response start stop start
  := + + ;resrange resrange'{' '}'

  ( + ( , ( , , )));writeln GetWordOnPos response posex response'debug sign on pos: ' '],' 1
  try
      . ( );ajt parse resrange
  except
      ( +writeln 'Exception: <TJson>"" parse error: {'

                  ( , ))exceptiontostring exceptiontype exceptionparam
  ;end
  ( . , , )Split ajt Stringify slist'{'

  ( +( )+ + + ( . ));writeln statuscode itoa slist count'Statuscode: ' ': ' 'listlen '

Now we can iterate through the keys with 
values as items. Here, in the above sample 
Json data: date, confirmed, deaths and 
recovered are known as key and “2020–1–22”, 
0, 0 and 0 known as a Value. All Data are 
available in a Key and value pair. 
First we get a list of all 192 country names as 
the node name: 

maXbox
JSON Automation 

Page 3/6JSON Automation with Json4Delphi

 Const
     = ;JsonUrl 'https://pomber.github.io/covid19/timeseries.json'

      Now we need a Load URL() or Upload File() 
   function to get the json data for parsing. In 
our case load is a ole automation function-pair 
of open and send(). We define the necessary 
packages “msxml2.xmlhttp” and the JSON class 
itself:

Let us import the covid19 timeseries data from 
this already mentioned Json link: 
pomber.github.io/covid19/timeseries.json 
using XMLhttp:

    : ; var XMLhttp OleVariant // As Object
     : ; : ;         ajt TJson JObj TJsonObject2

  := ( )XMLhttp CreateOleObject 'msxml2.xmlhttp'

  .  ( , , )XMLhttp Open JsonUrl False'GET'

  := . ();ajt TJson create

 := . ;JObj ajt JsonObject
writeln( )'Get all Countries: '

for to do :=   . -   cnt jobj count0 1
writeln Jobj items cnt( . [ ]. );name
...  United Kingdom
Uruguay
Uzbekistan
Vanuatu
Venezuela
Vietnam...

So the country is an object to get. Ok, it is a 
JsonObject dictionary with 192 countries. We 
check the keys of our dict with a nested loop of 
all confirmed cases:

  :=   . -   for to do begincnt Jobj count0 1
  := . [ ]. ;Clabel Jobj items cnt name
  := . [ ]. ;JArray2 jobj values Clabel asArray
   :=   . -  for to docnt2 jarray2 count0 1
    := . [ ]. . [ ]. ;itmp jarray2 items cnt2 asObject values asinteger'confirmed'

end;

In a second attempt we visualize the 
timeseries with TeeChart Standard. Ok we got 
the object-array as sort of dataframe with 
items and values but not in the form that we 
wanted. We have to unwind the nested data 
like above to build a proper dataframe with 
series at runtime for Tchart: 

Blaise Pascal Magazine 94/95  2021



9

JSON Automation 
JSON Automation with Json4Delphi

    := ;  //*)  //accumulated 'Vietnam'Clabel
   . . . ;Chart1 Title Text clear
   . . . ( + );Chart1 Title Text add Clabel'Sciplot TimeSerie for: '

      := . [ ]. ;JArray ajt values Clabel asarray
      ( + ( . ));writeln itoa jarray count'jitems country '

      :=   . -    for to do begincnt jarray count1 1
        := . [ ]. . [ ]. ;  itmp jarray items cnt asObject values asinteger'confirmed'

        . [ ]. ( , , , );  chart1 Series Addxy cnt itmp clGreen0 ''

        := . [ ]. . [ ]. ;  itmp jarray items cnt asObject values asinteger'deaths'

        . [ ]. ( , , , );  chart1 Series Addxy cnt itmp clRed1 ''

        := . [ ]. . [ ]. ;  itmp jarray items cnt asObject values asinteger'recovered'

        . [ ]. ( , , , );  chart1 Series Addxy cnt itmp clBlue2 ''

     ;end

TeeChart is a charting library for programmers, 
developed and managed by Steema Software 
of Girona, Catalonia, Spain. It is available as 
commercial and non-commercial software. 
TeeChart has been included in most Delphi, 
Lazarus and C++Builder products since 1997, 
and TeeChart Standard currently is part of 
Embarcadero RAD Studio 10.4 Sydney.

maXboxPage 4/6

Blaise Pascal Magazine 94/95  2021



10

Choosing a Series Type for a Chart will very 
much depend on your own requirements for 
the Chart. There are occasions, however, 
where the choice of Chart depends on which 
Series types support the number of input 
variables because of the high number of 
variables to plot.

maXbox
JSON Automation 

Page 5/6JSON Automation with Json4Delphi

Blaise Pascal Magazine 94/95  2021



11

The script can be found:

http://www.softwareschule.ch/examples/covid2.txt
http://www.softwareschule.ch/examples/972_json_tester32.txt

Ref:   
 https://wiki.freepascal.org/TAChart_Demos

 https://github.com/rilyu/json4delphi

 https://github.com/rilyu/json4delphi/blob/master/test/TestJson.dpr

 http://www.softwareschule.ch/examples/covidapp3.txt

Doc:     https://maxbox4.wordpress.com
   
  Appendix:  import register log from maXbox4 integration
{*----------------------------------------------------------------------------*)

maXbox
JSON Automation 

Page 6/6JSON Automation with Json4Delphi

                       CONCLUSION:
                     The proper way to use JSON is to specify types that must be compatible at runtime in
                   order for your code to work correctly. The TJsonBase= class(TObject) and 
                TJsonValue= class(TJsonBase) namespace contains all the entry points and the main
   types. The TJson= class(TJsonBase) namespace contains attributes and APIs for
 advanced scenarios and customization. 
 
       JSON is a SUB-TYPE of text but not text alone. Json is a structured text representation of an object
    (or array of objects). We use JSON for Delphi framework (json4delphi), it supports older versions of   
   Delphi and Lazarus (6 or above) and is very versatile. Another advantage is the Object-Pascal native 
code, using classes only TList, TStrings, TStringStream, TCollection and TStringList; 
The package contains 3 units: Jsons.pas, JsonsUtilsEx.pas and a project Testunit, available 
at:  https://github.com/rilyu/json4delphi

procedure ( : );SIRegister_Jsons CL TPSPascalCompiler
begin
  CL AddTypeS. ( , );'TJsonValueType' ‚(jvNone,jvNull,jvString,jvNumber,jvBoolean,jvObject,jvArray )'

  . ( , ); CL AddTypeS 'TJsonStructType' '( jsNone, jsArray, jsObject )'

  . ( , ); CL AddTypeS 'TJsonNull' '( jsnull2 )'

    . ( , );CL AddTypeS 'TJsonEmpty' '( jsempty )'

  ( ); SIRegister_TJsonBase CL
  . ( . ( ), ); CL AddClassN CL FindClass 'TOBJECT' 'TJsonObject2'

    . ( . ( ), );CL AddClassN CL FindClass 'TOBJECT' 'TJsonArray2'

  ( ); SIRegister_TJsonValue CL
    ( );SIRegister_TJsonArray2 CL
  ( ); SIRegister_TJsonPair CL
  ( ); SIRegister_TJsonObject2 CL
    ( );SIRegister_TJson CL
end;

Blaise Pascal Magazine 94/95  2021



ADVERTISEMENT

Subscription 
Combi(4)

Subscription + Lazarus Handbook
(hardcover)

� 100 
Ex Vat 9% 

Including shipment!

LAZARUS

HANDBOOK 

FO
R P

ROGRAMMIN
G W

IT
H FR

EE
 PA

SCAL

Blai
se

 Pa
sc

al

Auth
ors:

 M
ich

ae
l v

an
 C

an
ney

t, 

Mat
tia

s G
är

tn
er

 In
ouss

a O
ued

ra
ngo, 

Sve
n H

ein
ig, D

et
lef

 O
ve

rb
ee

k 

LAZARUS

HANDBOOK 

2 
FO

R PR
OGRAMMIN

G W
IT

H FR
EE

 PA
SCAL

LA
ZA

RU
S 

HA
ND

BO
OK

  2

LA
ZA

RU
S H

AN
DB

OO
K 

 1
BLAISE PASCAL   MAGAZINE 94/95

Multi platform /Object Pascal / Internet /  JavaScript / WebAssembly / Pas2Js / Databases 
CSS Styles / Progressive Web Apps  

Android / IOS / Mac / Windows & Linux       

 MaxBox: Json Automation
Webcore Miletus from TMS an alternative for Electron

 Latest Version of Free TMS Webcore for macOS/Linux/Windows
Creating_Components during Runtime

New Pas2Js: Lazarus Webform , implementing API’s for Chromium
CODE SNIPPETS Printing with Delphi

Web Service Part 3

The flippos collector problem
FastReport Lesson 2 The Query Wizard

I18n with kbmMW 1 – Internationalization



TMS WebCore:                 a small revolution... Page 1/7

Blaise Pascal Magazine 94/95  2021

INTRODUCTION
When it comes to bringing web applications to 
a desktop environment the choice falls on 
Electron as it is the most popular framework 
among web developers. 
Support for creating cross platform Electron 

desktop applications is included in TMS WEB 

Core for quite a while, but the downside is 
always there: it is a 3rd party solution that we 
have no control over.

WHAT IS MILETUS EXACTLY?
Named after Thales of Miletus, Miletus is a framework that 

enables TMS WEB Core applications to run as desktop 
applications and it also provides access for native 

features. In a nutshell, you can fully reuse code created for 
a web application, take advantage of HTML/CSS for 

creating a modern & spectacular responsive user interface, 
access local files & local databases or closely integrate 

with operating system capabilities and still easily deploy 
the application as standalone executable. Recapitulating, 

pick the Miletus project type from the IDE, build the 
application and compile it and you get a resulting 

executable for Windows, macOS or Linux.

MILETUS

MILETUS

B e i n g 
convinced that we could 

expose more desktop integration 
functionality including in particular local 

database access support, TMS software 
embarked on the deve lopment o f  an 

alternative framework under the name 

MILETUS

The Miletus application template type in the Delphi IDE

13



Blaise Pascal Magazine 94/95  2021

and on the form designer in the Delphi IDE we have:

TMS WebCore:                 a small revolution... Page  2/7MILETUS
expertstarter

In the project manager in the Delphi IDE, it is shown as:

Ionia, Asia Minor. He was one of the Seven Sages of Greece. Many, most notably Aristotle, 
regarded him as the first philosopher in the Greek tradition, and he is otherwise historically 

recognized as the first individual in Western civilization known to have entertained and 
engaged in scientific philosophy.

In mathematics, Thales used geometry to calculate the heights of pyramids and the distance 
of ships from the shore. He is the first known individual to use deductive reasoning applied to 

geometry, by deriving four corollaries to Thales' theorem. He is the first known individual to 
whom a mathematical discovery has been attributed.

    Thales of Miletus
      before christ 

(624/623  – 548/545 BC) was a Greek 
mathematician, astronomer and pre-Socratic 

philosopher from Miletus in

WIKIPEDIA

14



15Blaise Pascal Magazine 94/95  2021

Compiling and running the application results in:

In the output folder, all we have is the generated single EXE application (Windows 

here) and the app can be directly deployed and started this way:

MILETUS ARCHITECTURE
A Miletus application consists of a web client 

application running in a browser that is hosted in 

a native shell application. There is a 

communication bridge between the web client 

application and the native shell application and 

this is what enables direct access to operating 

system functionality from the web application. A 

Miletus application wraps the default operating 

system browser in the native shell application, 

hence, this is Edge Chromium on Windows, 

Safari on Apple and Webkit on Linux.

MILETUS FRAMEWORK
Let's take a look at the available classes, 
functions and components that will enable you 
to interact with native operating system 
functionalities!

TMS WebCore:                 a small revolution... Page  3/7MILETUS



16Blaise Pascal Magazine 94/95  2021

COMPONENTS
— TMiletusOpenDialog: 

  Displays a native open dialog and returns
  the selected path(s).
— TMiletusSaveDialog: 

  Similarly to  TMiletusOpenDialog,

  it displays a native save dialog and returns
  the selected path.
— TMiletusMessageBox: 

  Shows a native message dialog. 
  The labels, the dialog type, the buttons
  and the verification checkbox are all 
  customizable.
— TMiletusErrorBox: 

  Shows a native error message dialog.
— TMiletusMainMenu: 

  Creates and appends a native main menu
  to the form where it's dropped.
— Creates and TMiletusPopupMenu: 

  displays a native popup menu 
— TMiletusNotificationCenter: 

  Allows you to show notifications on the 
  operating system. 
— TMiletusWindow: 

  Allows the creation of multiple application
  windows which can be linked to forms or 
  other sources.
—  TMiletusTrayIcon:

  Creates a tray icon on the OS tray. 
  An optional popup menu can be assigned
  to it.
— TMiletusFileWatcher: 

  Monitors a list of files for changes. 
  Each file has its own event handler which 
  will be triggered when the file has 
  changed.
—  TMiletusGlobalShortcuts:

  Add a list of keyboards shortcuts that will
  be  recognized even when the application 
  is not in focus.

TMS WebCore:                 a small revolution... Page  4/7MILETUS

CLASSES AND FUNCTIONS
— TMiletusStringList: 

 Read and write local text files.
— TMiletusBinaryDataStream: 

 Similarly to this TMiletusStringList 

 enables you to write and read local binary
 files. It also provides multiple formats to
 access the data.
—  TMiletusClipboard:

 Read from and write to the OS clipboard.
— TMiletusShell: 

 Exposes some shell functionalities: 
 open a file with its default application, 
 open an external URL with the default 
 browser, move files to the trash and show
 files in the containing folder.
—  GetCursorPos:

 Returns the position of the cursor.
—  GetMiletusPath:

 Returns the common paths.
— StartFileDrag: 

 Start dragging a file from your application
 to any destination where the file is 
 accepted.

LOCAL DATABASE 
ACCESS SUPPORT IN MILETUS.
There is also support for direct local database 
access! 
The component TMiletusClientDataSet 
makes it easy for a application to Miletus 

create and use local databases by a familiar 
syntax of using . It also TClientDataSet

allows a seamless integration of multiple types 
of databases with data-aware components like 
TWebDBGrid, TWebDBTableControl, 

TWebDBEdit etc... 
All the database operations can be done in the 
standard way through the Delphi 

TMiletusClientDataSet component.



17Blaise Pascal Magazine 94/95  2021

TARGETS
At this moment, from a application,Miletus 

 4 different target desktop application types can be created:
— Win 32bit
— Win 64bit
— macOS 64bit

For now, there are 5 database drivers that can be used with TMiletusClientDataSet:
TMiletusAccessDBDriver  MS Access for databases
TMiletusMySQLDBDriver  MySQL for databases
TMiletusSQLiteDBDriver  SQLite for databases
TMiletusPostgreSQLDBDriver  PostgreSQL for databases
TMiletusMSSQLDBDriver  MS for SQL databases and more are coming…

TMS WebCore:                 a small revolution... Page  5/7MILETUS

nent runpo ninm go  oc n  r a e mn acnalP CNF SMT a gnisu noitacilppa suteil MA



18Blaise Pascal Magazine 94/95  2021

TMS WebCore:                 a small revolution... Page  6/7MILETUS

ous Ter Mmu Sn  h Fit Nw C o  s Ula I n coi ota mcil pp op na esu nt tel si  rM u nA ning on Linux directly

These different targets can be 
selected from the IDE and a nice 
feature of Miletus technology is that 
it is not needed to have a macOS 
machine or a Linux machine to 
create the necessary application 
files to deploy to these machines 
when developing with Delphi on 
Windows. At the same time, the 
compiler can generate a Miletus 
Windows application from a macOS 
or Linux machine etc…



19Blaise Pascal Magazine 94/95  2021

TMS WebCore:                 a small revolution... Page  7/7MILETUS

WHY CHOOSE MILETUS?
Miletus is not meant to be an Electron replacement, but rather 
something to co-exists next to the TMS WEB Core current Electron 
support as an alternative to those who want:

—  No NodeJS dependency (used with Electron)
—  Smaller executable sizes
—  Less deployed files (no browser to deploy like with Electron)
—  More broad local database support
You can take full advantage of web technologies combined with 
native operating system level operations. There's a lot of native 
functionality exposed already. Access to the local file system, 
operating system menus and notifications, drag and drop 
functionality, global shortcuts just to name a few. 

You don't necessarily need a DB backend running, 
you can easily connect to a local DB file or a cloud DB service 

just like in a VCL or FireMonkey application! 
For cross platform targets, the following databases are supported: 

SQLite, MSSQL, PostgreSQL, mySQL with more on the list 
and coming.

The power of and is at your disposal. HTML5 CSS3 

There is a huge amount of libraries and templates available 
for web applications that you can not only reuse

in your Miletus application 
but with their help you can also create visually 

more pleasing user interfaces!

TMS WebCore:                 a small revolution... Page  MILETUS

MILETUS



ADVERTISEMENT

 
The LibStick (1) 

(on USB Card - 95 Issues 
including the latest)

                                   � 60,-- 

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
  for I :=   1 9 to do
  beginbegin
     ...
  end
end;

procedure
var
begin
  for I :=   1 9 to do
  begin
     ...
  end
end;

Prof Dr.Wirth, Creator of Pascal Programming language Blaise Pascal, Mathematician

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
  for I :=   1 9 to do
  beginbegin
     ...
  end
end;

procedure
var
begin
  for I :=   1 9 to do
  begin
     ...
  end
end;

Blaise Pascal, MathematicianProf Dr.Wirth, Creator of Pascal Programming language

Editor in Chief: Detlef Overbeek  
Edelstenenbaan 21 3402 XA 
IJsselstein Netherlands  
   

   
editor@blaisepascalmagazine.e

Prof Dr.Wirth, Creator of Pascal Programming language

ex vat / including shipment 

Advertisement

Blaise Pascal Magazine 94/95  2021

A L L I S S U E S I N O N E F I L E

B L A I S E  P A S C A L  M A G A Z I N E

1
2

3

4
5

6

8

9 1110

12

13

15

17
19

20

18
16

21

29

31

39

47

54

40

48

55

62

63
64

6566
67
68

69
70

75
76

56

57

58

59

60

61

49

43
42

41

4477

80

81
82

83

84

85
86

89 90 91 92
93

87
88

45

46

50
51 52 53

33

35

37

32

34

36

38

23

24

25
26 27 28

7
14

22

30

71
72

73
74

7879

ALL CODE ABOUT THE USE

94
95

 
L I B R A R Y  2 0 2 1



expertstarter

By Boian Mitov
Creating Components in Runtime?    Page 1/21

Blaise Pascal Magazine 94/95  2021 21

INTRODUCTION
Since the early ages of computing, two 
competing types of languages have emerged. 
Static languages, and Dynamic languages, each 
with its strengths and weaknesses.
Although there is a fair number of exceptions - 
dynamic languages are usually implemented as 
interpreters - and typically used for scripting, 
where static languages are implemented as 
compilers, and are usually used for developing 
complex application software.

There is a very good reason for this. 
In static languages such as Delphi and C++, 
types are in general defined in declarations and 
the language enforces that whenever they are 
used the code will match the definition as 
declared. As example in Delphi we declare a 
class, and in the declaration we declare all the 
fields, properties and methods. 
If you declare a class  that has only one TClass1

method – ;, Method1( AValue : Integer )

and you create instance of the class called 
AObject1, Method1 then you can call with 
value integer, Method2of but you can't call  
or pass other types of data who are 
incompatible with The compiler will integer. 

not be able to compile your code, and will show 
you a compile time error.
This is not the case with most Dynamic 
languages such as Java Script, and Python.

 JavaScript often abbreviated as JS, 
 is a programming language that 
conforms to the ECMAScript specification. 
JavaScript is high-level, often just-in-time 
compiled, and multi-paradigm. It has curly-
bracket syntax, dynamic typing, prototype-
based object-orientation, and first-class 
functions.
As a multi-paradigm language - (computing, 
of a programming language) Supporting 
more than one programming paradigm, in 
order to allow the most suitable 
programming style for a task. 
JavaScript engines were originally used 
only in web browsers, but they are now core 
components of other software systems, most 
notably servers and a variety of 
applications.
Python is an interpreted high-level general-
purpose programming language. Python's 
design philosophy emphasizes code 
readability with its notable use of 
significant indentation. Its language 
constructs as well as its object-oriented 
approach aim to help programmers write 
clear, logical code for small and large-scale 
projects.

 Python is dynamically-typed and 
 garbage-collected. It supports multiple 
programming paradigms, including 
structured (particularly, procedural), object-
oriented and functional programming. 
Python is often described as a "batteries 
included" language due to its comprehensive 
standard library.

Guido van Rossum began working on 
Python in the late 1980s, as a successor to 
the ABC programming language.

WIKIPEDIA

WIKIPEDIA

In most modern dynamic languages, you can 
create and then add or remove objects, 

methods, and fields to them during the 
execution. It is a common practice to start 
with an empty object and then start adding all 
the methods fields and  that you need to it. 
As example you can create an object called 
Object1 that has no methods. 
Later on during the execution you can add a 
method called From that point on Method1. 

you can call the method on the object. 
At some point you can decide to add some 
more methods, and so on.

From te editor: The last is very popular and it is 
good to know that its origins are Dutch and 
created in Delphi. I have even met the originator 
since he was invited by our usergroup. 



Blaise Pascal Magazine 94/95  2021

WIKIPEDIA

 TypeScript is a programming language
 developed and maintained by 
Microsoft. It is a strict syntactical superset 
of JavaScript and adds optional static 
typing to the language. TypeScript is 
designed for the development of large 
applications and transcompiles to 
JavaScript. As TypeScript is a superset of 
JavaScript, existing JavaScript programs 
are also valid TypeScript programs. It may 
be used to develop JavaScript applications 
for both client-side and server-side 
execution.
There are multiple options available for 
transcompilation. Either the default 
TypeScript Checker can be used, or the 
Babel compiler can be invoked to convert 
TypeScript to JavaScript. TypeScript 
supports definition files that can contain 
type information of existing JavaScript 
libraries.

There are third-party header files for 
popular libraries such as jQuery, MongoDB, 
and D3.js. TypeScript headers for the 
Node.js basic modules are also available, 
allowing development of Node.js programs 
within TypeScript.
The TypeScript compiler is itself written in 
TypeScript and compiled to JavaScript. 
Anders Hejlsberg, lead architect of C# and 
creator of Delphi and Turbo Pascal, has 
worked on the development of TypeScript.

DYNAMIC LANGUAGES. 
This is not the case with Dynamic languages. 
No one knows what capabilities the variable a 
function receives will have. It may or may not 
have certain methods and or fields. Even if you 
call the same function with the same object at 
different times the object is not guaranteed to 
still have the same functionality as before.

The dynamic nature of the languages such as 
JavaScript Python and is what makes them 
attractive for quick and dirty prototyping, and 
for scripting purposes. This is also what makes 
them a nightmare when developing complex 
frameworks. 
During the development any bug introduced 
will be discovered only when the affected code 
will be executed days or sometimes months or 
years down the road. To mitigate this strong 
typed more static super sets of some popular 
scripting languages have started to appear 
such as TypeScript. 

One of the most powerful advantages of 
Dynamic languages however is their ability for 
adding brand new types of objects during 
execution. Effectively an end user can design 
and start using their own object customized to 
his/hers needs. While this is not something that 
is often needed, there are many cases where 
such functionality is highly desirable.

When  was introduced 26 years ago, Delphi

it was an absolutely revolutionary product! 
Here was a powerful static strong typed 
compiler Object Oriented language, that in 
addition introduced easy to use visual 
development. 

Creating Components in Runtime?                Page 2/21

WIKIPEDIA

As you can see the two types of languages 
follow completely different basic philosophy, 
that directly leads to their corresponding 
advantages and disadvantages.
With static languages, both you and the 
compiler know what object of certain type can 
and can't do anywhere in the code. 
As example if a  accepts an object of function

type  as parameter the TClass1 AValue1, 

function knows that  is and AValue1 TClass1 

it only can execute with AValue1.Method1 

integer compatible parameter. Anything else 
will generate compiler error.

There was however something that in the 
excitement most people missed. Under the hood 
there was a hidden gem called RTTI – Run Time 

Type Info. Yes, Delphi 26 years ago was one of 
the pioneers in the revolution. RTTI 

With the at that time it was possible to RTTI 

query an object and obtain the list of all of its 
published properties, and methods. 
Although this implementation was RTTI 

relatively limited, it allowed developers to be 
able to easily save and restore objects to and 
from disk, or from communication with remote 
machine, or to allow users to edit the properties 
of existing objects from the user interface. Since 
then Delphi however continued to evolve and 
gain even more power. Over the years, Operator 
overloading was added, then followed Generics, 

by support for functional programming with 
Anonymous method, and finally really modern 

22



Very soon however it proved to be extremely 
powerful tool, surprising even me by how easy 
it was to create very complex and powerful 
projects. 

As I kept developing it, I improved the 
optimization of the generated code to the 
point where started generating more Visuino 

efficient code that even what I was Arduino 

able to write manually. 
This resulted in people developing projects of 
never seen before complexity in the Arduino 

world, and resulting in very complex OpenWire 

diagrams, sometimes with hundreds of 
components. At this point, the need to be able 
to split big projects into sub projects became 
apparent, and I started working on a 
professional version of supporting sub Visuino 

diagrams that can be used as components in 
each other or in the main diagram. 

Once a sub diagram is created, a new 
component has to appear in the component 
toolbar of the rest of the diagrams allowing 
instances of the sub diagram to be added to 
the other diagrams. 
This presents a challenge. 
The sub diagram effectively has to appear as a 
brand new component class that has all the pins 
and properties as added to the sub diagram. 
Since all visual components in are  Visuino VCL

components, accessed through the in order RTTI 

to be drawn in the diagram and edited in the 
Object Inspector, I needed a way to create this 
new virtual component class and add it to the 
RTTI.

Fortunately from the beginning, I had designed 
the new  to be open expandable  RTTI API

architecture. This allowed me to extend it to 
allow the creation of virtual class types, and 
adding virtual property info in them. 
This was the birth of a brand new technology 
based on the allowing the to be RTTI, RTTI 

dynamically expanded during execution, and 
allowing new Delphi types to be created, 
removed and modified at runtime. 

I called this new technology 
Dynamic Type Info – DTI.

Blaise Pascal Magazine 94/95  2021

and very advanced with the nice touch of RTTI, 

support for custom attributes.

RTTI
The new  is extremely powerful. DELPHI RTTI

With it you can query all the units in your 
project, all the types in the units, and all of 
their properties, methods, and fields. You can 
read and write values in properties and fields, 
and even execute methods. All this was great, 
however unfortunately the new came with RTTI 

somewhat cumbersome, difficult to use, and 
error prone API.

Since the new functionality was essential RTTI 

for the further development of all of the 
component libraries I was developing at the 
time, I decided to spend fair amount of time, 
and to develop easier to use and more 
powerful around the advanced API RTTI. 

Thus the was born. It is part of Mitov.TypeInfo 

the free library, and I already Mitov.Runtime 

published article about it in Issue 47 - Nr 9 
2015 BLAISE PASCAL MAGAZINE “THE 

ENHANCED RTTI (RUNTIME TYPE LIBRARY)” .
Over the following years, I redesigned all of the 
Mitov Software libraries to heavily utilize and 
benefit from the new significantly RTTI, 

simplifying and reducing all the code, while 
also introducing huge number of new features. 
Based on the new I also developed the RTTI, 

now widely used by the libraries Visual Live 
Bindings technology.
Since I was also working on  – OpenWire Studio

a still in Beta  based development OpenWire

environment, I designed the entire  OpenWire

studio based on the new as well.RTTI 

When 6 years ago I started working with 
Arduino micro controllers, I decided to create 
a special version of Studio designed OpenWire 

to program and later named this Arduino, 

version Visuino.

Since then, the grew and became by far Visuino 

the most popular  product.Mitov Software

Originally was envisioned as a simple Visuino 

easy to use development environment for 
Makers, Students, Artists, and Hardware 
Engineers to be able to program Arduino 

projects. 

Creating Components in Runtime?                Page 3/21

23



Blaise Pascal Magazine 94/95  2021

The initial implementation was relatively DTI 

limited, but it quickly proved itself, and made 
Visuino Pro a real success. 
In short time it became a popular tool for even 
very experienced developers using and Arduino 

similar micro-controllers.

As grew in popularity, I started to receive Visuino 

increasing number of requests for adding 
support for more and more micro controllers, 
shields, sensors, and actuators. 

Although I have made it extremely easy to create 
new components for using Visuino Delphi, 

I quickly became overwhelmed by the sheer 
number of requests. 
To resolve the challenge I created the Visuino 
Delphi SDK. Using  with the SDK, anyone Delphi,

could create new components with minimal 
effort. 

This worked fine and a few people started 
developing components, however since Visuino 

the components were compiled into packages 
that were loaded by every time I Visuino, 

released a new version of the packages Visuino, 

had to be recompiled and everyone needed to 
release updated version. 

Furthermore very few people were experienced 
enough in development to be able to Delphi 

create the component packages.
This was obviously not an acceptable solution, 
and a new way to develop components for 
Visuino was needed.

OBVIOUS CHOICE
Once again the DTI was the obvious choice. 
Instead of having the components Visuino 

compiled into packages, I can simply define 
them in plain text files, and have parse Visuino 

the text files, and create the virtual component 
classes in DTI.

It took 6 months of heavy work, but at the end I 
had the new design working, and most Visuino 

of the components converted to plain Visuino 

text format. 

I also made all the of text format components 
open source, so anyone can study, modify and 
expand them.
To achieve all this I expanded and improved the 
DTI considerably. 
It is now fully feature complete, and has become 
a very powerful technology allowing Delphi to 
compete with any modern dynamic language.

As I have done with the I added the Mitov.RTTI, 

new to  and made it free DTI Mitov.Runtime

download allowing anyone to benefit from the 
new functionality.
Now that I have introduced you to the history of 
the  development, it is time to show you with DTI

a simple project how you can use it in your own 
code.

We will create a couple of virtual classes, add 
properties to them, and will create object 
instances of the virtual dynamic classes.

For this, we will create a simple Delphi VCL 

application, and add on the form so we TMemo 

can use it to print reports on how the types 
and the object instances change during the 
execution.

Creating Components in Runtime?                Page 4/21

24



The following code has several visual aspects:
The standard code will be in Courier colored.
The  special additions like background color 
under the code shows that it needs to be 
added for example.

Next we will add few units that we will use in 
the code:

 uses
...

 System TypInfo System Rtti Mitov TypeInfo Mitov Containers List. , . , . , . . ,

  . . , . ;Mitov Containers Dictionary Mitov Utils

The provide System.TypInfo, System.Rtti 

Delphi types that are needed for the RTTI.
Mitov.TypeInfo contains the Mitov RTTI 
including the new DTI support.
The rest of the units contain containers and 
utils that we will use in the demo code.

To help us observe the changes in the dynamic 
types and the object instances, we will first 
prepare two debug printing functions:

and

procedure . (  :  );TForm1 ReportInstance AInstance TObject
begin
  . . (  );Memo1 Lines Add '--- Instance ---'

    := . ();var ATypeInfo AInstance TypeInfo
      .  for var in doAProperty ATypeInfo SingleProperties
    . . ( .  +  Memo1 Lines Add ATypeInfo Name '.'

 + .  AProperty Name
 +  + . [  ]. () );' = ' AProperty Value AInstance ToString

  . . (  );Memo1 Lines Add '----------------'

  . . (  );Memo1 Lines Add ''

end;

The ReportTypeInfo function will list the
properties of any  type by name.RTTI

The ReportInstance function will use the RTTI 

to get the list of all the of object instance's 
single properties and their values.

We can initialize the FDynamicClasses 
in the Form's  event handler:OnCreate

procedure . ( : );TForm1 FormCreate Sender TObject
begin
   := < >. ();FDynamicClasses TArrayList IDynamicTypeInfo Create
  ...

Now we will create the class for the objects 
containing the dynamic types. For simplicity 
we will only create class types, but with DTI 
you can create practically any dynamic type – 
records, interfaces, enumerated types or 
anything else:

    = ( )TForm1 TFormclass
    …

  private
     : < >;FDynamicClasses IArrayList IDynamicTypeInfo
    ...

procedure const String . (   :  );TForm1 ReportTypeInfo ATypeName
begin
    : ;var ATypeInfo ITypeInfo
  ( . ( ,  )) if thenTRttiInfo GetType ATypeName ATypeInfo
    begin
    . . (  );Memo1 Lines Add '----- Type -----'

    . . ( .  );Memo1 Lines Add ATypeInfo Name
        .  for var in doAPoperty ATypeInfo SingleProperties
       . . ( .  +  Memo1 Lines Add APoperty Name ' : '

 + . .  +  APoperty TypeInfo Name ' = '

 + . [  ]. () );APoperty AsStringDefault NIL
       . . (  );Memo1 Lines Add '----------------'

       . . (  );Memo1 Lines Add ''

    ;end
end;

To hold the information for our dynamic types 
we will create a list of objects in the form:

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?                Page 5/21

25



  = ( ,  )TMyDynamicClassDefinition TInterfacedObject IDynamicTypeInfoclass
  protected
           : ;FName String
     : < >;FProperties IArrayList IMyDynamicPropertyDefinition

  protected
      () : ;function StringGetName
      () : ;function GetDeclaredSingleProperties ISinglePropertiesInfo

   protected // IDynamicTypeInfo
      (   :  ) : ;function constGetTypeInfo ATypeInfo ITypeInfo ITypeInfo
     (  : ; procedure Populate AOwnerObject Tobject
 const  : ;  : ;  :  );AMember IValueMemberInfo AObject TObject ARootInstance TPersistent

 public
      () : ;function CreateInstance TMyDynamicObjectInstance

  protected
     (  :  );procedure DestroyingInstance AInstance TMyDynamicObjectInstance

  public
      : < >   ;property Properties IArrayList IMyDynamicPropertyDefinition read FProperties

  public
     (   :  );constructor const StringCreate AName

  ;end

The class is interfaced so it will be automatically destroyed. It 
has to implement  . This interface allows IDynamicTypeInfo

the class to provide its own dynamic type info to the RTTI.
In the class first we have the  that will hold the name of FName

the dynamic type. The  is assigned in the constructor.FName

constructor const String . (   :  );TMyDynamicClassDefinition Create AName
begin
   (); inherited Create
   := ; FName AName
    := < >. (); Fproperties TArrayList IMyDynamicPropertyDefinition Create
end;

The list will contain the definitions of the dynamic properties. Here we can add or remove FProperties 

properties. The class also has a property that allows access to the properties list:

   : < >   ;property Properties IArrayList IMyDynamicPropertyDefinition read Fproperties

We will look into after we finish with the IMyDynamicPropertyDefinition 

TMyDynamicClassDefinition. GetName() FNameThe  method allows public access to the  field:

function String . () : ;TMyDynamicClassDefinition GetName
begin
   := ;Result FName
end;

The and Populate are the methods implementing They are the GetTypeInfo IDynamicTypeInfo. 

only two methods that any Dynamic Type Info definition class has to implement.
GetTypeInfo will return the dynamic type info:

function const . (   :  ) : ;TMyDynamicClassDefinition GetTypeInfo ATypeInfo ITypeInfo ITypeInfo
begin
   := . (  );Result TMyDynamicTypeInfo Create Self
end;

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?                Page 6/21

26



The Dynamic Type Info is implemented in We will look into this class a bit later.TMyDynamicTypeInfo. 

The  is a bit more advanced and allows creating inheritance of one dynamic type from Populate method

another. For simplicity, we will leave it as empty implementation in this project.

procedure const . (  : ;   : ; TMyDynamicClassDefinition Populate AOwnerObject TObject AMember IValueMemberInfo
        : ;  :  );AObject TObject ARootInstance TPersistent
begin
end;

The will create and return  GetDeclaredSingleProperties() ISinglePropertiesInfo

– a list of ISinglePropertyInfo:
function . () : ;TMyDynamicClassDefinition GetDeclaredSingleProperties ISinglePropertiesInfo
begin
   := . ();Result TDynamicSinglePropertiesInfo Create
       for var in doAProperty FProperties
    . ( . () );Result Add AProperty GetPropertyInfo

end;

CreateInstance RegisterInstance allows creating object instances of the dynamic type, and will call  for 
each property so virtual property instance can be created for the object:

function . () : ;TMyDynamicClassDefinition CreateInstance TMyDynamicObjectInstance
begin
   := . (  );Result TMyDynamicObjectInstance Create Self
       for var in doAProperty FProperties
    . (  );AProperty RegisterInstance Result
end;

We will look into the  class later.TMyDynamicObjectInstance

DestroyingInstance TMyDynamicObjectInstance is called when destroying the objects. It is used by the 
destructor as you will see later. It will simply call for each property so the virtual UnregisterInstance 

property instances for the object can be destroyed:

procedure . (  :  );TMyDynamicClassDefinition DestroyingInstance AInstance TMyDynamicObjectInstance
begin
       for var in doAProperty FProperties
    . (  );AProperty UnregisterInstance AInstance

end;

Now we will declare our class. This class will implement the TMyDynamicTypeInfo RTTI 

type info for the dynamic type definition:

TMyDynamicTypeInfo TDynamicClassTypeInfo = (  )class
  protected
     : ;FOwner TMyDynamicClassDefinition

  protected
      () : ; ;function String overrideGetName
      () : ; ;function overrideGetHandle PTypeInfo

   protected // ITypeInfo
      () : ; ; ;function overload overrideGetDeclaredSingleProperties ISinglePropertiesInfo

  protected // IClassTypeInfo
      () : ; ;function overrideGetMetaclassType TClass

  public
     (  :  );constructor Create AOwner TMyDynamicClassDefinition

  ;end

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?                Page 7/21

27



The class extends the   defined in It has pointer to TDynamicClassTypeInfo Mitov.TypeInfo. Fowner 

the  The constructor simply assigns the TMyDynamicClassDefinition. FOwner:

constructor . (  :  );TMyDynamicTypeInfo Create AOwner TMyDynamicClassDefinition
begin
   ();inherited Create
   := ;FOwner AOwner
end;

The  and  will be implemented to return the  type info:GetHandle GetMetaclassType TDynamicClassTypeInfo
function . () : ;TMyDynamicTypeInfo GetHandle PTypeInfo
begin
   := . (  );Result System TypeInfo TMyDynamicClassDefinition
end;

function . () : ;TMyDynamicTypeInfo GetMetaclassType TClass
begin
   := ;Result TMyDynamicClassDefinition
end;

And finally e and  simply will call the corresponding GetNam GetDeclaredSingleProperties

methods of the  object:TMyDynamicClassDefinition
function String . () : ;TMyDynamicTypeInfo GetName
begin
   := . ();Result FOwner GetName
end;

function . () : ;TMyDynamicTypeInfo GetDeclaredSingleProperties ISinglePropertiesInfo
begin
   := . ();Result FOwner GetDeclaredSingleProperties
end;

The support for the dynamic class type is completed. Now it is time to add the support for properties.
To simplify the memory management I have decided to implement the property class as interfaced object. 
This is purely optional, and you can implement it any way you want. Here is the interface definition:

    = IMyDynamicPropertyDefinition interface
    [ ]'{396DF71C-3AAF-4DB3-B3E1-967545E269C9}'

     () : ;function GetPropertyInfo ISinglePropertyInfo
    (  :  );procedure RegisterInstance AInstance TMyDynamicObjectInstance
    (  :  );procedure UnregisterInstance AInstance TMyDynamicObjectInstance
  ;end

Here is the class definition. To simplify the demo I have implemented only support for 
String type properties, but it is very easy to add support for any other type:

    = ( ,  )TMyDynamicPropertyDefinition TInterfacedObject IMyDynamicPropertyDefinitionclass
  protected
         : ;FName String
      : ;FDefault String
       : < , >;FValues IDictionary Pointer String

  protected // IMyDynamicPropertyDefinition
      () : ;function GetPropertyInfo ISinglePropertyInfo
     (  :  );procedure RegisterInstance AInstance TMyDynamicObjectInstance
     (  :  );procedure UnregisterInstance AInstance TMyDynamicObjectInstance

  public
      () : ;function StringGetName
      (  :  ) : ;function GetDefault AInstance Pointer TValue

      (  :  ) : ;function GetValue AInstance Pointer TValue
     (  : ;   :  );procedure constSetValue AInstance Pointer AValue TValue

  public
     (   : ;   :  ); constructor const String const StringCreate AName ADefaultValue
  ;end

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?                Page 8/21

28



The  field will store the name of the Fname

property.
The  field will hold the default value for FDefault

the property.
Since each instance of a virtual dynamic object 
will need instances of the dynamic properties, 
we can use dictionary to store the FValues 

current value for each instance property 
associated with the owner object.

    : < , >;FValues IDictionary Pointer String

The will use the pointer to the object dictionary 

as key and will hold the String value of the 
associated property.
RegisterInstance will add and assign default to 
the values of the dictionary when new object 
instance is created:

procedure . (  :  );TMyDynamicPropertyDefinition RegisterInstance AInstance TMyDynamicObjectInstance
begin
  [  ] := ;FValues AInstance FDefault
end;

UnregisterInstance will remove values from the dictionary when object instance is deleted:

function . (  :  ) : ;TMyDynamicPropertyDefinition GetValue AInstance Pointer TValue
begin
   := [  ];Result FValues AInstance
end;

procedure const . (  : ;   :  );TMyDynamicPropertyDefinition SetValue AInstance Pointer AValue TValue
begin
  [  ] := . ();FValues AInstance AValue AsString
end; 

The GetName and GetDefault methods simply return the corresponding fields:

GetPropertyInfo creates and returns the property type info:

function . () : ;TMyDynamicPropertyDefinition GetPropertyInfo ISinglePropertyInfo
begin
   := . (  );Result TMyDynamicPropertyInfo Create Self
end;

function String . () : ;TMyDynamicPropertyDefinition GetName
begin
   := ;Result FName
end;

function . (  :  ) : ;TMyDynamicPropertyDefinition GetDefault AInstance Pointer TValue
begin
   := ;Result FDefault
end;

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?                Page 9/21

  . (  : procedure TMyDynamicPropertyDefinition UnregisterInstance AInstance
TMyDynamicObjectInstance );

begin
  . (  );FValues Remove AInstance
end;

GetValue and SetValue will get and set values for instance in the dictionary:

29



We will look into next. It will contain the info for the dynamic property:TMyDynamicPropertyInfo RTTI 

    = (  )TMyDynamicPropertyInfo TDynamicSinglePropertyInfoclass
  protected
     : ;FOwner TMyDynamicPropertyDefinition

   protected // INamedObjectInfo
      () : ; ;function String overrideGetName

   protected // ITypedObjectInfo
      () : ; ;function overrideGetTypeInfo ITypeInfo

   protected // IValueMemberInfo
      (  :  ) : ; ;function overrideGetDefault AInstance Pointer TValue

      (  :  ) : ; ;function overrideGetValue AInstance Pointer TValue
     (  : ;   :  ); ;procedure const overrideSetValue AInstance Pointer AValue TValue

  public
     (  :  );constructor Create AOwner TMyDynamicPropertyDefinition

  ;end

The class inherits from (defined in ), and is very simple. TDynamicSinglePropertyInfo Mitov.TypeInfo

It has a pointer to the  assigned in the constructor:FOwner TMyDynamicPropertyDefinition

constructor . (  :  );TMyDynamicPropertyInfo Create AOwner TMyDynamicPropertyDefinition
begin
   ();inherited Create
   := ;FOwner AOwner
end;

GetTypeInfo String: returns the type info for 
function . () : ;TMyDynamicPropertyInfo GetTypeInfo ITypeInfo
begin
   := . < >();Result TRttiInfo TypeOf String
end;

Finally the and are simply calling the corresponding methods GetName, GetDefault, GetValue, SetValue 

in  TMyDynamicPropertyDefinition:

function String . () : ;TMyDynamicPropertyInfo GetName
begin
   := . ();Result FOwner GetName
end;

function . (  :  ) : ;TMyDynamicPropertyInfo GetDefault AInstance Pointer TValue
begin
   := . (  );Result FOwner GetDefault AInstance
end;

function . (  :  ) : ;TMyDynamicPropertyInfo GetValue AInstance Pointer TValue
begin
   := . (  );Result FOwner GetValue AInstance
end;

procedure const . (  : ;   : TMyDynamicPropertyInfo SetValue AInstance Pointer AValue
TValue );

begin
  . ( ,  );FOwner SetValue AInstance AValue
end;

Once we have defined the new dynamic type, we should be able to create object instances of it. To 
represent the object instance of the virtual object, we need to define an Object Instance class.  We already 
looked at the method that returns the virtual object TMyDynamicClassDefinition.CreateInstance 

instance, and here is the definition of the class:TMyDynamicObjectInstance 

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?              Page 10/21

30



    = ( ,  )TMyDynamicObjectInstance TInterfacedPersistent IDynamicTypeInfoclass
  protected
     : ;FDefinition TMyDynamicClassDefinition

   protected // IDynamicTypeInfo
      (   :  ) : ;function constGetTypeInfo ATypeInfo ITypeInfo ITypeInfo
     (  : ; procedure Populate AOwnerObject Tobject
  const  : ;  : ;  :  );AMember IValueMemberInfo AObject TObject ARootInstance TPersistent

  protected
     (  :  );constructor Create ADefinition TMyDynamicClassDefinition
      (); ;destructor overrideDestroy

  ;end

It contains a field pointer to the that FDefinition TMyDynamicClassDefinition 

creates it. The field is initialized in the constructor:

constructor . (  TMyDynamicObjectInstance Create ADefinition
:  );TMyDynamicClassDefinition
begin
   ();inherited Create
   := ;FDefinition ADefinition
end;

The destructor will simply inform the that the object is being destroyed by calling FDefinition 

DestroyingInstance, so any virtual property instances can be removed from the property dictionaries:

destructor . ();TMyDynamicObjectInstance Destroy
begin
  . (  );FDefinition DestroyingInstance Self
  ;inherited
end;

Finally and will simply call the corresponding methods of GetTypeInfo Populate FDefinition:

function const . (   :  ) : ;TMyDynamicObjectInstance GetTypeInfo ATypeInfo ITypeInfo ITypeInfo
begin
   := . (  );Result FDefinition GetTypeInfo ATypeInfo
end;

procedure . (  : ; TMyDynamicObjectInstance Populate AOwnerObject Tobject
 const  : ;  : ;  :  );AMember IValueMemberInfo AObject TObject ARootInstance TPersistent
begin
  . ( , ,  ,   );FDefinition Populate AOwnerObject AMember AObject ARootInstance
end;

We are done with the implementation of the support for our project.DTI 

Now it is time to test it by creating our first dynamic type. We will call it   'TMyVirtualClass'.

For simplicity in my project I will do this in the TForm1.FormCreate:

procedure . ( : );TForm1 FormCreate Sender TObject
begin
   := < >. ();FDynamicClasses TArrayList IDynamicTypeInfo Create

     := . (  );var AVirtualClass1 TMyDynamicClassDefinition Create 'TMyVirtualClass'

  . . ( . ( ,  ) );AVirtualClass1 Properties Add TMyDynamicPropertyDefinition Create 'MyProperty' 'Hello'

  . (  );FDynamicClasses Add AVirtualClass1

Next we will create and add a virtual property definition. We will name the property 'MyProperty' and 
will assign it default value of 'Hello':

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?              Page 11/21

31



 . . ( AVirtualClass1 Properties Add
TMyDynamicPropertyDefinition Create. ( ,  ) );'MyProperty' 'Hello'

We will add our new type definition to our type definitions list:
   . (  );FDynamicClasses Add AVirtualClass1

Finally we have to register our dynamic type to the RTTI:

 . ( . () );TRttiInfo RegisterType AVirtualClass1 TypeInfo

Here we call the  TypeInfo() class helpers method to obtain the dynamic type info and register it with the 
TRttiInfo.RegisterType method.

Before we shutdown the application we should unregister any dynamic types. We can do this in the forms 
OnDestroy event handler by calling TRttiInfo.UnregisterType for each type:

procedure . ( : );TForm1 FormDestroy Sender TObject
begin
       for var in doAItem FDynamicClasses
    . ( (    ). () );TRttiInfo UnregisterType AItem TObject TypeInfoas

end;

Now we can test our new type definition. If we execute:

It will list all types from the RTTI, and we should be able to see our type in the list:

     .  for var in doAType TRttiInfo Types
    . . ( .  );Memo1 Lines Add AType Name

 …

TMessageManager TListenerWithId.

TMessageManager TListenerList.

TMessageManager
TMyVirtualClass

We can also call:

and it will display:

   (  );ReportTypeInfo 'TMyVirtualClass'

 -----  -----Type
TMyVirtualClass
MyProperty Hello :  = string
----------------

Next we can create one or more instances of the new dynamic type:

   := . ();var AInstance1 AVirtualClass1 CreateInstance

and we can use to see the property values of our instance:ReportInstance 

 (  );ReportInstance AInstance1

it should display:

 ---  ---Instance
.  = TMyVirtualClass MyProperty Hello

----------------

Now we can use the RTTI to assign new value to the MyProperty property of Ainstance1:

     : ;var APropertyInfo ISinglePropertyInfo
  ( . (). ( ,  )) if thenAInstance1 TypeInfo GetSingleProperty APropertyInfo'MyProperty'

    . [  ] := ;APropertyInfo Value AInstance1 'World'

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?              Page 12/21

32



If we call the again:ReportInstance 

It should display:
 ---  ---Instance
TMyVirtualClass MyProperty World.  = 

----------------

We have fully functional dynamic type and instance of it. To do some more experimenting we can create a 
bit more complex type and modify it at runtime. We will create a class with two properties 'TDeveloper' 

– and I will also assign some default values to the properties:FirstName LastName. 

     := . (  );var AVirtualClass2 TMyDynamicClassDefinition Create 'TDeveloper'

  . . ( . ( ,  ));AVirtualClass2 Properties Add TMyDynamicPropertyDefinition Create 'FirstName' 'Boian'

  . . ( . ( ,  ));AVirtualClass2 Properties Add TMyDynamicPropertyDefinition Create 'LastName' 'Mitov'

  . (  );FDynamicClasses Add AVirtualClass2
  . ( . () );TRttiInfo RegisterType AVirtualClass2 TypeInfo

If we call:
 (  );ReportTypeInfo 'TDeveloper'

it will report:
 -----  -----Type
TDeveloper
FirstName Boian :  = string
LastName Mitov :  = string

After this at some point we can expand the type by adding another property:
  . . ( . ( ,  ));AVirtualClass2 Properties Add TMyDynamicPropertyDefinition Create 'Language' 'Delphi'

Calling:
 (  );ReportTypeInfo 'TDeveloper'

will report:
 -----  -----Type
TDeveloper
FirstName Boian :  = string
LastName Mitov :  = string
Language Delphi :  = string
----------------

Again once created we can change the values of the instance properties:

   ( . (). ( ,  )) if thenAInstance2 TypeInfo GetSingleProperty APropertyInfo'Language'

    . [  ] := ;APropertyInfo Value AInstance2 'Object Pascal'

Calling:
  (  );ReportInstance AInstance2

We should see:
 ---  ---Instance
TDeveloper FirstName Boian.  = 

TDeveloper LastName Mitov.  = 

TDeveloper Language.  =  Object Pascal
----------------

As you can see, it is fairly easy to add Dynamic Type Info functionality to your Delphi application, and gain 
the same advantages that the developers of Dynamic languages enjoy. You can use the functionality to 
create flexible configurable and user expandable applications and more. For me it made it possible for 
complete beginners to be able to start making Visuino components with just a text editor. It also allowed 
me introduce hierarchical Visuino diagrams. The technology however can be used for many other 
purposes. From flexible scripting, to customizable user interface, and more...Your Imagination is the only 
limit.

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?              Page 13/21

   (  );ReportInstance AInstance1

33



unit ;Unit1

interface

uses
  . , . , . , . , . , . ,Winapi Windows Winapi Messages System SysUtils System Variants System Classes Vcl Graphics
  . , . , . , . , . , . , . ,Vcl Controls Vcl Forms Vcl Dialogs Vcl StdCtrls System TypInfo System Rtti Mitov TypeInfo
  . . ,   . . ,  . ;Mitov Containers List Mitov Containers Dictionary Mitov Utils

type
   = ( )TForm1 TFormclass
    : ;Memo1 TMemo
    : ;Button1 TButton
     ( : );procedure FormCreate Sender TObject
     ( : );procedure FormDestroy Sender TObject
     ( : );procedure Button1Click Sender TObject
  private
     : < >;FDynamicClasses IArrayList IDynamicTypeInfo

  private
     (   :  );procedure const StringReportTypeInfo ATypeName
     (  :  );procedure ReportInstance AInstance TObject

  ;end

var
  : ;Form1 TForm1

implementation

{$R *.dfm}

type
   = ;TMyDynamicClassDefinition class
   = ;TMyDynamicObjectInstance class
//---------------------------------------------------------------------------
   = IMyDynamicPropertyDefinition interface
    [ ]'{396DF71C-3AAF-4DB3-B3E1-967545E269C9}'

      () : ;function GetPropertyInfo ISinglePropertyInfo
     (  :  );procedure RegisterInstance AInstance TMyDynamicObjectInstance
     (  :  );procedure UnregisterInstance AInstance TMyDynamicObjectInstance

  ;end
//---------------------------------------------------------------------------
   = ( ,  )TMyDynamicPropertyDefinition TInterfacedObject IMyDynamicPropertyDefinitionclass
  protected
         : ;FName String
      : ;FDefault String
       : < , >;FValues IDictionary Pointer String

   protected // IMyDynamicPropertyDefinition
      () : ;function GetPropertyInfo ISinglePropertyInfo
     (  :  );procedure RegisterInstance AInstance TMyDynamicObjectInstance
     (  :  );procedure UnregisterInstance AInstance TMyDynamicObjectInstance

  public
      () : ;function StringGetName
      (  :  ) : ;function GetDefault AInstance Pointer TValue

      (  :  ) : ;function GetValue AInstance Pointer TValue
     (  : ;   :  );procedure constSetValue AInstance Pointer AValue TValue

  public
     (   : ;   :  );constructor const String const StringCreate AName ADefaultValue

  ;end
//---------------------------------------------------------------------------

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?              Page 14/21

Here is the complete source code for the project that I created while writing the article:



   = ( ,  )TMyDynamicObjectInstance TInterfacedPersistent IDynamicTypeInfoclass
  protected
     : ;FDefinition TMyDynamicClassDefinition

  protected // IDynamicTypeInfo
      (   :  ) : ;function constGetTypeInfo ATypeInfo ITypeInfo ITypeInfo
     (  : ; procedure Populate AOwnerObject Tobject
 const  : ;  : ;  :  );AMember IValueMemberInfo AObject TObject ARootInstance TPersistent

  protected
     (  :  );constructor Create ADefinition TMyDynamicClassDefinition
      (); ;destructor overrideDestroy
  ;end
//---------------------------------------------------------------------------
   = ( ,  )TMyDynamicClassDefinition TInterfacedObject IDynamicTypeInfoclass
  protected
           : ;FName String
     : < >;FProperties IArrayList IMyDynamicPropertyDefinition

  protected
      () : ;function StringGetName
      () : ;function GetDeclaredSingleProperties ISinglePropertiesInfo

  protected // IDynamicTypeInfo
      (   :  ) : ;function constGetTypeInfo ATypeInfo ITypeInfo ITypeInfo
     (  : ; procedure Populate AOwnerObject Tobject
 const  : ;  : ;  :  );AMember IValueMemberInfo AObject TObject ARootInstance TPersistent

  public
      () : ;function CreateInstance TMyDynamicObjectInstance

  protected
     (  :  );procedure DestroyingInstance AInstance TMyDynamicObjectInstance

  public
      : < >   ;property Properties IArrayList IMyDynamicPropertyDefinition read FProperties

  public
     (   :  );constructor const StringCreate AName
  ;end
//---------------------------------------------------------------------------
   = (  )TMyDynamicTypeInfo TDynamicClassTypeInfoclass
  protected
     : ;FOwner TMyDynamicClassDefinition

  protected
      () : ; ;function String overrideGetName
      () : ; ;function overrideGetHandle PTypeInfo

   protected // ITypeInfo
      () : ; ; ;function overload overrideGetDeclaredSingleProperties ISinglePropertiesInfo

  protected // IClassTypeInfo
      () : ; ;function overrideGetMetaclassType TClass

  public
     (  :  );constructor Create AOwner TMyDynamicClassDefinition
  ;end
//---------------------------------------------------------------------------
   = (  )TMyDynamicPropertyInfo TDynamicSinglePropertyInfoclass
  protected
     : ;FOwner TMyDynamicPropertyDefinition

   protected // INamedObjectInfo
      () : ; ;function String overrideGetName

   protected // ITypedObjectInfo
      () : ; ;function overrideGetTypeInfo ITypeInfo
//---------------------------------------------------------------------------

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?              Page 15/21

35



protected // IValueMemberInfo
     (  :  ) : ; ;function overrideGetDefault AInstance Pointer TValue

     (  :  ) : ; ;function overrideGetValue AInstance Pointer TValue
    (  : ;   :  ); ;procedure const overrideSetValue AInstance Pointer AValue TValue

public
     (  :  );constructor Create AOwner TMyDynamicPropertyDefinition

end;

//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
function . (  :  ) : ;TMyDynamicPropertyDefinition GetDefault AInstance Pointer TValue
begin
   := ;Result FDefault
end;

//---------------------------------------------------------------------------
function . (  :  ) : ;TMyDynamicPropertyDefinition GetValue AInstance Pointer TValue
begin
   := [  ];Result FValues AInstance
end;

//---------------------------------------------------------------------------
procedure const . (  : ;   :  );TMyDynamicPropertyDefinition SetValue AInstance Pointer AValue TValue
begin
  [  ] := . ();FValues AInstance AValue AsString
end;

//---------------------------------------------------------------------------
function . () : ;TMyDynamicPropertyDefinition GetPropertyInfo ISinglePropertyInfo
begin
   := . (  );Result TMyDynamicPropertyInfo Create Self
end;

//---------------------------------------------------------------------------
procedure . (  :  );TMyDynamicPropertyDefinition RegisterInstance AInstance TMyDynamicObjectInstance
begin
  [  ] := ;FValues AInstance FDefault
end;

//---------------------------------------------------------------------------
procedure . (  :  );TMyDynamicPropertyDefinition UnregisterInstance AInstance TMyDynamicObjectInstance
begin
  . (  );FValues Remove AInstance
end;

//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
constructor . (  :  );TMyDynamicObjectInstance Create ADefinition TMyDynamicClassDefinition
begin
   ();inherited Create
   := ;FDefinition ADefinition
end;

//---------------------------------------------------------------------------
destructor . ();TMyDynamicObjectInstance Destroy
begin
  . (  );FDefinition DestroyingInstance Self
  ;inherited
end;

//---------------------------------------------------------------------------
function const . (   :  ) : ;TMyDynamicObjectInstance GetTypeInfo ATypeInfo ITypeInfo ITypeInfo
begin
   := . (  );Result FDefinition GetTypeInfo ATypeInfo
end;

//---------------------------------------------------------------------------
procedure const . (  : ;   : ; TMyDynamicObjectInstance Populate AOwnerObject TObject AMember IValueMemberInfo
AObject TObject ARootInstance TPersistent : ;  :  );

begin
  . ( , ,  ,   );FDefinition Populate AOwnerObject AMember AObject ARootInstance
end;

//---------------------------------------------------------------------------
//---------------------------------------------------------------------------

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?              Page 16/21

36



 

constructor const String . (   :  );TMyDynamicClassDefinition Create AName
begin
   ();inherited Create
   := ;FName AName
   := < >. ();FProperties TArrayList IMyDynamicPropertyDefinition Create
end;

//---------------------------------------------------------------------------
function . () : ;TMyDynamicClassDefinition CreateInstance TMyDynamicObjectInstance
begin
   := . (  );Result TMyDynamicObjectInstance Create Self
       for var in doAProperty FProperties
    . (  );AProperty RegisterInstance Result

end;

//---------------------------------------------------------------------------
procedure . (  :  );TMyDynamicClassDefinition DestroyingInstance AInstance TMyDynamicObjectInstance
begin
       for var in doAProperty FProperties
    . (  );AProperty UnregisterInstance AInstance

end;

//---------------------------------------------------------------------------
function const . (   :  ) : ;TMyDynamicClassDefinition GetTypeInfo ATypeInfo ITypeInfo ITypeInfo
begin
   := . (  );Result TMyDynamicTypeInfo Create Self
end;

//---------------------------------------------------------------------------
procedure const . (  : ;   : TMyDynamicClassDefinition Populate AOwnerObject TObject AMember
IValueMemberInfo AObject TObject ARootInstance TPersistent;  : ;  :  );

begin
end;

//---------------------------------------------------------------------------
function String . () : ;TMyDynamicClassDefinition GetName
begin
   := ;Result FName
end;

//---------------------------------------------------------------------------
function . () : ;TMyDynamicClassDefinition GetDeclaredSingleProperties ISinglePropertiesInfo
begin
   := . ();Result TDynamicSinglePropertiesInfo Create
       for var in doAProperty FProperties
    . ( . () );Result Add AProperty GetPropertyInfo

end;

//---------------------------------------------------------------------------
//---------------------------------------------------------------------------

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?              Page 17/21

37



constructor . (  :  );TMyDynamicTypeInfo Create AOwner TMyDynamicClassDefinition
begin
   ();inherited Create
   := ;FOwner AOwner
end;

//---------------------------------------------------------------------------
function . () : ;TMyDynamicTypeInfo GetHandle PTypeInfo
begin
   := . (  );Result System TypeInfo TMyDynamicClassDefinition
end;

//---------------------------------------------------------------------------
function . () : ;TMyDynamicTypeInfo GetMetaclassType TClass
begin
   := ;Result TMyDynamicClassDefinition
end;

//---------------------------------------------------------------------------
function String . () : ;TMyDynamicTypeInfo GetName
begin
   := . ();Result FOwner GetName
end;

//---------------------------------------------------------------------------
function . () : ;TMyDynamicTypeInfo GetDeclaredSingleProperties ISinglePropertiesInfo
begin
   := . ();Result FOwner GetDeclaredSingleProperties
end;

//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
procedure . ( : );TForm1 Button1Click Sender TObject
begin
  . . ();Memo1 Lines BeginUpdate
  . . ();Memo1 Lines Clear

      .  for var in doAType TRttiInfo Types
    . . ( .  );Memo1 Lines Add AType Name

   . . ();Memo1 Lines EndUpdate
end;

//---------------------------------------------------------------------------
procedure const String . (   :  );TForm1 ReportTypeInfo ATypeName
begin
    : ;var ATypeInfo ITypeInfo
  ( . ( ,  )) if thenTRttiInfo GetType ATypeName ATypeInfo
    begin
    . . (  );Memo1 Lines Add '----- Type -----'

    . . ( .  );Memo1 Lines Add ATypeInfo Name
        .  for var in doAPoperty ATypeInfo SingleProperties
      . . ( .  +  + . .  +  + . [ Memo1 Lines Add APoperty APoperty TypeInfo APopertyName Name Default' : ' ' = '

NIL ]. () );AsString

    . . (  );Memo1 Lines Add '----------------'

    . . (  );Memo1 Lines Add ''

    ;end

end;

//---------------------------------------------------------------------------
procedure . (  :  );TForm1 ReportInstance AInstance TObject
begin
  . . (  );Memo1 Lines Add '--- Instance ---'

    := . ();var ATypeInfo AInstance TypeInfo
      .  for var in doAProperty ATypeInfo SingleProperties
    . . ( .  +  + .  +  + . [  Memo1 Lines Add ATypeInfo AProperty AProperty Value AInstanceName Name'.' ' = '

]. () );ToString

  . . (  );Memo1 Lines Add '----------------'

  . . (  );Memo1 Lines Add ''

end;

//---------------------------------------------------------------------------

Blaise Pascal Magazine 94/95  2021

Creating Components in Runtime?              Page 18/21

38



 //---------------------------------------------------------------------------
procedure . ( : );TForm1 FormCreate Sender TObject
begin
   := < >. ();FDynamicClasses TArrayList IDynamicTypeInfo Create

    := . (  );var AVirtualClass1 TMyDynamicClassDefinition Create 'TMyVirtualClass'

  . . ( . ( ,  ) );AVirtualClass1 Properties Add TMyDynamicPropertyDefinition Create 'MyProperty' 'Hello'

  . (  );FDynamicClasses Add AVirtualClass1

  . ( . () );TRttiInfo RegisterType AVirtualClass1 TypeInfo

    := . (  );var AVirtualClass2 TMyDynamicClassDefinition Create 'TDeveloper'

  . . ( . ( ,  ));AVirtualClass2 Properties Add TMyDynamicPropertyDefinition Create 'FirstName' 'Boian'

  . . ( . ( ,  ));AVirtualClass2 Properties Add TMyDynamicPropertyDefinition Create 'LastName' 'Mitov'

  . (  );FDynamicClasses Add AVirtualClass2

  . ( . () );TRttiInfo RegisterType AVirtualClass2 TypeInfo

  (  );ReportTypeInfo 'TMyVirtualClass'

  (  );ReportTypeInfo 'TDeveloper'

  . . ( . ( ,  ));AVirtualClass2 Properties Add TMyDynamicPropertyDefinition Create 'Language' 'Delphi'

  (  );ReportTypeInfo 'TDeveloper'

    := . ();var AInstance1 AVirtualClass1 CreateInstance

  (  );ReportInstance AInstance1

    : ;var APropertyInfo ISinglePropertyInfo
  ( . (). ( ,  )) if thenAInstance1 TypeInfo GetSingleProperty APropertyInfo'MyProperty'

    . [  ] := ;APropertyInfo Value AInstance1 'World'

  (  );ReportInstance AInstance1

    := . ();var AInstance2 AVirtualClass2 CreateInstance

  (  );ReportInstance AInstance2

  ( . (). ( ,  )) if thenAInstance2 TypeInfo GetSingleProperty APropertyInfo'Language'

    . [  ] := ;APropertyInfo Value AInstance2 'Object Pascal'

  (  );ReportInstance AInstance2

  . ();AInstance1 DisposeOf
  . ();AInstance2 DisposeOf
end;

//---------------------------------------------------------------------------
procedure . ( : );TForm1 FormDestroy Sender TObject
begin
       for var in doAItem FDynamicClasses
    . ( (    ). () );TRttiInfo UnregisterType AItem TObject TypeInfoas

end;

//---------------------------------------------------------------------------
end.

Creating Components in Runtime?              Page 19/21

Blaise Pascal Magazine 94/95  2021 39



Blaise Pascal Magazine 94/95  2021 40

Creating Components in Runtime?              Page 20/21

I hope you have found this article useful.
You can download the free version of containing the new  Mitov.Runtime Dynamic Type Info

functionality from www.mitov.com.
DTI, I am planning to write more articles on and maybe even an article 

on how you can define new components just using text editor, Visuino 

thanks to the new DTI. 

Blaise Pascal MagazineThe  web site allows you to write comments. 
If you are interested in any of these topics, 
or if you want to learn more about Video Processing, 

Audio Processing, Signal Processing, Computer 

Vision, AI, SCADA Industrial Control systems, 
programming Arduino, 

or with Raspberry Pi Visuino 

or maybe programming autonomous 
or remote controlled by robots, Delphi 

please leave comments 
with your suggestions,
and I will try to write articles 
on the suggested topics. 
Hope to see 
your comments soon...

The Chameleon you see here 
is a colouring-game. 
If you go to the website 
https://www.blaisepascalmagazine.eu/colorgame/ 

you'll find a menu that allows you to change 
the colour of the Chameleon in the colour of your choice. 
You can of course revert to the original colour. 

There are special areas that will pop up a message, 
from Mitov.com



1

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
  for I :=   1 9 to do
  beginbegin
     ...
  end
end;

procedure
var
begin
  for I :=   1 9 to do
  begin
     ...
  end
end;

Prof Dr.Wirth, Creator of Pascal Programming language Blaise Pascal, Mathematician

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
  for I :=   1 9 to do
  beginbegin
     ...
  end
end;

procedure
var
begin
  for I :=   1 9 to do
  begin
     ...
  end
end;

Blaise Pascal, MathematicianProf Dr.Wirth, Creator of Pascal Programming language

Editor in Chief: Detlef Overbeek  
Edelstenenbaan 21 3402 XA 
IJsselstein Netherlands  
   

   
editor@blaisepascalmagazine.eu
https://www.blaisepascalmagazine.eu 

Prof Dr.Wirth, Creator of Pascal Programming language

BLAISE PASCAL MAGAZINE

COMPUTER (GRAPHICS)
MATH &   INGAMES
 PASCAL

DAVID DIRKSE

 
www.blaisepascal.eu

procedure ;
var 
begin
   :=  for i 1
to do  9
  begin
   
  ;end
end;

L
E
A

R
N

 T
O

 P
R

O
G

R
A

M
 

U
S
IN

G
 L

A
Z
A

R
U

S
H

O
W

A
R

D
 

P
A

G
E
-C

L
A

R
K

VIDEO

LAZARUS
HANDBOOK
FOR PROGRAMMING WITH FREE PASCAL AND LAZARUS

934 PAGES

SUPER 
OFFER (5)

€ 150 ex Vat

1.  One year Subscription 
2.  The newest LIB Stick 
  - including Credit Card USB stick
3.  Lazarus Handbook - Personalized  
  -PDF including Code

4.  Book Learn To Program using Lazarus PDF
  including 19 lessons and projects 
5.  Book Computer Graphics Math & Games 

  book + PDF including ±50 projects 

including  
30 example 

projects

Advertisement

A L L I S S U E S I N O N E F I L E

B L A I S E  P A S C A L  M A G A Z I N E

1
2

3

4
5

6

8

9 1110

12

13

15

17
19

20

18
16

21

29

31

39

47

54

40

48

55

62

63
64

6566
67
68

69
70

75
76

56

57

58

59

60

61

49

43
42

41

4477

80

81
82

83

84

85
86

89 90 91 92
93

87
88

45

46

50
51 52 53

33

35

37

32

34

36

38

23

24

25
26 27 28

7
14

22

30

71
72

73
74

7879

ALL CODE ABOUT THE USE

94
95

 
L I B R A R Y  2 0 2 1

BLAISE PASCAL   MAGAZINE 94/95
Multi platform /Object Pascal / Internet /  JavaScript / WebAssembly / Pas2Js / Databases 

CSS Styles / Progressive Web Apps  
Android / IOS / Mac / Windows & Linux       

 MaxBox: Json Automation
Webcore Miletus from TMS an alternative for Electron

 Latest Version of Free TMS Webcore for macOS/Linux/Windows
Creating_Components during Runtime

New Pas2Js: Lazarus Webform , implementing API’s for Chromium
CODE SNIPPETS Printing with Delphi

Web Service Part 3

The flippos collector problem
FastReport Lesson 2 The Query Wizard

I18n with kbmMW 1 – Internationalization



LAZARUS HANDBOOK POCKET edition is also sewn, to make sure you will not lose pages after a while. 

It is printed on 100 percent guaranteed FSC certified Paper
INCLUDED: 
which contains the  personalized pdf
file of the book and the extra program files. So you have your electronic as wel the printed book in one 
product.

For ordering go to: 
https://www.blaisepascalmagazine.eu/product-category/books/

40 € 
ex Vat  inc. PDF excluding shipment

Sewn POCKET (2)

ADVERTISEMENT

LA
Z

A
R

U
S

 H
A

N
D

B
O

O
K

 2
LA

Z
A

R
U

S
 H

A
N

D
B

O
O

K
 1

FOR PROGRAMMING WITH FR
EE PA

SCAL A
ND LA

ZARUS

FOR PROGRAMMING WITH FREE PASCAL AND LAZARUS

934 PAGESLA
ZA

R
U

S
 H

A
N

D
B

O
O

K
 

+

Blaise Pascal Magazine 94/95  2021

We have a new service at our website, for shipping you can make three choices:
1.The shipping cost depending on which part of the world you want the book to be shipped:
Europe Worldor the other countries: the 

2. The same but including “Track and Trace”
3. The same but including “Registered”



The flippos collector problem                                   Page 1/6
By David Dirkse

Flippos are small cardboard or plastic discs 
holding  the printed image of a football player, 
movie star or comic hero.
In the '90s potato chips producer Smith added a 
flippo to their packets which made flippo 
collection a craze.
This is the flippos collector problem:
After collecting a certain amount of flippos, 
what is the probability to possess  a complete 
series?

This article consists of three parts:
u Basic theory behind : 
 an intro to combinatorics
v The solutions of the flippo problem
w Description of the program

expertstarter

Theory  (a short course in combinatorics)
Combinatorics is the part of math where 
possibilities are counted.

Examples are:
-  the number of boards to choose from a 
 group of people (chairman, secretary, 
 cashier, members)
-  the ways to connect railway cars (1st, 2nd
 class, luggage-, restaurant carriage)
-  the number of sequences in which to visit
 20 customers
-  the number of ways to travel from A to B

Combinatorics is the base of probability as 
this is the division of wanted- and total 
outcomes of a process. In the selection of 
objects or the counting of events the question 
is
u May we select an object from a set more
 than once?
v Is the sequence of selection important?

Example:
A 32-bit word in computer memory may hold 

322  = 4294967296 numbers,
32from  to  0 2 - 1 = 4294967295

Example:
Using characters A,B,D,E,F 
we can make words of  characters,

8 
 5 8

from  to AAAAAAAA FFFFFFFF.

Answering yes or no results in four cases:

CASE 1: MULTIPLE SELECTION, 
SEQUENCE IS IMPORTANT.
This is the case with number systems.
In the decimal system using 6 digits we can 
make numbers from  to 000000 999999

6which are  =  rows of  digits.10 1000000 6

In general, having  different digits, there are N

N  K
K different numbers of  digits.

CASE 2: SINGLE SELECTION, 
SEQUENCE IS IMPORTANT
This is the case with permutations. 
 A permutation simply is a sequence of objects 
or elements. When visiting 20 customers there 

18 are  20x19x18x…x3x2x1 = 2*4 x 10

sequences. After each visit the choice for the 
next customer  is one less.
N! = (N).(N-1)(N-2)……(3)(2)(1)   
say factorial for N N!

which is the number of sequences in which we 
can arrange objects.N 

The characters  can be arranged to  A,B,C,D

make  sequences 4! = 4*3*2*1 = 24

from to .ABCD  DCBA

Now here follows a very important rule:
How many sequences are possible if some 
elements are the same?
Let the elements be AAAABCDE.
The trick is making the different at first by A's 

applying an index: (like in an array)
A A A A BCDE 81 2 3 4  are  elements which can make 

8! sequences.
 are  elements which can make A A A A 41 2 3 4

4! sequences however, because they are the 
same only one sequence (  times less) AAAA 4!

is possible.
So,  must be divided by  the answer is 8! 4!

 sequences.  8! / 4! = 8*7*6*5 = 1680

Example:
From  people a committee  is chosen 15

(chairman, secretary, cashier).
Call the chairman A, secretary B, cashier C and 
call not chosen people .N
Then the number of boards possible is the way 
we can make sequences of characters 
ABCNNNNNNNNNNNN.

Applying the rule before: 
15!/12! = 15*14*13 = 2730.

Blaise Pascal Magazine 94/95  2021 43



Example:
In how many ways can we arrange a train if 
there are nd class, st class,  luggage 8 2 3 1 3

and  restaurant carriages?2

Call first class  second class , luggage  F,  S L

and restaurant carriage .R

How many sequences are possible of  the 
characters  ?FFFSSSSSSSSLLLRR

must be divided by  (the second class) 16! 8!

also by  (first class) (luggage) and 3! 3! 

2!(restaurants)
16!/(8!.3!.3!.2!) = 
16*15*14*13*12*11*10*9/(6*6*2) = 

7207200 possibilities.

Example:
A computer code exists of 3 zero bits and 4 
one bits.
How many codes are possible?
Just the amount of codes as there are 
sequences of  which are the number 0001111

of combinations of  out of 4
7 =  7!/(3!4!) = 35.

Example: (Newton binomium)
22   2

(a+b) = aa + ab + ba + bb = a + 2ab + b
3

(a+b)  = aaa + aab + aba + abb + baa + 
3 2 2 3

bab + bba + bbb = a  + 3a b + 3ab  + b

We notice that  act as digits of a counter. a,b

3 
So, in  the term originates from 

10 7
(a+b) a b

aaaaaaabbb and the number of occurrences
are the combinations of out of 7 10.

The term has coefficient 10!/(7!*3!) = 120

Example:
below is shown a roadmap.
Question is how many roads exist 
from left top A to right bottom B.

The flippos collector problem                                   Page 2/6

CASE 3 : SINGLE SELECTION, 
SEQUENCE UNIMPORTANT
This kind of choice is called a combination.

Example:
After a party a team of people 4 

(from a group of 12) must be selected 
to clean the area.
We apply the character  to people  Y

selected and a to not selected people.N 

The number of choices (combinations) 
is the possible number of sequences of 
characters YYYYNNNNNNNN
which is divided by  and also by !.12! 4! 8
12!/(4!.8!) =
12.11.10.9/(4.3.2.1) = 495.

Combinations are very common in 
mathematics so a special notation exists: 

Blaise Pascal Magazine 94/95  2021 44



Call a horizontal direction  vertical direction H,

V, a possible road is HHHHHHVVVV
but all other combinations are fine.

How to proceed if some roads are blocked?
Write a 1 at the starting position, we arrived 
here in one way.
For each road crossing, write the sum of the 
numbers of the preceding crossings.

CASE 4: MULTIPLE SELECTION, 
SEQUENCE UNIMPORTANT
This is the case where digits may be (re) 
selected but the position is unimportant.
In this case the number  is equal to 54481 14458.

I call this the zoo problem.
Say we want to build a zoo with  animals, the 12

choice is of apes  bears  crocodiles (A) (B) (C) 

and eagles (E).

How many zoos are possible? A possible zoo 
could be AAA | BBBB | CCC | EE
Call | a fence to separate the animals.
Then the number of zoos is the number of ways 
we can place the three fences:

 would be a zoo with  apes, AAAAAAA||CCCCC| 7

no bears,  crocodiles and no eagles.5

Because the location of the animals is fixed, we 
no longer need the characters   and A,B,C,D,E

we write X.
The first zoo becomes: 
XXX | XXXX | XXX | XX.
Animals + fences + 12 + 3 = 15.

Example:
In how many ways can we paint  eggs if the 15

choice is of  colors?7

Comparing with the zoo problem:
Eggs = animal count, colors are animal types.
Align the eggs and place cardboard between 
the colors.

(eggs).  (colors).K = 15  N = 7

So far for the theory.

THE FLIPPOS COLLECTOR PROBLEM
Three calculation methods are presented: 
u Straight counting.
v A formula.
w A simplified formula with limited accuracy. 

Straight counting
The flippos in a series are called  1,2,3,...,N
where  is the number of different flippos of a N

series.

This method was developed first to serve as 
validation for later developed formulas.
We simply write all possible selections of K 
flippos  and count  the number of selections 
that contain a complete series.

The flippos collector problem                                   Page 3/6

Three fences have to be placed where the 
choice is of  places.15

Note that the number of fences is the number 
of  animal types .- 1

The number of zoos are the combinations of 
3 out of 15 so 15!/(12!3!) = 455.

Note: the selection is from places 
XXXXXXXXXXXX--- where ---are the fences.

In general:
The number of  choices from  re-selectable K N

objects where the sequence is unimportant is:

Blaise Pascal Magazine 94/95  2021 45



Say  and , N=3  K=5

then some of the  rows are:35 = 234
1 1 1 1 1
1 1 1 1 2
...
1 3 3 3 3
2 1 1 1 1
...
3 3 3 3 3

A "good" row is 3 3 1 1 2
A "wrong" row is : 2 2 1 1 2

For  flippos from a collection of  rows of K N, NK

K flippos are generated.
If  "good" rows are counted then the G

probability to posses a complete series in K 
flippos is:

This method is very time consuming so the 
limit is set to small numbers 
{NK < 250.000.000}

A formula
This provides for a fast and accurate 
calculation. Say  is the number of rows  A(1)

where flippo  is absent.1

Such a row was generated by choosing  times K

from (N-1) flippos, so (N-1)K rows result.
 is the number of rows with missing A(1+2)

flippos  OR and  the number of 1 2 A(1*2)

rows with missing flippos  1 AND 2.

Read as OR ,"+"  "*" as AND.

Then  the A(1+2) = A(1) + A(2) - A(1*2)

last term corrects for double counting.

Applying this rule further:
A(1+2+3) = 
A((1+2)+3) = 
A(1+2) + A(3) - A((1+2)*3)
A((1+2)*3) = A(1*3+2*3) = A(1*3) + 
A(2*3) - A(1*2*3)

These rules may be visualized by drawing 
overlapping areas as we noticed before.

Summing up :
A(1+2+3) = A(1) + A(2) + A(3) - [A(1*2 
+ A(1*3) + A(2*3)] + A(1*2*3)

A(1) = A(2) = ...= A(K) are N terms.
A(1*2) = 
A(1*3) = A(2*3) = .... = A((k-1),K) 
are just as much terms as we can select  2
flippos out of N.
This results in a formula for the amount of 
incomplete rows:

The number of "good" rows is 
K

N  - A(1+2+...+N)

Division by  results in the probability for a NK

A shorter formula
This formula provides an approximation which 
is only accurate for large numbers  of K >> N
We choose a row of  flippos without flippo .K 1

The probability for this row is:

So, the probability for a row with at least 1 flippo
of type - - is:1

Repeating this formula for flippos  type 2..N 
the probability of a complete series is:

The flippos collector problem                                   Page 4/6

Blaise Pascal Magazine 94/95  2021 46



Table below shows some values for the case of 
N = 5

The "formula" column is accurate, 
the "e-power" column is calculated using the 
approximation e power formula.

K      Formula       e-power approximation
5      3.8%         19.4%
10    52.5%         58.5%
20    94.3%         94.4%

THE PROGRAM

This Delphi project has only one unit.
UpDown components allow for the selection 
of variables  and  N K.

Counting , Formula  or short formula 
approximation may be selected by 
Speedbutton components. 
The speedbuttons use their tag (set to 
1,2,3) to identify themselves: they share the 
OnClick event.
The counting method is not selectable for 
large numbers, the calculations simply would 
take too long.
Variables are of type double, which allows for 
15 digit long numbers. The counting method 
uses an array ) of bytes to represent a (AK

selection of elements.K 

The flippos collector problem                                   Page 5/6

Above, we multiplied chances that were not 
completely independent which results in an 
error. For large values of  however this error is K

small. The formula may be simplified:

Blaise Pascal Magazine 94/95  2021 47



The flippos collector problem                                   Page 6/6

const  = ;  maxN 10 //maximal number of different flippo types
       = ;  maxK 50 //maximal number of collected flippos
var array of  : [ ]  ;AK maxK byte1..
    ,  : ;K N byte
     : ;stopflag boolean
     : ;calcmethod byte //1: count 2:formula  3:large K

Initially AK[  ] is set to 1111111…1111111

function  : ;checkAK boolean
//return true if complete series in AK
var array of  : [ ]  ;AN maxN boolean1..
    ,  : ;d i byte
begin
   :=     [ ] := ;for to doi N AN i false1
   :=    for to doi K1
  begin
    := [ ];d AK i
   [ ] := ;AN d true
  ;end
  := ;result true
  := ;i 1
    (  <= ) while and doresult i N
  begin
    :=   [ ];result result AN iand
   ( );inc i
  ;end
end;

True is returned if the counter did not overflow.
Before incrementing, the counter must be 
checked for a complete series.

function  : ; incAK boolean //increment AK array
 var   : ;i byte
  : ; carry boolean
begin
  := ;i 1
 repeat
  ( [ ]);inc AK i
   := [ ] =  + ;carry AK i N 1
    if thencarry
   begin
    [ ] := ;AK i 1
    ( );inc i
   ;end
  (  = )  (  = + );until carry false i Kor 1
  :=  <= ;result i K
end;

The code above is called by procedure count 
to do the job.
Please see the source code for details.

The “formula” method needs the calculation of 
faculties, powers and of course  the number of 
combinations. 

function (  : ;  : ) : ;power base double x byte double
var  : ;i byte
begin
  := ;result 1
   :=      :=  * ;for to doi x result result base1
end;

function (  : ) : ;faculty NN byte double
var  : ;i byte
begin
  := ;result 1
   :=      :=  * ;for to doi NN result result i1
end;

function ( ,  : ) : ;combinations NN KK byte double
//calculate NN over KK combinations
var  : ;i byte

Procedure formula calls above code to do the 
job. Finally, the ” procedure calculates “largeK

the e-power formula:

procedure ;largeK
//calculate approximation for K >> N
var ,  : ;p lambda double
begin
  := (( - )/ , );lambda power N N K1
  := (- * );p exp lambda N
 . .  := ( , * );form1 Ppercentage Caption formatfloat p'##0.##' 100
end;

NOTES:
The “counting” method has a possibility to 
interrupt the counting.  A click on the STOP 

BitBtn sets the STOP flag which terminates 
counting.
This concludes the description of the flippo 
collectors problem.
Please refer to the source code for details.

Blaise Pascal Magazine 94/95  2021 48



LAZARUS

HANDBOOK 

FO
R P

ROGRAMMIN
G W

IT
H FR

EE
 PA

SCAL

Blai
se

 Pa
sc

al

Auth
ors:

 M
ich

ae
l v

an
 C

an
ney

t, 

Mat
tia

s G
är

tn
er

 In
ouss

a O
ued

ra
ngo, 

Sve
n H

ein
ig, D

et
lef

 O
ve

rb
ee

k 

LAZARUS

HANDBOOK 

2 
FO

R P
ROGRAMMIN

G W
IT

H FR
EE

 PA
SCAL

LAZARUS

HANDBOOK 

FO
R P

ROGRAMMIN
G W

IT
H FR

EE
 PA

SCAL

Blai
se

 Pa
sc

al

Auth
ors:

 M
ich

ae
l v

an
 C

an
ney

t, 

Mat
tia

s G
är

tn
er

 In
ouss

a O
ued

ra
ngo, 

Sve
n H

ein
ig, D

et
lef

 O
ve

rb
ee

k 

LAZARUS

HANDBOOK 

2 
FO

R P
ROGRAMMIN

G W
IT

H FR
EE

 PA
SCAL

https://www.blaisepascalmagazine.eu/product-category/books/

The books The extra protection cover Including the PDF

65 euro ex Vat 

HardCover, 934 Pages in two books 65€

ADVERTISEMENT

934 P
AGES

LA
ZA

RU
S H

AN
DB

OO
K 

FO
R PR

OGRAMMIN
G W

IT
H FR

EE
 PA

SCAL A
ND LA

ZARUS

+

We have a new service at our website, for shipping you can make three choices:
1.The shipping cost depending on which part of the world you want the book to be shipped:
Europe Worldor the other countries: the 

2. The same but including “Track and Trace”
3. The same but including “Registered”



Implementing APIs for Chromium 

By Michaël Van Canneyt

Lazarus: Webform inside Lazarus                        Page  1/15

Blaise Pascal Magazine 94/95  2021

ABSTRACT
In the previous article about embedding 
Chromium, we showed how to embed
Chromium in your application. In this article, 
we go a step further, and we show how to add 
APIs to the Chromium environment, and how 
these APIs can be used in your Javascript or 
Pas2JS code.

u INTRODUCTION
In the previous article, we showed how you can 
embed Chromium in your Lazarus- (or Delphi, 
the procedure is the same) application. 

We also showed how you can load files using a 
private protocol. This can be used to show any 
website, or to limit the shown HTML files 
shown to the files you choose.
However, the same can be done (can more or 
less) by starting the browser e.g. in kiosk 
mode* as a separate process: the possibilities 
are limited to what the browser offers you.

It becomes really interesting when you start 
adding possibilities to the embedded browser,
that allows to interact with the user 
environment. It is possible to add file 
management, tray icon management, menu 
management, or virtually anything you want to 
add to the Browser environment: 
You can create Javascript objects with methods, 
and make these available to the HTML and 
Javascript running in the browser windows.

In this article, we’ll show how to do this:
we’ll demonstrate how to add separate logging 
to the browser, or how to let the browser 
interact with a tray icon and popup menu that 
lives in your application. 

Obviously, much more could be done, but the 
examples serve just to show how to do these 
things.

v ARCHITECTURE
Adding Javascript classes to the Chromium 
browser is not so difficult. CEF (Chromium 
Embedded Framework) has a rich API 
(Application Programming Interface)
for this, and the complete API is available to 
you through CEF4Delphi.

Basically, you build a Javascript object using 
the appropriate APIs, attach some methods or
properties to it with some methods, callback 
and that is it. 
(A callback function is a function passed into another 
function as an argument, which is then invoked inside 
the outer function to complete some kind of routine or 
action.)

However, it becomes more complicated when 
you need to handle a GUI in your Javascript
objects. 
For instance, you could decide to show a file-

open dialog, or allow access to a menu, 
or anything else that requires access to the 
GUI (Graphical User Interface).
The reason it becomes more complicated is 
the browser is running in a separate process:
when you start the CEF browser, it creates a 
new process (called the RENDER process),
and everything connected with the browser is 
running in that process. This includes the 
Javascript and any classes you make available 
to the browser.

expertstarter   Kiosk software is the system and user 
  interface software designed for an interactive 
kiosk or Internet kiosk enclosing the system in a way 
that prevents user interaction and activities on the 
device outside the scope of execution of the software. 
This way, the system replaces the look and feel of the 
system it runs over, allowing for customization and 
limited offering of ad-hoc services. Kiosk software locks 
down the application in order to protect the kiosk from 
users which is specially relevant under, but not only 
limited to, scenarios where the device is publicly 
accessed such libraries, vending machines or public 
transport.

Kiosk software may offer remote monitoring to manage 
multiple kiosks from another location. An Email or text 
alerts may be automatically sent from the kiosk for 
daily activity reports or generated in response to 
problems detected by the software. 
Other features allow for remote updates of the kiosk's 
content and the ability to upload data such as kiosk 
usage statistics. Kiosk software is used to manage a 
touchscreen, allowing users to touch the monitor screen 
to make selections. A virtual keyboard eliminates the 
need for a computer keyboard.

WIKIPEDIA

50



Lazarus: Webform inside Lazarus                        Page  2/15

Blaise Pascal Magazine 94/95  2021

The code for your Javascript class will be 
running in the RENDER process, but your GUI
components will live in your original program: 
called the BROWSER process (somewhat
of a misnomer).
So, if your Javascript classes wish to change 
the GUI (show or hide a tray icon), or if
an event in the GUI (a menu click) must be 
communicated to the Javascript, this will
involve communication between the RENDER 
process and the BROWSER process. 
This communication happens with messages, 
and is asynchronous.
           Asynchronous Messaging is a communication
  method where participants on both sides of the
  conversation have the freedom to start, pause, 
and resume conversational messaging on their own 
terms, eliminating the need to wait for a direct live 
connection.

This is schematically depicted in Figure 1 on 
page 2 of this article (Below).
Imagine you wish to make a special log call 
available to the Javascript code, which sends
the log message to a memo on the main 
window. 
This involves creating a class which will live in 
the browser-render-process. 
When the Javascript log method is executed, 
the method in the class will receive the logged 
items. 
To actually display the message, it needs to 
send this to the GUI process using a message 
(depicted by the blue, upward arrow).

Application (GUI)

API GUI logic

Browser Render Process

Native API logic

JavaScript API acces

Figure 1: Interprocess communication for CEF

WIKIPEDIA

All this requires quite some code, but luckily 
the CEF API has a mechanism for sending
messages between the two processes. In the 
below, we show how to do this.

We’ll build on one of the previous examples: 
we create a small application with 2 APIs:
one simply replaces console.log with a custom 
method: it will display the logged data
in a memo. Since we implement a logging 
method, we’ll also log unhandled Javascript
exceptions, as a useful debugging tool.

The second API is an object that represents a 
Tray icon, managed by the program. The API
is an object, with a property that controls the 
visibility of the tray icon – not surprisingly,
the property is called ‘visible’. It also has 2 
methods: one to add a menu item to the 
popup menu of the tray icon, the second to 
remove the menu item.

window.trayIcon = {
 visible : boolean,
 addMenuItem : function(aCaption, ACallBack) {
 },
 removeMenuItem : function (aID) {
 }
};
window.appLog = function() {

};

So, how to implement these in CEF? The CEF 
offers a rich API for representing Javascript
values. The basis of this is the  ICefv8Value

interface, defined in the uCEFInterfaces

unit, like all other interfaces offered by CEF. 
It allows to check the value type, get or set
the value, or, if the interface represents an 
object, query the members of the object.

The reverse is also true: If there is an API that 
allows the browser Javascript code to
respond to a menu click (for example a popup 
menu item of a tray icon), and the user
clicks a message, there must be some way that 
the GUI process communicates this to the
browser RENDER process (depicted by the 
green, downward arrow), and then the classes
that implement the Javascript API will 
communicate this to the browser.

In JavaScript, these 2 APIs would look like this:

Implementing APIs for Chromium 

51



Lazarus: Webform inside Lazarus                        Page  3/15

Blaise Pascal Magazine 94/95  2021

Functions in Javascript are values like any 
other, so if we want to create a logging 
function, it stands to reason that this will be a 
Function value.
In CEF4Delphi, the  class TCefv8ValueRef

implements the interface.ICefv8Value 

So our logging function starts with a appLog 

TCefv8ValueRef instance:
We create it like this, in the 
CreateLoggerObject function:

w CREATING A JAVASCRIPT FUNCTION

The  creates a function object. NewFunction

The first parameter is the name, the second
parameter is the function handler interface: 
This must be a interface.ICefv8Handler 

This interface will be called when the function 
is invoked in Javascript.
In our logging function, the TLogHandler 
class is created. This is a descendent of the
TCefv8HandlerOwn class in CEF4Delphi, 
which implements for us.ICefv8Handler 

This class has only 1 method that we must 
override, aptly named Execute:

The meaning of the parameters should be clear 
from their names.

TLogHandler TCefv8HandlerOwn = ( )class
function const name (  : ;Execute ustring
   const : ;obj ICefv8Value
   const : ;arguments TCefv8ValueArray
   var : ;retval ICefv8Value
   var override : ): ; ;exception ustring Boolean
end;

In the function, the logic of the Execute 

function must be implemented.

The Javascript function console.log 

accepts any number of arguments, and 
writes a string representation of these 
arguments to the console. Here we mimic 
this behaviour. We start by creating a string 
representation of the arguments, separated 
by spaces.
As explained above, the code of 
TLogHandler is executed in the RENDER 
process. To actually display the string, we 
must send it to the BROWSER process.

function const name . (  : ;TLogHandler Execute ustring
 const : ;obj ICefv8Value
 const : ;arguments TCefv8ValueArray
 var : ;retval ICefv8Value
 var : ): ;exception ustring Boolean

Var
 msg ICefProcessMessage: ;

 i j Integer,  : ;

 S uString : ;

begin
 Result True:= ;

 msg TCefProcessMessageRef New SMsgDisplayLogMessage := . ( );

 msg ArgumentList SetSize. . ( );1
 S:='';

 For to do :=   ( )-  I Length Arguments0 1
  begin
   if then  >  := +' ';I S S0
   S S CefValToString Arguments i:= + ( [ ]);

  end;

 msg ArgumentList SetString S. . ( , );0
 SendProcessMessage PID_BROWSER msg( , );

end;

Function  : ;CreateLoggerObject ICefv8Value
begin
  Result TCefv8ValueRef NewFunction SFuncDoLog TLogHandler Create:= . ( , . );

end;

This can be done with the ICefProcessMessage 
interface, which is implemented by the 
TCefProcessMessageRef class. So we must 
create an instance of this class,
and attach the string to it: an arbitrary amount 
of data can be attached to a message, the
ArgumentList property of the message must 
be used for this.
Every message is named, and the BROWSER 
process can handle the messages by checking
 the name. In our program, the names of the
 messages are defined as Pascal
 constants. For the log message, the name 
 is in the SMsgDisplayLogMessage 
 constant:

Implementing APIs for Chromium 

52



Lazarus: Webform inside Lazarus                        Page  4/15

Blaise Pascal Magazine 94/95  2021

The last 2 statements attach the constructed 
string to the message, and send it to the
BROWSER process using the 
SendProcessMessage method of the 
iCEFFrame interface:
this interface represents a HTML frame of a 
webpage. The is a small SendProcessMessage 

helper method that encapsulates

This long expression is a rather complex way of 
getting a reference to the main frame of
the HTML page from which the Javascript 
function was called.
How the BROWSER process must respond to 
this message, we will see later in this article.
The function transforms a CefValToString 

iCEFv8Value to a string, it uses the methods 
of to inspect the value type and iCEFv8Value 

convert it in an appropriate way to a string:

Function String (  : ) : ;CefValToString A ICefv8Value
var i j Integer L TStrings,  : ;  : ;

begin
 if then  .  := .A IsString Result A GetStringValue
 else if then  .  A IsBool
  Result BoolToStr A GetBoolValue:= ( . )

 else if then  .  A IsInt
  Result IntToStr A GetIntValue:= ( . )

 else if then  .  A IsDouble
  Result FloatToStr A GetDoubleValue:= ( . )

 else if then  .  A IsNull
  Result null:=' ' 

 else if then begin   .  A IsArray
  Result:='[';

  for to do  :=   . -  J A GetArrayLength0 1
   begin
     if then  >  := +', ';J Result Result0
    Result Result CefValToString A GetValueByIndex J:= + ( . ( ));

   end;

 Result Result:= +']';

 end
 else if then begin   .  A IsObject
  Result:='{';
  L TstringList Create:= . ;

  try
  A GetKeys L. ( );

  For to do begin :=   . -  J L Count0 1
  if then  >  := +', ';J Result Result0
  Result Result L i CefValToString A GetValueByKey L i:= +'"'+ [ ]+'": '+ ( . ( [ ]));

  end;

 finally l Free. ;

 end;

 Result Result:= +']';

 end
else
Result Result Cannot display this value:= +'[    ]';

end;

x CREATING A JAVASCRIPT OBJECT
Creating a Javascript object is not much 
different from creating a function: we define it 
as a value of type object (using the NewObject 
class method), and attach the definition of
the property and the methods to add visible 

or remove menu items to it.
To control access to the properties of 
 an object, the ICefV8Accessor 
 interface must be used. 
This interface must be passed to the 
NewObject method. We’ll create a class
TTrayIconAccessor to handle the access for 
our trayIcon object: 
The CEF4Delphi framework defines a 
TCefV8AccessorOwn class which has the 
necessary methods for the ICefV8Accessor 
interface, and if we make a descendent of this 
class, we must  simply override these methods.
  
  Adding a property to a
  Javascript object can be done
  using the SetValueByKey
  iCEFV8value. method of 
  This method takes 3 
  parameters: 
  the name, the initial value 
  (a boolean in our case) and a
  set of attributes (some OR-ed 
  integer values).
  Object methods are functions,
  and functions are Javascript 
  values like any other. 
  So, in order to define a method
  for an object, we must simply
  add a property with the name
  of the method and supply a 
  function value as initial value. 
  As seen above, functions can be
  implemented with an instance
  of a handler class.
  Because the method Execute 

  of the handler class receives 
  the name of the function that is 
  called, we can use a single 
  handler class to handle both the
  andaddMenuItem 

  methods: removeMenuItem 

  The class.TTrayIconHandler 

Armed with the 2 classes  TTrayIconHandler

 . . . .TCefv8ContextRef Current Browser MainFrame SendProcessMessage

Note that this function recursively calls itself in 
the case of Javascript arrays and objects.

Implementing APIs for Chromium 

53



Lazarus: Webform inside Lazarus                        Page  5/15

Blaise Pascal Magazine 94/95  2021

Function  : ;CreateTrayIconObject ICefv8Value
Var
 TempAccessor ICefV8Accessor : ;

 TempHandler ICefv8Handler : ;

 Ref ICefv8Value : ;

begin
 TempAccessor TTrayIconAccessor Create := . ;

 TempHandler TTrayIconHandler Create:= . ;

 // Create object
 Result TCefv8ValueRef NewObject TempAccessor:= . ( , );nil

 // Add visible property
 if not  . ( ,Result SetValueByKey SPropVisible
          TCefv8ValueRef NewBool False. ( ),

          V8_PROPERTY_ATTRIBUTE_NONE) then
   Raise not set . ('     ');Exception Create Could visible attribute

 Result SetValueByAccessor SPropVisible. ( ,

          V8_ACCESS_CONTROL_DEFAULT,

          V8_PROPERTY_ATTRIBUTE_NONE);

 // Add addMenuItem method
 Ref TCefv8ValueRef NewFunction SFuncAddMenuItem TempHandler:= . ( , );

 if not  . ( ,Result SetValueByKey SFuncAddMenuItem
          Ref,

          V8_PROPERTY_ATTRIBUTE_NONE) then
   Raise not function . ('     ');Exception Create Could add addMenuItem

 // Add removeMenuItem method
 Ref TCefv8ValueRef NewFunction SFuncRemoveMenuItem TempHandler:= . ( , );

 if Result SetValueByKey SFuncRemoveMenuItem  . ( ,not
          Ref,

          V8_PROPERTY_ATTRIBUTE_NONE) then
  Raise not function . ('     ');Exception Create Could add addMenuItem
end;

Object properties have a lot of attributes in 
CEF, but we don’t need those, so we pass
V8_PROPERTY_ATTRIBUTE_NONE for all of 
them.
Access to the property is handled visiblity 

by the following class:

TTrayIconAccessor TCefV8AccessorOwn = ( )class
private
 FVisible Boolean : ;

 procedure ( : );SendBrowserShowHideTrayIcon aValue Boolean
protected
 function const name const (  : ;  : ;Get ustring obj ICefv8Value
     var  : ;retval ICefv8Value
     var override : ): ; ;exception ustring Boolean
 function const name const (  : ;  ,Set_ ustring obj
     value ICefv8Value: ;

     var override : ): ; ;exception ustring Boolean
end;

and  we can now TTrayIconAccessor,

construct our object in the trayIcon 

CreateTrayIconObject class. The main 
method to define a property is 
SetValueByKey:

Implementing APIs for Chromium 

54



Lazarus: Webform inside Lazarus                        Page  6/15

Blaise Pascal Magazine 94/95  2021

It is quite a simple class: it has methods  Get

and  which are called whenever aSet_,

property is read or written, much like the 
getter and setter of properties in Pascal.
The name of the property is passed to these 
methods. In our case, only the ‘visible’ 
property is handled.
The following is then pretty straightforward:

function const name . (   : ;TTrayIconAccessor Get ustring
    const  : ;obj ICefv8Value
    var  : ;retval ICefv8Value
    var  : ): ;exception ustring Boolean
begin
 Result SPropVisible:=( = );name
 if then  Result
   retval TCefv8ValueRef NewBool FVisible:= . ( );

end;

The setter is slightly more complicated: 
we must not only check the name, but also the
value type:

function const name . (   : ;TTrayIconAccessor Set_ ustring
         const  : ;obj ICefv8Value
         const  : ;value ICefv8Value
         var  : ): ;exception ustring Boolean
begin
  Result SPropVisible:=( = );name
  if then  Result
  begin
  if then .  value IsBool
   begin
   FVisible value GetBoolValue:= . ;

   SendBrowserShowHideTrayIcon FVisible( );

   end
  else
  exception Invalid value expect boolean := '   ,  ';type
  end
end;

Note that we set the  parameter if exception

something is wrong with the passed value:
This will cause a Javascript exception to be 
raised.
To actually show (or hide) the tray icon, the 
BROWSER process must be notified. For this,
we send again a message, and this is done in the 
SendBrowserShowHideTrayIcon method. 
The process is similar to the way the browser is 
notified that a log message is sent.

procedure . (  : );TTrayIconAccessor SendBrowserShowHideTrayIcon aValue Boolean
var
 msg ICefProcessMessage: ;

begin
 msg TCefProcessMessageRef New SMsgSetTrayIconVisibility := . ( );

 msg ArgumentList SetBool aValue. . ( , );0
 SendProcessMessage PID_BROWSER msg( , );

end;

Implementing APIs for Chromium 

55



Lazarus: Webform inside Lazarus                        Page  7/15

Blaise Pascal Magazine 94/95  2021

The handler class for the tray icon much resembles the function handler for the log function:

TTrayIconHandler TCefv8HandlerOwn = ( )class
Private
 Class Var   : ;FMenu TTrayMenu
 function ( : ; : ;AddMenuItem aCaption uString AHandler ICefv8Value
 AContext ICefV8Context Integer : ): ;

 function ( : ;RemoveMenuItem aID Integer
 AContext ICefV8Context Integer: ): ;

 class procedure static  ; ;CheckMenu
protected
 class procedure static  (  : ); ;CallTrayMenuCallBack aID integer
 function const name const (  : ;  : ;Execute ustring obj ICefv8Value
           const : ;arguments TCefv8ValueArray
           var : ;retval ICefv8Value
           var override : ): ; ;exception ustring Boolean
end;

Again, the Execute method is the entry point 
when the Javascript environment needs to
call the methods: It checks the name of the 
called function:

function const name . (  : ;TTrayIconHandler Execute ustring
 const : ;obj ICefv8Value
 const : ;arguments TCefv8ValueArray
 var : ;retval ICefv8Value
 var : ): ;exception ustring Boolean

Var
 aLen  aID Integer,  : ;

begin
 Result True:= ;

 aLen length arguments:= ( );

Case name of  

 SFuncAddMenuItem:

  begin
   if ( > )aLen 1
   and [ ].arguments IsString0
   and then [ ].  arguments IsFunction1
    begin 
    aID AddMenuItem arguments GetStringValue:= ( [ ]. ,0
       arguments[ ],1
       TCefv8ContextRef Current. );

    retVal TCefv8ValueRef NewInt aID:= . ( );

    end
   else
   exception:=

     ‚   :   ';Need arguments caption callback2 and
   end;

  SFuncRemoveMenuItem:

   begin
    if and then ( > )  [ ].  aLen arguments IsInt0 0
    begin
    aID RemoveMenuItem arguments GetIntValue:= ( [ ]. ,0
       TCefv8ContextRef Current. );

    retVal TCefv8ValueRef NewInt aID:= . ( );

    end
   else
     exception Need arguments menu item ID:='   :   ';1
   end;

  else
    Result False:= ;

end;

The and  AddMenuItem RemoveMenuItem

functions do the actual work: they update
the local copy of the tray icon menu, and then 
send a message to the BROWSER process.
The local copy of the menu is a simple global 
collection with ID, caption, handler and
context. These fields are needed to keep the 
various event handlers that have been 
registered in the Javascript: this is the 
aHandler argument.
The parameter (and property) is aContext 

necessary to be able to call the correct handler
when the BROWSER process sends a message 
notifying that the menu item is clicked:

function . (  : ;TTrayIconHandler AddMenuItem aCaption uString
AHandler ICefv8Value AContext ICefV8Context Integer : ;  : ) : ;

Var
 M TTrayMenuItem : ;

 msg ICefProcessMessage: ;

begin
 CheckMenu;

 M FMenu AddMenu aCaption:= . ( );

 M Handler aHandler. := ;

 M Context aContext. := ;

 Result M ID:= . ;

 // Send message to browser process.
 msg TCefProcessMessageRef New SMsgAddTrayMenuItem := . ( );

 msg ArgumentList SetSize. . ( );2
 msg ArgumentList SetInt M ID. . ( , . );0
 msg ArgumentList SetString M Caption. . ( , . );1
 SendProcessMessage PID_BROWSER msg( , );

end;

As you can see, the last statement again 
sends the message to the BROWSER process. 
The  is similar, but it needs RemoveMenuItem

less arguments:

Implementing APIs for Chromium 

56



Lazarus: Webform inside Lazarus                        Page  8/15

Blaise Pascal Magazine 94/95  2021

function . (  : ;TTrayIconHandler RemoveMenuItem aID Integer
AContext ICefV8Context Integer : ) : ;

Var
msg ICefProcessMessage: ;

begin
CheckMenu;

FMenu RemoveMenu aID. ( );

Result:= ;0
// Send message to browser process.
msg TCefProcessMessageRef New SMsgRemoveTrayMenuItem := . ( );

msg ArgumentList SetSize. . ( );1
msg ArgumentList SetInt aID. . ( , );0
SendProcessMessage PID_BROWSER msg( , );

end;

With this, we have implemented a Javascript 
object that can be manipulated from within a
HTML Page displayed in the embedded browser.

y ADDING THE IDENTIFIERS TO THE BROWSER
The previous paragraphs showed how to 
construct Javascript functions and objects using 
the classes that CEF4Delphi makes available, 
but it did not yet make the browser aware of 
these classes. This must be handled explicitly. 
Also, we still need a mechanism to react on the 
actual of the tray icon’s popup menu: OnClick 

from the architecture sketched above,
it should be clear that the BROWSER process 
will have to notify the RENDER process
with a message when a click happens.
We also want to do 2 extra things:
•  Replace with our own handler, console.log 

 so all log messages are sent to the Console.
•  Log a message whenever a Javascript 
 exception occurs. This is useful for  
 debugging.
The place to set up the necessary callbacks for 
all this is in the  routine CreateGlobalCEFApp

we developed in the previous article. In this 
routine, we set some additional event handlers:

procedure ;CreateGlobalCEFApp
begin
 if nil then   <>  ;GlobalCEFApp exit
 GlobalCEFWorkScheduler TCEFWorkScheduler Create := . ( );nil
 GlobalCEFApp TCefApplication Create:= . ;

 GlobalCEFApp ExternalMessagePump True. := ;

 GlobalCEFApp MultiThreadedMessageLoop False. := ;

 GlobalCEFApp OnScheduleMessagePumpWork. :=

      @ ;GlobalCEFApp_OnScheduleMessagePumpWork
 GlobalCEFApp OnRegCustomSchemes CEFRegisterCustomSchemes. :=@ ;

 // New handlers
 GlobalCEFApp OnContextCreated HandleNewContext. :=@ ;

 GlobalCEFApp OnWebKitInitialized HandleWebkitInitialized. :=@ ;

 GlobalCEFApp OnUncaughtException HandleJSException. :=@ ;

 GlobalCEFApp OnProcessMessageReceived HandleProcessMessage.  := @ ;

 // End of new handlers
 {$IFDEF LINUX}
 GlobalCEFApp DisableZygote True.  := ;

 {$ENDIF}
end;

From the comments, we can see that 4 extra 
events have been assigned. We’ll discuss 
them one by one.
The  event is fired when OnContextCreated

a new browser context is created. This is
where you can introduce new Javascript 
identifiers for that particular browser.
We use the 2 functions we created in the 
above to create an instance of the objects 
we wish to expose. Any global Javascript 
object or identifier is actually attached to 

procedure const (  : ;HandleNewContext browser ICefBrowser
const : ;frame ICefFrame
const : );context ICefv8Context
Var
logger,

trayIcon ICefv8Value : ;

begin
trayIcon CreateTrayIconObject:= ;

logger CreateLoggerObject:= ;

With do .  Context Global
begin
if not  ( , ,SetValueByKey STrayIcon trayIcon
V8_PROPERTY_ATTRIBUTE_NONE) then
Raise . (Exception Create
  '       ');Could global tray iconnot set object
if not  ( ,SetValueByKey SFuncDoLog
logger,

V8_PROPERTY_ATTRIBUTE_NONE) then
Raise . (Exception Create
  ‚      ');Could global lognot set function
end;

end;

That’s all there is to it.
CEF offers the possibility to execute 
some custom Javascript when the 
browser window is created and 
ready, but before all other Javascript 
is executed. This is called an 
‘extension’.
Extensions can be registered using 
the  method CefRegisterExtension

of CEF. We will use this to reroute 
the function to our console.log 

own appLog function. The place to 
register an extension is in the 
OnWebKitInitialized event:

     the object. So, we must attach our Window 

new identifiers to the global object.Window 

Since this is a Javascript object like any other, 
the code to do so is no different from the code 
to add methods and properties to an object, 
except that in this case the object is the 
Window object, which is made available to us 
through the value:context.Global 

Implementing APIs for Chromium 

57



Lazarus: Webform inside Lazarus                        Page  9/15

Blaise Pascal Magazine 94/95  2021

procedure ;HandleWebkitInitialized
var
 HookConsole : ;string
begin
 HookConsole:= ' '(function() { +
        ' var oldlog;' +
        ' if (!console) console = { }; '+
        ' if (console.log) oldlog=console.log; '+
         ' console.log = function() {' +
        '  if (oldlog) oldlog.apply(window,arguments); '+
        '   indow.'  SFuncDoLog+'.apply(window,arguments); '+ +
         ' };' +
        '})();';
 CefRegisterExtension v8 hookconsole HookConsole(' / ', , );Nil
end;

People familiar with Javascript will see that 
this little piece of Javascript defines 
console.log if it does not yet exist, or 
reroutes it to our  function.appLog

z GETTING NOTIFIED OF EXCEPTIONS
We want to be notified whenever the Javascript 
code throws an exception that is not explicitly
handled. This can be done in the 
OnUncaughtException event, which we set to
the HandleJSException method.
This method is quite simple. It converts the 
exception message to a string and sends a log
message to the BROWSER process:

procedure const (  : ;HandleJSException browser ICefBrowser
        const : ;frame ICefFrame
        const : ;context ICefv8Context
        const : ;exception ICefV8Exception
        const : );stackTrace ICefV8StackTrace
Var
 msg ICefProcessMessage: ;

begin
 msg TCefProcessMessageRef New SMsgDisplayLogMessage := . ( );

 msg ArgumentList SetString Exception Exception. . ( , '  : '+ . );0 Message
 Browser MainFrame SendProcessMessage PID_BROWSER msg. . ( , );

end;

We could also add a stacktrace, but for 
simplicity we limited ourselves to simply 
logging the exception message. Note that 
this method received the actual browser 
instance: we use that to send the message 
to the BROWSER process.

When the user clicks a menu item in 
the tray icon’s popup menu, the 
BROWSER process needs to 
communicate this back to the RENDER 
process, and specifically to the 
Javascript handler that was passed as 
part of the creation of the menu item.
This is where the Chromium app’s 
event handler 
OnProcessMessageReceived comes
in: this event is triggered when the 
RENDER process receives a message 
from the BROWSER process. We set 

procedure const (  : ;HandleProcessMessage browser ICefBrowser
        const : ;frame ICefFrame
        sourceProcess TCefProcessId: ;

        const : ;aMessage ICefProcessMessage
        var : );aHandled boolean
var
 aID Integer : ;

begin
 if name ( . = )aMessage SMsgExecuteTrayMenuClick
    and then ( . . > ) aMessage ArgumentList GetSize 0
 begin
  aID aMessage ArgumentList GetInt:= . . ( );0
  TTrayIconHandler CallTrayMenuCallBack aID. ( );

  aHandled true:= ;

 end;

end;

{ COMMUNICATION FROM 
BROWSER TO RENDER PROCESS
We’ve shown how to create Javascript 
objects and functions, and in the code 
handling these functions we’ve seen how 
messages are sent from the RENDER 
process to the BROWSER
process. 

the event to the  HandleProcessMessage

procedure:

Implementing APIs for Chromium 

58



Lazarus: Webform inside Lazarus                      Page  10/15

Blaise Pascal Magazine 94/95  2021

Here we can see that the 
M.Handler property, a function 
value (which is of type 
ICefv8Value)has a 
ExecuteFunctionWithContext 

method: 

this will execute the function in the Javascript 
context which was captured when the handler 
was registered. 
We must pass to this function the ID of the menu 
item, and this is done by creating an array of
iCEFv8value interfaces. This array will be 
available in the Javascript function as the
arguments variable.

| IMPLEMENTING THE GUI
All code presented till now will run in the 
RENDER process: the process where the HTML
is displayed and Javascript is running. We now 
turn to the process. This is the GUI BROWSER 

application that we implement in Lazarus, the 
LCL. This is also where the tray icon and its 
associated popup menu is handled, and where 
the memo with the log messages is handled: 
the main form of the application. 
The application is similar to the application 
developed in the previous article.
The component we used to display  bwBrowser 

the browser window has a property, Chromium 

representing the instance TChromium 

responsible for the browser window. 
The class has a TChromium 

OnProcessMessageReceived event. This event 
is triggered whenever the RENDER process sends 
a message to the BROWSER process. 

procedure . ( : );TMainForm FormCreate Sender TObject
begin
 TLocalResourceHandler BaseDir ExtractFilePath Paramstr. := ( ( ));0
 TLocalResourceHandler RegisterHandler. (' ');local
 bwBrowser Chromium OnProcessMessageReceived HandleProcessMessage. . :=@ ;

 bwBrowser LoadURL STrayIconURL. ( );

end;

The implementation of this message is again 
quite simple, and looks exactly the same as
its counterpart in the RENDER process: (see 
next page)

The method is CallTrayMenuCallBack 

responsible for calling the Javascript callback
that was registered together with the menu 
item. It’s again quite simple:

class procedure  . ( : );TTrayIconHandler CallTrayMenuCallBack aID integer
Var
 M TTrayMenuItem : ;

 arguments TCefv8ValueArray: ;

begin
 If not then  ( )  ;Assigned FMenu exit
 M TTrayMenuItem FMenu FindItemID aID:= ( . ( ));

 if Nil then ( = ) M
 SetLength arguments( , );1
 Arguments TCefv8ValueRef NewInt aID[ ]:= . ( );0
 M Handler ExecuteFunctionWithContext M Context arguments. . ( . , , );nil
end;

Since we need to be informed 
when the javascript logs a message 
or wants to create or remove a 
menu item, we set this event in the 
form’s event:OnCreate 

Implementing APIs for Chromium 

59



Lazarus: Webform inside Lazarus                       Page  11/15

Blaise Pascal Magazine 94/95  2021

As you can see, we capture 4 messages: the 4 
different messages that we implemented in
the RENDER process. Note the use of 
UTF8Encode: strings in the CEF4Delphi APIs 
are UTF16-encoded unicode strings. Lazarus 
uses UTF8-encoded strings, so to avoid 
compiler warnings, we manually convert them.
The first method sets the visibility of the tray 
icon. It is wrapped in a QueueAsyncCall
method, because as we’ve seen in the 
previous article, the messages can arrive in 
another thread than the main thread. The 
implementation is quite simple:

procedure . (TMainForm SetTrayIconVisibility
 aVisible PtrInt : );

begin
  TIApp Visible aVisible. := <> ;0
end;

The message signaling that a menu item must be 
added to the Tray Icon’s popup menu is a little 
more complicated. It gets 2 parameters: the ID 
identifying the menu item, and the caption:

procedure String . (  : ;  : );TMainForm AddTrayMenuItem aAPIID integer ACaption
Var
 tm TTrayMenuItem : ;

begin
 Itm TTrayMenuItem Create Self:= . ( );

 Itm APIID aAPIID. := ;

 Itm Caption aCaption. := ;

 Itm OnClick HandleTrayIconClick. :=@ ;

 . . ( );PMTray Items Add Itm
end;

As you can see, the code creates a 
TTrayMenuItem menu item, it has an extra 
property which holds the ID that was APIID 

allocated for the menu item in the RENDER 
proces.
The method to remove an item is similar, and 
uses the to find the menu item thatAPIID 

must be removed:

  . (  : );procedure TMainForm RemoveTrayMenuItem aAPIID integer
Var 
 Itm TTrayMenuItem I Integer : ;  : ;

begin
 Itm:= ;Nil
 I PMTray Items Count:= . . ; 

  ( >= )  ( = ) While and Nil doI Itm0
 begin
  Itm TTrayMenuItem PMTray Items i:= ( . [ ]);

  if then ( . <> ) Itm APIID aAPIID
  Itm:= ;Nil
  Dec I( );

 end;

 Itm Free. ;

end;

The last message is the logging 
message. It uses a form variable 
FLogMsg to store the
log message, and then uses the 
QueueAsyncCall mechanism to 
actually display the log
message in ShowLogMsg:

procedure . ( : ;TMainForm HandleProcessMessage Sender TObject
const : ;browser ICefBrowser
 const : ;frame ICefFrame
 sourceProcess TCefProcessId: ;

 const : ;aMessage ICefProcessMessage
 out : );Result Boolean
Var
 aList ICEFListValue :  ;

begin
 aList:= ;Nil
 if then  ( ) := . ;Assigned aMessage aList aMessage ArgumentList
 if not and then   ( ( )  ( . > )) ;Assigned aList aList getSize exit0
 Name ofCase aMessage.  

  SMsgSetTrayIconVisibility Application QueueAsyncCall SetTrayIconVisibility Ord aList getBool: . (@ , ( . ( )));0
  SMsgAddTrayMenuItem: 

    if then  ( . > ) ( . ( ), ( . ( )));aList getSize AddTrayMenuItem aList getInt utf8Encode aList getString1 0 1
  SMsgRemoveTrayMenuItem RemoveTrayMenuItem aList getInt: ( . ( ));0
  SMsgDisplayLogmessage DoLog Render process UTF8Encode aList getString: ('  : '+ ( . ( )));0
 end;

end;

Implementing APIs for Chromium 

60



Lazarus: Webform inside Lazarus                       Page  12/15

Blaise Pascal Magazine 94/95  2021

There is one more method that must 
be explained. The menu items created 
in the AddTrayMenuItem
method had their handler set OnClick 

to the HandleTrayIconClick 
method. This method needs to send a 
message to the RENDER process to 
signal the click.
The same mechanism as in the 
RENDER process is used: create a 
message object, attach the ID 
to its list of arguments, and use the 
SendProcessMessage method of
bwBrowser.Chromium to actually send 
the message (see coding left):

procedure . ( : );TMainForm HandleTrayIconClick Sender TObject
var
 TempMsg ICefProcessMessage : ;

 MID Integer : ;

begin
 MID Sender TTRayMenuItem APIID:=(   ). ;as
 DoLog BROWSER process click tray menu item d MID('  :      % ',[ ]);for
 TempMsg TCefProcessMessageRef New SMsgExecuteTrayMenuClick:= . ( ); 

  . . ( ,  ) if thenTempMsg ArgumentList SetInt MID0
  bwBrowser Chromium SendProcessMessage PID_RENDERER TempMsg. . ( , );

end;

This message will then be handled by 
the routine HandleProcessMessage 

of the RENDER process.

After all this coding, it’s time to show the fruits 
of all this labour: actually use the created classes 
in Javascript. The following very simple HTML is 
used:

the script and associated CSS are a notyf.min.js 

minimalistic message toast implementation.
It can be found on 
https://carlosroso.com/notyf/

and it is used in the actual Javascript for our little 
HTML page, in the file:app.js 

procedure const String array of const . (  : ; :   );TMainForm DoLog aFmt aArgs
begin
 DoLog Format aFmt aArgs( ( , ))

end;

procedure const String . (  : );TMainForm DoLog aMsg
begin
 FLogMsg aMsg:= ;

 Application QueueAsyncCall ShowLogMsg. (@ , );0
end;

procedure . ( : );TMainForm ShowLogMsg Data PtrInt
begin
 MLog Lines Add FLogMsg. . ( );

end;

 <!DOCTYPE html>
<html>
<head>
<title>Tray icon demo</title>
<link rel="stylesheet" href="notyf.min.css">
<script src="notyf.min.js"></script>
<script src="app.js"></script>
</head>
<body>
<h1>Tray icon.</h1>
<p>The following buttons set the visibility of 
the tray icon: </p>
<button 
onclick="makeVisible()">Visible</button>
<button 
onclick="makeInVisible()">Invisible</button>
<p>Enter a caption and click the button to add 
an entry to the tray menu:</p>
<input type="text" id="myCaption" value="">
<button onclick="addMenuItem()">Add menu 
item</button><br>
<input type="text" id="myRemoveId" value="">
<button onclick="removeMenuItem()">Remove menu 
item</button>
<p>After adding a menu item, you can right-
click on the menu item,
and the callback will be executed.</p>
<p>Click count: <span id="count">0</span>,
last ID: <span id="lastid">?</span></p>
</body>

} USING THE API IN JAVASCRIPT

var
 aCount = 0;
 notyf = new Notyf({position: {x:"center",y:"top"}});

function doLog(msg) {
 console.log(msg);
 notyf.success(msg);
}

function makeVisible() {
 window.trayIcon.visible=true;
 doLog('TrayIcon: '+window.trayIcon.visible);
}

function trayIconClicked(aID) {
 aCount=aCount+1;
 doLog("Menu item "+aID+" Clicked!");
 document.getElementById("count").innerText=aCount;
 document.getElementById("lastid").innerText=aID;
}

function makeInVisible() {
 window.trayIcon.visible=false;
 doLog('TrayIcon : '+window.trayIcon.visible);
} 

Continuation code next page¢

Implementing APIs for Chromium 

61



Lazarus: Webform inside Lazarus                      Page  13/15

Blaise Pascal Magazine 94/95  2021

The  messages will end up in our  console.log

memo, and the results of calls will be
shown with a Notyf sucesss toast as well.
The result of all this work can be admired in 
the screenshot in figure 2 on page 13.

function addMenuItem() {
var aCaption = document.getElementById("myCaption").value;
var aID = 
window.trayIcon.addMenuItem(aCaption,trayIconClicked);
doLog("Menu item with ID "+aID+" Created!");
}

function removeMenuItem() {
var aID = document.getElementById("myRemoveId").value;
window.trayIcon.removeMenuItem(parseInt(aID,10));
doLog("Menu item with ID "+aID+" Created!");
}

Implementing APIs for Chromium 

62



Lazarus: Webform inside Lazarus                      Page  14/15

Blaise Pascal Magazine 94/95  2021

<!DOCTYPE html>
<html>
<head>
<title>Tray icon demo</title>
<link rel="stylesheet" href="notyf.min.css">
<script src="notyf.min.js"></script>
<script src="trayicon.js"></script>
</head>
<body>
<h1>Tray icon.</h1>

<p>The following buttons set the visibility of the tray icon: </p>
<button id="btnVisible">Visible</button>
<button id="btnInvisible">Invisible</button>

<p>Enter a caption and click the button to add an entry to the tray 
menu:</p>
<input type="text" id="myCaption" value="">
<button id="btnAddMenuItem">Add menu item</button><br>
<input type="text" id="myRemoveId" value="">
<button id="btnRemoveMenuItem">Remove menu item</button>
<p>After adding a menu item, you can right-click on the
menu item, and the callback will be executed.</p>
<p>Click count: <span id="count">0</span>,
last ID: <span id="lastid">?</span></p>

<script>
 rtl.run();
</script>

To be able to use the tray icon in pas2js, we 
must declare an external class: this allows the
compiler to check the validity of the code. 
As a side effect, the Lazarus code completion
will also work.
The definition is as follows:

Type
 TClickHandler aID Integer =    (  : );reference to procedure

 TTrayIcon TJSObject =    ' ' ( )class external name Object
 visible boolean : ;

 function string (  : ;addMenuItem aCaption
      aHandler TClickHandler integer : ) : ;

 procedure ( : );removeMenuItem aID Integer
end;

Var
 trayIcon TTrayIcon window trayIcon : ;   ' . ';external name

With this declaration, the compiler knows that 
there is a  class, and that there isTTrayIcon

an instance in window.trayIcon.
Something similar must be made for the Notyf 
class, this is done in the unit libnotyf.
This unit is now part of pas2js.
The procedure can now be written as:DoLog 

var
 notyf TJSNotyf : ;

procedure string (  : );DoLog Msg
begin
 console log msg. ( );

 notyf success msg. ( );

end;

The instance of  is notyf

create in the program main 
code block. We must also 
attach an handler to onclick 

the buttons in our HTML, 
because the HTML cannot 
refer to the pas2js methods. 
For this reason we had to give 
an id to each button in the 
HTML.
Attaching the onClick 
handler is also done in the 
program initialization code:

~ USING PAS2JS
Obviously, we would prefer to make the 
Javascript program as a Pascal program. This
is also possible. We need to change the HTML 
a little bit for this: we must remove the
onclick attributes in the button tags and we 
must make sure all buttons have an ID, so we
can attach an onclick handler in code. Like all 
pas2js programs, we must call rtl.run()
in the HTML file.
The result of such changes is the following 
HTML:

begin
 opts TJSNotyfOptions new:= . ;

 opts position TJSNotyfPosition New. := . ;

 opts position x center. . :=' ';

 opts position y top. . :=' ';

 notyf TJSNotyf new opts:= . ( );

 AddClick btnVisible DoVisibleClick(' ',@ );

 AddClick btnInvisible DoInVisibleClick(' ',@ );

 AddClick btnAddMenuItem DoAddMenuItem(' ',@ );

 AddClick btnRemoveMenuItem DoRemoveMenuItem(' ',@ );

end.

As you can see, the creation of the notyf 

instance is done using pascal classes only: the 

compiler will check your code and guarantees 

a correctly constructed instance. Notyf 

The  routine is a small helper routine AddClick

which makes the adding of the onclick handler 

a little more readable. The code of this routine 

is quite simple:

Implementing APIs for Chromium 

63



Lazarus: Webform inside Lazarus                      Page  15/15

Blaise Pascal Magazine 94/95  2021

Procedure string ( : ;  : );AddClick aName aHandler TJSRawEventHandler
Var  : ;El TJSHTMLElement
begin
 El TJSHTMLElement document getElementById aName:= ( . ( ));

 El AddEventListener click aHandler. (' ', );

end;

The event handlers to make the tray icon visible 
or invisible are very simple:

Procedure ( : );DoVisibleClick aEvent TJSEvent
begin
 trayIcon visible true. := ;

 doLog TrayIcon BoolToStr trayIcon visible(' : '+ ( . ));

end;

Procedure ( : );DoInVisibleClick aEvent TJSEvent
begin
 trayIcon visible false. := ;

 doLog TrayIcon BoolToStr trayIcon visible(' : '+ ( . ));

end;

Again, the compiler will check your code.
The code to add and remove a menu item are 
equally short. For readability, the code to get
the value of an input element has been split out 
to a function:getValue 

function String string (  : ) : ;getValue aID
var
 EL TJSElement : ;

begin
 El document getElementById aID:= . ( );

 Result JSHTMLInputElement el Value:= ( ). ;

end;

procedure (  : );DoAddMenuItem aEvent TJSEvent
Var
 aCaption : ;String
  : ;aID Integer
begin
 aCaption getValue myCaption:= (' ');

 aID trayIcon addMenuItem aCaption trayIconClicked:= . ( ,@ );

 DoLog Menu item ID IntToStr aID Created('     '+ ( )+' !');with
end;

procedure (  : );DoRemoveMenuItem aEvent TJSEvent
var
 aID Integer : ;

begin
 aID StrToIntDef GetValue myRemoveId:= ( (' '),- );1
 if then <>-  aID 1
 trayIcon removeMenuItem aID. ( );

 DoLog Menu item ID IntToStr aID removed('     '+ ( )+' !');with
end;

The main difference of this code with the 
Corresponding Javascript code is that it is 
typesafe. The last routine is the handler onclick 

of the menu item, which we called 
trayIconClicked:

procedure (  : );trayIconClicked aID integer
begin
 aCount aCount:= + ;1
 doLog Menu item IntToStr aID Clicked('   '+ ( )+' !');

 TJSHTMLElement Document getElementById( .

      (' ')). := ( );count innerText IntToStr aCount
 TJSHTMLElement document getElementById( .

      (' ')). := ( );lastid innerText IntToStr aID
end;

And that’s all there is to it. The code is a little 
more verbose than the Javascript code, but
it is type-safe and the compiler has verified that 
all your code is syntactically correct, and
that the functions have the correct signatures 
and get the correct amount of parameters.
The resulting program will of course behave 
exactly the same as the Javascript version.

     CONCLUSION
To add objects to a Javascript environment in 
CEF is possible, and opens a lot of possibilities 
for interacting with the OS. It allows you to 
create an Electron-like environment - much as 
the ‘Miletus’ product from TMS Software does. 
The mechanisms are a little cumbersome, but it 
should be possible to reduce the amount of 
needed code by making clever use of RTTI: 
leveraging (extended) RTTI, it should be possible 
to directly expose a Pascal class in the Javascript 
environment, without having to write all this glue 
code. This we will investigate in a future 
contribution.

Implementing APIs for Chromium 

64



By DetlefOverbeek & Coding Mattias Gärtner
Lazarus: New free TMS Webcore for Lazarus        

Blaise Pascal Magazine 94/95  2021

expertstarter

ANNOUNCEMENT:
new free TMS Webcore for Lazarus
which means you can freely try but do not have the sourcecode available of the components.

I have created a very small project to test on all versions of Lazarus: Mac, Linux and Windows. 
So because of this I can tell you the macOS version has been tested with the newest macOS Big Sur, 
Lazarus 2.012.
The Linux version is Mint, Lazarus 2.012 and works fine like the Windows 10 Version. 
So now you have the ability to test Webcore from TMS as much as you want. Play with it!
You can download it from your site: 
https://www.blaisepascalmagazine.eu/your-downloads/

The project is available there as well. 
You need to get a FREE Registration Key from TMS:
https://www.tmssoftware.com/site/trialkey.asp

procedure . ( : );TForm1 WebButton1Click Sender TObject
begin
    . := ;WebLabel1 Caption 'Welcome to your first Blaise Pascal Magazine and TMS Web-app'

end;

end.     



Fast Reports
By Detlef Overbeek 

Page 1 / 20

Blaise Pascal Magazine 94/95  2021

BASIC WIZARDS 
FOR BUILDING REPORTS
INTRODUCTION
In this second part I will explain the use of a 
database, SQL and reporting. The programs 
used for these examples can be obtained from 
your downloadpage(after logging in).

To start with this project you first need to start 
your Delphi version and the installed version of 
FastReport completed. After starting you will 
see at the right hand an overview of the 
possible databases. We  chose to use (see the 
Data Explorer) and then DBDemos, which is an 
Access Database from Microsoft. As soon you 
have made the correct settings you will be able 
to view the Tables. So simply follow the 
settings on the next pages we have prepared 
for you. The necessary settings are 
circumcised in red.

Figure 1: The DataExplorer

We have used as you can see in the Data 
Explorer (which is devided in two different 
segments: and FireDAC dbExpress)

I use Firedac because I think this version is the 
best.
Please choose:
1. Microsoft Access Database
2. Choose DBDEMOS and make sure that you 
can see in the list of tables and the fields.
The DBDEMOS database is included in the 
project. So the path to it is the same as your 
project.
There are all kinds of drivers, but don’t get 
confused, we do not need that. So far the 
settings inside Delphi for the DBDDEMOS.

66



Blaise Pascal Magazine 94/95  2021

xwu v

We have created an overview of all the 
different settings made inside Delphi:
the components
1: The frxReport
2: The FDConnection
3: The FDTable
4: The frxDBDataset1
As a result you can see the Report Editor and 
the Project form with components.

u v

Fast Reports
By Detlef Overbeek 

Page 2 / 20

Figure 4: 
The FDConnection has 3 important settings 
that need to be made

Figure 3: The settings fore the frxReport

Figure 2: The DataExplorer

67



Blaise Pascal Magazine 94/95  2021

w xx

Fast Reports
By Detlef Overbeek 

Page 3 / 20

Figure 5: 
The FDTable settings, especially CustNo and Table name

Figure 6: The frxDBDataset

Figure 7: The Structure overview shows what is available

68



Blaise Pascal Magazine 94/95  2021

Fast Reports
By Detlef Overbeek 

Page 4 / 20

Figure 7: The frxReport  can be edited:

Figure 8: You can use the  Explorer (in windows)

Figure 9: The Report Designer

Right click and edit. If you choose to 
simply open you can later use the the 
opening of the wizard. See page 6.

69



Blaise Pascal Magazine 94/95  2021

Fast Reports
By Detlef Overbeek 

Page 5 / 20

If you right click on you can start a File¢New 

new report or you can choose one, 
as we did here. 
There is of course the option to open a report:
Choose the report called task2_1.fr3.

You will instantly get all the right settings for 
the project. The other reports should not yet 
be tried.
Within the  you now can go to:Report Editor

¢  ¢File New ... 

A Wizard will appear.
We are going to through all these options.

Figure 10 - Start window

70



Blaise Pascal Magazine 94/95  2021

To make it easier for users to work in the 
Report Designer, it has been provided with 
helpers - masters. Such wizards allow you to 
specify the main parameters of the report, 
which will form a ready-made template.

Wizards can be distinguished by their intended 
purpose (See figure 11):
—  The masters of the new report;
—  Wizard for the new database connection;
—  Master of the new table;
—  The master of the new inquiry.

The  and "Blank Standard Report" "Blank 

Matrix Report" wizards generate a blank report 
(for standard or matrix printers - you can 
read about the matrix reports in the next 
chapter), which contains one page.

The Wizards  and "Standard Report Wizard"

"Matrix Report Wizard" allow you to select the 
list of fields to be displayed in the report, 
grouping and method of placing the fields in 
the report. 
Let's consider creating a report using the 
"Standard Report Wizard" in more detail.

Select the menu  in the opened "File | New ...",

window - item . "Standard Report Wizard"

We will see the window of the report wizard:

For the help in drawing up of inquiries to a 
database there is a special constructor of 
inquiries about which we will speak a little 
later.

MASTER OF NEW REPORT
The master of the new report is divided 
into four:
u The master of the standard report;
v Matrix report master;
w It's a blank standard report;
x Empty matrix report.

Figure 11 - Wizards

Fast Reports
By Detlef Overbeek 

Page 6 / 20

71



Blaise Pascal Magazine 94/95  2021

As you can see, the window has several 
bookmarks. On the first tab, we need to select 
the data source on which the report will be 
built. To do this, first select the desired 
database connection. Select the data source - 
table and click the button."Next >>" 

On the next tab (Figure 13) you need to select 
the fields from the tables that you want to 
show in the report:

Figure 12 - Standard Report Wizard

The list on the left shows the available fields, 
while the list on the right shows the selected 
ones. You can move fields from one list to 
another using the "Add", “Add all", "Delete all" 
buttons. Using the buttons of fields you £¤      
can change places. 
Let's add Company, Contact, Phone, FAX fields 
      to the list of selected fields 
      and press the "  "Next >>

      button at the bottom 
      of the figure 13.

   

Figure 13: 
Selection of table fields to be displayed in the report

Fast Reports
By Detlef Overbeek 

Page 7 / 20

72



Blaise Pascal Magazine 94/95  2021

Figure 14 - Selecting groups

Figure 15- Page settings

On the next tab (Figure 14) you can add a 
grouping of one or more selected fields to the 
report. Bands Group header, Group footer will 
be added to the report.
You can skip this step - click "Next >>".

On the next tab (Figure 15) you can choose the 
orientation of the report page and the way the 
fields are placed on it:

Fast Reports
By Detlef Overbeek 

Page 8 / 20

73



Blaise Pascal Magazine 94/95  2021

You can choose the style of placement of the 
fields - tabular when the fields are located 
from left to right, or column when the fields 
are located under each other. When you select 
the field placement, the report image on the 
right side is redrawn. The "Fit all fields by 
width" option selects the width of the selected 
fields so that all fields fit on the page.

Finally, on the last tab (Figure 16), we can 
choose the report style - the color palette of 
the various report elements.

Figure 16 - Selection of report color palette

To finish the standard report wizard, click the 
"Done" button. After that the wizard will create 
the following report:

Figure 17 - Example of a report created using the wizard

Fast Reports
By Detlef Overbeek 

Page 9 / 20

74



Blaise Pascal Magazine 94/95  2021

You can view the report immediately in the 
preview window. Thus, using the wizard, we 
create a complete report that displays data 
from the database. For a novice user this 
feature will be very useful and will save time 
required for detailed familiarization with the 
Designer. Of course, you need to be able to 
build reports manually as well, but thanks to 
the wizard, you can simplify the process of 
learning the Designer.

NEW CONNECTION WIZARD
The  allows you to add New Connection Wizard

a new connection to the database to an 
already existing report. This may be necessary 
if you want to display data from two or more 
databases in the report. The wizard adds a 
component such as an  database to the ADO

report. In Figure 18, you can see the Database 

Connection Wizard window.

First, you need to select the type of connection. 
By default, is selected,  but and ADO BDX DBE 

are also available. 
Then, create a , and the connection string

standard Windows window will open, where 
you can select the connection type and its 
parameters (Figure 19). After that, set a 
username and password, if necessary.

Fast Reports
By Detlef Overbeek 

Page 10 / 20

Figure 19 - The ADO Database Chosen

Figure 20 - The dropdown menu

Figure 18 - New Connection Wizard

75



Blaise Pascal Magazine 94/95  2021

Fast Reports
By Detlef Overbeek 

MASTER OF THE NEW TABLE
This wizard (Figure 24) allows you to add a new 
data source - a table - to an already existing 
report.

Figure 24 - Master of the new table

Note: You can also create a new connection by 
switching to the tab and adding the "Data" 

"ADO Database" component to the report.

Figure 21 - Standard Windows window for connecting 
the database

Figure 22 - Entering the path

Figure 23 
Add a new database by dropping the component

Page 11 / 20

76



Blaise Pascal Magazine 94/95  2021

Fast Reports
By Detlef Overbeek 

In the wizard window you should select the 
table name. You can also specify a condition for 
filtering the table records, for example:

Note: You can also create a new table by 
switching to the tab and adding the "Data" 

"ADO Table" component to the report.

NEW QUERY WIZARD
The New Query Wizard (Figure 21) allows you 
to add a new data source to an existing report - 
an SQL query.

(CustNo > 2000) and (CustNo < 3000)

Figure 26 - Master of the new table

Figure 26  Choose Customer

Figure 27 - New Query wizard

You can also use the visual query constructor 
by pressing the      icon.
The visual constructor will be described further 
in this chapter.

Note: You can also create a new query by 
switching to the "Data" tab and adding the 
"ADO query" component to the report.

Page 12 / 20

Figure 28: In the wizard window you should enter 
the SQL query text.

77



Blaise Pascal Magazine 94/95  2021

Fast Reports
By Detlef Overbeek 

Page 13 / 20

Figure 29: Click on the Query Builder Icon Figure 30: An Example

Figure 31: The Query Designer pops up

78



Blaise Pascal Magazine 94/95  2021

QUERY BUILDER DESIGNER
FastReport VCL (Professional, Enterprise 
versions) include a visual query builder. 
(FastQueryBuilder is used for this purpose and 
is also available as a separate product for use 
in your applications). The Query Builder is 
designed to build a query text in SQL using 
visual tools. Figure 32 shows the appearance 
of the constructor.

Fast Reports
By Detlef Overbeek 

Page 14 / 20

The numbers on the picture are marked:
u toolbar, 
v designer working field,
w list of available tables,
x parameters of selected table fields

Figure 32 - Visual query builder.

As you can see by the figure, the visual 
constructor is divided into 3 zones: on the 
right - the list of tables, in the center - the 
working area, at the bottom - the window of 
table parameters.

u

v

w

x

79



Blaise Pascal Magazine 94/95  2021

The toolbar is represented by the following 
elements:
-  Open a SQL file
-  Save the request to a file 
 (the request scheme is also saved in a file)
-  Designer workspace cleansing
-  Button Okay. 
  Exit the designer with saving.
-  Cancel button. 
  Exit the designer without saving

Fast Reports
By Detlef Overbeek 

Page 15 / 20

The constructor working field and the list of 
available tables support Drag&Drop 
technology, i.e. to place a table in the working 
area it is enough to move it there with the 
mouse. Another option is to double-click the 
table name in the list of available tables.

Let's look at the table in more detail. The table 
window contains all its fields.
You can mark the necessary fields to include 
them in the query (Figure 33).

Figure 33 - Table window

The marked fields will appear in the parameter 
window:

Figure 34 - Table parameter window. 
See explanation below.

The following options are available for editing:
u Visibility - determines whether a field falls
 into the structure select
v Where is the condition for selecting a field.
  For example '> 5'.
w Sort - determines the sorting by field.
x Function - determines the function
 applicable to the field
y Group - grouping by field. 

yxwvuColumn

80



Blaise Pascal Magazine 94/95  2021

Fast Reports
By Detlef Overbeek 

Page 16 / 20

When a connection is created, the compatibility 
of the field types is checked. You cannot create 
a connection between incompatible fields. 

To set up the communication settings, click on 
the communication line and select Link options.
See figure 35.
The communication parameter window will 
appear (Figure 36):

Figure 35: Select the communication line

Figure 36: Link Options

81



Blaise Pascal Magazine 94/95  2021

VISUAL QUERY DESIGN (example)
Click the "New report" button on the designer 
toolbar. This will create a report page with the 
"Report title", "Level 1 data" and "Page Footer 
legends.

Put the "ADO Query” component on the "Data" 
page. Double-click on the component and you 
will see the request editor window.

Click the button in the editor and you will see 
the query constructor window. Select the 
Customer table in the left part of the window 
and move it to the working field (you can also 
double-click to move the table). Tick the 
CustNo, Company, Phone checkboxes:

Figure 38 - The SQL Editor

Fast Reports
By Detlef Overbeek 

Page 17 / 20

Figure 37 - Create a new report

82



Blaise Pascal Magazine 94/95  2021

Fast Reports
By Detlef Overbeek 

Page 18 / 20

This is all that is needed to build a query. 
You can view the text of a query on the SQL 
tab, and on the Result tab you can see the data 
that the query returned. Click the button 
to close the constructor. In doing so, we will 
return to the window of the query editor, 
which now displays the generated query text:

Warning! If you fix the text of the query, you 
will lose the scheme (placement of tables in 
the query constructor and links between 
them). If you do not modify the query text 
manually, you can always go to the query 
constructor and correct the scheme visually.

By clicking OK in the editor, we 
will return to the report designer. 
All we have to do is connect the 
"Level 1 Data" band to the data 
source and place the fields on 
the band.

Figure 39: Visual design of the query

Figure 40: simple SQL

83



Blaise Pascal Magazine 94/95  2021

Figure 41: Designing a query with two tables

Drag and drop two tables on the working field - 
Customers and Orders. Both tables have the 
CustNo field, by which we should link them. 
By dragging and dropping the CustNo field 
from one table to another, we create a link 
between the tables (See Figure xx below):

Now you need to select the fields that should 
include the query and group it by the CustNo 
field. To do so, tick the "*" field in both tables 
and the CustNo field in the Customer table. 
The fields we have selected will appear at the 
bottom of the window, after which you should 
select the sorting for the CustNo field:

Fast Reports
By Detlef Overbeek 

Page 19 / 20

BUILDING A COMPLEX QUERY
In the previous example, we built a report 
based on data from a single table.
Consider building a query that includes data 
from two tables.

We need to make a query in SQL language, 
which will return data from both tables, 
grouped according to a certain condition. In 
our case, the condition is that the CustNo 
fields in both tables match.

Like in the previous example, we create a new 
report and place the "ADO request" 
component on the page. In the query editor 
click the button to start the query constructor.

84



Blaise Pascal Magazine 94/95  2021

All right, the SQL is Finalized now.
Its text looks like this:

Figure 43: - Request to database

Fast Reports
By Detlef Overbeek 

Page 20 / 20

Figure 42:  Editing the table parameters

85



https://www.barnsten.com/promotions/

Blaise Pascal Magazine 94/95  2021

Delphi 10.4 Sydney Professional
Delphi €1.699,00 

Special offer €1.444,00

86



        
CODE SNIPPETS Part 11 Printing With Delphi        Page 1/8

INTRODUCTION:
In the last issue (93) I have shown how to print in 
Lazarus. As promised here comes a Delphi version. 
I searched of course for examples. And I found 
one that almost met my requirements: 
http://delphiprogrammingdiary.blogspot.com/
2019/03/customized-printing-in-delphi.html . 

The author is Jitendra Gouda.
I reconstructed his code to applications and of 
course added some parts extra. If you study this, 
you will understand how the printing mechanism 
works. To make it more interesting I added a 
complete Library of Glyphs. As a subscriber you 
can obtain that from your downloadpage 
https://www.blaisepascalmagazine.eu/

your-downloads/. (First log in).
With this show-model you can print text, you can 
use a RichEditMemo and a ListView to make a 
report. It’s not easy but very helpful to understand 
how to print. 
In a separate article I’ll show a RichEdit from TMS 
that can print in a way you never dreamed of, but 
that's commercial. I here pay extra attention 
towards built in components in Delphi. Except for 
the Glyph Library nothing special. And they are for 
free, like the editor for creating and/or altering 
them: XNResources. This was explained and 
shown some issues ago: Nr. 71 and even before 
(29)- unless you would go back to Delphi 7,which 
includes the “Image Editor“.
I’ll again describe what you need to do to make 
your BitButton or SpeedButton work with small 
images.

Figure 2: Printing with selection, page range ability and
Printerselection - some extra settings must be made.

Figure 1: Starting

Figure 3: easy overview of what you 
can achieve, choose from a list of printers,
set the size and orientation.
In this article is shown:
The use of 
— PrinterDialogs 
 (See Above Figure 2 and 3) 
 – and special settings
— OpenTextFile- and  
— OpenPictureDialog in
 combination
 (See Above Figure 2 and 3) 
— RichEditMemo 
(See Above Figure 2 and 3) 
 – coloring the text
— Memo adding text from file
— Listview – preparing for use   
 of columns, adding text

Blaise Pascal Magazine 94/95  2021

By Detlef Overbeek, code used from Jitendra Gouda
expertstarter

87



        
CODE SNIPPETS Part 10 Printing With Delphi        Page 2/8

Properties of the specific printer

The “PrintRange” is set to “All”

For printing the same document more
then once

Selection means you can choose which 
specific page you want to be printed

Figure 6: The list of specific printers

Figure 5: The available  possibilities 
- if not pre-set are not possible to enable during runtime 

Figure 4: The  optional settings for enabling the printer items 

Pages from Fill out the beginning 
and ending page

Blaise Pascal Magazine 94/95  2021

MaxPage should not be set
if you want to be able to print
the complete document

poSelection needs to be set
if you want to be able to print 
a selection

poPageNums needs to be set
if you want to set the page 
numbers to be printed

These are items that need to
be set: you can not alter 
them during runtime. They 
appear but are not availble

88



        
CODE SNIPPETS Part 10 Printing With Delphi        Page 3/8

  ;unit U_Print_GUI
{ Credits:
  this is a remake of the examples made by Jitendra Gouda
  http://delphiprogrammingdiary.blogspot.com/2019/03/customized-printing-in-delphi.html
  His Blog : http://delphiprogrammingdiary.blogspot.com/

interface

uses
  . , . , . , . , . , . ,Winapi Windows Winapi Messages System SysUtils System Variants System Classes Vcl Graphics
  . , . , . , . , . , . , ,Vcl Controls Vcl Forms Vcl Dialogs Vcl StdCtrls Vcl Buttons Vcl ComCtrls Printers
  . , . , . , . ,Vcl ExtDlgs Vcl ExtCtrls System ImageList Vcl ImgList
  . , . ;Vcl BaseImageCollection Vcl ImageCollection

Blaise Pascal Magazine 94/95  2021

Figure 7: The needed components

Figure 8: Add Printers to the use clause

Figure 9: Add Printing the RichEditMemo

STARTING
We begin a new VCL application and now need 
to add some components: The  Printdialog,
Printersetupdialog, OpenTxtFileDialog 
and open  (see figure 4 ).PictureDialog.

You need to add the  to the Printers Unit

uses-clause, otherwise you will get error 
messages - (See Figure 5).
The complete code of this project is also 
available in your downloads list. Some parts 
are shown here so you can get an impression 
of what it looks like. On the first page of this 
article there are shown two direct elements of 
the printing topic: If you right click on the 
dropped -component you will PrintDialog 

be able to select: TestDialog. 

Imediately starts a wizard as shown on page 1 
of this article figure 2. 
Now in the  you can see the Object Inspector

settings corresponding to the settings for 
printing you want to use or allow in your 
application.
You best test and switch to find out that some 
settings are interconnected. 
Some selections will even not only change,
but also exclude others. If the print range is 
“All” you exclude others: “Pages from” or  
“Selection”. To fully understand you absolutely 
should change these settings and try them – 
the only way to find out what you need or want 
and finally can implement in the application 
you have or are building.

procedure . ( : );TfrmPrint FormCreate Sender TObject
begin
  . ;RichEdit1 Clear
  . .  := ;RichEdit1 SelAttributes Color clBlue
  . .  := [ ];RichEdit1 SelAttributes Style fsBold
  .  := ;RichEdit1 SelText 'This is bold blue text.'

  . .  := ;RichEdit1 SelAttributes Color clRed
  . .  := [ ];RichEdit1 SelAttributes Style fsItalic
  .  := ;RichEdit1 SelText #32'This is italic red text'

end;

procedure . (TfrmPrint BitBtnPrintMemoClick
Sender TObject: );

var
  : ;  : ;rectPage Trect sText string
begin
   .  if thenPrintDialog1 Execute
  begin
     := (rectPage Rect
   0 0, , . , . );Printer PageWidth Printer PageHeight
      with doPrinter
      begin
        ;BeginDoc

         := . ;sText memo1 Text
        //setting font
        . .  := ;Canvas Font Name 'Verdana'

        . .  := ;Canvas Font Size 11
        . .  := ;Canvas Font Color clBlack
        //draws the text with wordbreak
        . ( , , Canvas TextRect rectPage sText
 [ ]);tfWordBreak
        ;EndDoc
      ;end

    ( );ShowMessage 'Printing has been finished.'

  ;end

89



        
CODE SNIPPETS Part 11 Printing With Delphi        Page 4/8

.

Blaise Pascal Magazine 94/95  2021

Load Names will enter 
the prepared text into the 
Listview (see Figure 12 page 6

 This button creates the final 
 report (see Figure 12 page 6)

if you use this button it will 
load the prepared  cities and 
countries 

Button that prints to the 
RichEditMemo that is 
colorized (see Figure 13 )

This button allows you to
print this “normal” Memo
(see Figure 14).

This is a Rich Edit Memo 
(see Figure 13).

Here you can add text to the 
memo by using a text file, 
searching for the file (see 
Figure 14).

An example of what sort of 
text you can use (see Figure  
15 ).

90



        
CODE SNIPPETS Part 10 Printing With Delphi        Page 5/8

Blaise Pascal Magazine 94/95  2021

ADDING TEXT
The dialogues are described by their 
functionality and are shown in the code of the 
project.
If you want to set the text you could RichMemo 

add this in the form create-procedure 
(illustrated in the app-overview on page 4 of 
the article. Please note the overlapping 
procedures are meant to explain certain ways 
of handling, they are only examples. So there 
are so many buttons  in the app (procedures)

simply having different sorts of coding for their 
events.

A worth knowing part is how to add text to the 
Listview Load names; three buttons help: “ ” 
(page 6), “  and “ ” Load City's Print the ListView

report. (see the code on page 8). Of course 
you can change the algorithm to a much 
shorter and better list like putting it all in arrays 
etc. but that is out of scope. 
In the list view component you can right-click 
and then the extra’s will pop up: choose the 
Columns Editor (see below). 
You than can add or remove Columns in the 
“Structure” - overview you find the example of 
the editor as well the settings you can make or 
alter. If you have a “Name” file give it a length 
value otherwise you might not see it.

Figure 10: the Columns Editor is used by the preparing for printig a report 

Figure 11: The details are shown...

91



        
CODE SNIPPETS Part 10 Printing With Delphi        Page 6/9

Blaise Pascal Magazine 94/95  2021

Figure 14: The settings for adding text to the memo 

Figure 13:  Print the RichEditMemo

The button Print Memo shows the 
settings you need for it.

procedure . ( : );TfrmPrint BitBtnLoadNamesClick Sender TObject
begin
    with dolistviewEmp
  begin
     .  with doItems Add
    begin
       := ;Caption '01'

      . ( );SubItems Add 'Mattias Gaertner'

    ;end
     .  with doItems Add
    begin
       := ;Caption '02'

      . ( );SubItems Add 'Michael van Canneyt'

    ;end
     .  with doItems Add
    begin
       := ;Caption '03'

      . ( );SubItems Add 'Martin Friebe'

    ;end
     .  with doItems Add
    begin
       := ;Caption '04'

      . ( );SubItems Add 'Detlef Overbeek'

    ;end
     .  with doItems Add
    begin
       := ;Caption '05'

      . ( );SubItems Add 'Rik Smit'

    ;end

....

     .  with doItems Add
    begin
       := ;Caption '09'

      . ( );SubItems Add 'Siegfried Zuhr'

    ;end
     .  with doItems Add
    begin
       := ;Caption '10'

      . ( );SubItems Add 'Danny Wind'

    ;end
  ;end
end;

Figure 12: Adding names to the ListView

procedure . ( : );TfrmPrint BitBtnRicheditClick Sender TObject
begin
   .  if thenPrintDialog1 Execute
  begin
    . ( );RichEdit1 Print 'Print Rich Edit Data'

    ( );ShowMessage 'Printing the RichEdit is done.'

  ;end
end;

procedure . ( : );TfrmPrint BitBtnPrintImageClick Sender TObject
var
  : ;rectPage TRect
  : ;image1 TBitmap
begin
   .  if thenPrintDialog1 Execute
  begin
     := ( , , . , . );rectPage Rect Printer PageWidth Printer PageHeight0 0
      with doPrinter

    begin
       .  if thenOpenPictureDialog1 Execute
      //start printing
      ;BeginDoc

       := . ;image1 TBitmap Create
      . ( . );image1 LoadFromFile OpenPictureDialog1 FileName
      . ( ( , , , ), );Canvas StretchDraw Rect image1500 1000 1500 2000
      . ;image1 Free
      //finish printing
      ;EndDoc
    ;end
    ( );ShowMessage 'Printing the image is done.'

  ;end
end;

procedure . ( : );TfrmPrint BitBtnAddTextClick Sender TObject
var
   : ;Encoding TEncoding
   : ;EncIndex Integer
   : ;Filename String
begin
   . ( . ) if thenOpenTextFileDialog1 Execute Self Handle
    begin
    //Selecting the file name and encoding
     := . ;Filename OpenTextFileDialog1 FileName

     := . ;EncIndex OpenTextFileDialog1 EncodingIndex
     := Encoding
    OpenTextFileDialog1 Encodings Objects EncIndex  . . [ ]  as
 Tencoding;

    //Checking if the file exists
     ( ) if thenFileExists Filename
      //Display the contents in a memo based on the selected 
encoding.
      . . ( , )Memo1 Lines LoadFromFile FileName Encoding
    else
       . ( );raise Exception Create 'File does not exist.'

    ;end
end;

92



        
CODE SNIPPETS Part 10 Printing With Delphi        Page 8/8

procedure . ( : );TfrmPrint BitBtnPrintClick Sender TObject
begin
   .  if thenPrintDialog1 Execute
  begin
    ( );ShowMessage 'Setup Printing is done.'

  ;end
end;

procedure . ( : );TfrmPrint BitBtnPrinterSetupClick Sender TObject
begin
   .  if thenPrinterSetupDialog1 Execute
  begin
    ( );ShowMessage 'The Printer SetUp is done.'

  ;end
end;

procedure . ( : );TfrmPrint BitBtnLines_ShapesClick Sender TObject
var
  : ;rectPage TRect
begin
   .  if thenPrintDialog1 Execute
  begin
     := ( , , . , . );rectPage Rect Printer PageWidth Printer PageHeight0 0
      with doPrinter
    begin
      //start printing
      ;BeginDoc
      . .  := ;Canvas Pen Width 3
      . .  := ;Canvas Pen Color clBlue
      . ( , );Canvas MoveTo 500 2200
      . ( . - , );Canvas LineTo rectPage Width 500 2200

      . .  := ;Canvas Brush Color clRed
      . ( , , , );Canvas Rectangle 1000 2500 2000 3500

      . .  := ;Canvas Brush Color clYellow
      . ( , , , );Canvas Ellipse 1000 3000 2000 4000

      //finish printing
      ;EndDoc
    ;end
  ;end
end;

//fill staff + authors member data//

Blaise Pascal Magazine 94/95  2021

Figure 16: An impression of the library of Glyphs
Figure 15: These Buttons print the text as 
you can see on page 

93



        
CODE SNIPPETS Part 10 Printing With Delphi        Page 2/5

Blaise Pascal Magazine 94/95  2021

There is more if you 
download them
from your personal 
Download Page

94



From our Technical advisor: Cartoons from Jerry King

Blaise Pascal Magazine 94/95  2021 95



Four Platforms
One develop environment

One Expertise

Vier platforms
Eén ontwikkelomgeving

Eén expertise



WEB SERVICE PART 3 - CLIENT
By Danny Wind

Page 1/14
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

The Delphi web service client we created in 
the previous article looked like this 

expertstarter

This series of articles is about writing your own web services server 
and client in Delphi. The approach of all articles is pragmatic. 

The first article introduced some of the concepts you need to know 
and shows you how to create and consume your own web service in 
Delphi with just the GET request. 

The second article showed you how to update the data in the web 
service and how to create in-memory storage for the web service. 

This third article shows you how to consume and use your web 
service from both Delphi clients on Windows and from a web page 
with JavaScript. 

It also adds error handling and tweaks some code on the web 
service which were left as teasers in the previous article.

The web service from the previous article is a functional web service 
that uses the HTTP commands GET, POST, PUT and DELETE to get, 
update, insert or delete items in a key value store. 
The key value store holds string keys and string values, and can be 
used to store JSON or other string based data. 
The REST endpoint we defined was 
http://localhost:8080/KeyValue

and we can GET or DELETE a value for a given key using parameters 
in the URL segment.
http://localhost:8080/KeyValue/0

Similarly we can POST (update existing) or PUT (insert or replace) 
data
http://localhost:8080/KeyValue/1/One

but remember that you need to send a POST or PUT HTTP 
command, which you can do with the REST debugger. 
Just opening the above link in a browser would send a GET HTTP 
command. 
The PUT and POST also allow for sending large or complex data 
within the body of the request instead of using the URL segment.

97



WEB SERVICE PART 3 - CLIENT
By Danny Wind

Page 2/14
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

expertstarter

and we will use this web service client as a 
starting point for our next steps to create a 
web service client with POST, PUT and 
DELETE which looks like this:

procedure . ( : );TFormMain ButtonPUTClick Sender TObject
var
  : ;lContentStream TStringStream
begin
  { Encode string stream as UTF8 }
   := . ( . . , . );lContentStream TStringStream Create MemoBody Lines Text TEncoding UTF8
  . ( , . );lContentStream Seek TSeekOrigin soBeginning0
  . ( . , , , );NetHTTPRequest Put EditURL Text lContentStream nil nil
end;

In this code we use the body of the request HTTP 

to send our data with the  NetHTTPRequest.Put.

We could also have added it as a URL segment 
parameter in the , but that would EditURL.Text

have more limitations, 

Open the previous Web Service Client

u Add a GridPanel under the GET button

 (you can move components around in the
 , left in the IDE)Structure Viewer

v Set the of the to Align ButtonGet None

 Anchors and the to empty

w Add three additional Buttons to this
 and rename them to GridPanel 
 ButtonPost,ButtonPut, ButtonDelete

x Temporarily set of Align MemoResponse 

 to and move it downNone 

y Add a Memo to the Form, place it between
 the  and the Edit and thenMemoResponse
 align Top

z Set of MemoResponse back to ClientAlign 

{ Add an event-handler on theOnClick 

  to add the code to or Button Put Insert 

  a value in the web serviceReplace

98



WEB SERVICE PART 3 - CLIENT Page 3/14
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

in size and in the supported or allowed 
characters. Because we use a stream, we also 
need to manually encode the text from the 
Memo into  which is the default for UTF-8

sending string data to a web service. 
This is also more efficient than the Windows 
default  encoding, resulting in an up to UTF-16

50% smaller content.

| Test if it works by running the web service
 server from the previous article. You can 
 also use the completed version of the web
 service server from this article

} Use the following URL to place a valuePUT 

 in key 1 and then use to retrieve it. GET 

 The result in the web service client should 
 look like this

~ how the carriage return - line feedsNotice 

 have also been stored in the  key value

 store and they result in multiple lines in the
 We should encode theseMemoResponse. 

 special characters to conform to JSON 

 standards to prevent other clients from 
 rejecting our malformed JSON

99



WEB SERVICE PART 3 - CLIENT Page 4/14
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

 To correctly store a string as a JSON string
 we need to add JSON string conversion for
 the control characters and enclose it in 
 quotation marks. We use the function 
 TJSONString.ToJSON(Options: 

 TJSONOutputOptions) to convert the 
 string into a JSON string. Modify the code 
 as follows

procedure . ( : );TFormMain ButtonPUTClick Sender TObject
var
  : ;lContentStream TStringStream
  : ;lJSONString TJSONString
begin
  { Encode string stream as UTF8 }
   := . ( . . );lJSONString TJSONString Create MemoBody Lines Text
   := . (lContentStream TStringStream Create
    . ([ . . ]),lJSONString ToJSON TJSONAncestor TJSONOutputOption EncodeBelow32
    . );TEncoding UTF8
  . ;lJSONString Free
  . ( , . );lContentStream Seek TSeekOrigin soBeginning0
  . ( . , , , );NetHTTPRequest Put EditURL Text lContentStream nil nil
end;

With this function the control ToJSON 

characters below  are encoded, U_001F (32)

where some of the special characters such as 
carriage return and line feed are changed to  \r

and . Note that I choose to use with \n ToJSON 

only  specified. I do not want EncodeBelow32

Unicode characters above 127 to be encoded 
to , where  is the hexadecimal  \uxxxx xxxx

value of the UTF-16 characters, as that 
would increase the length of our content. 
Especially since the latest 2017 ietc  
specification states that JSON interchange must 
support all UTF-8 characters and escaping 
normal UTF-8 characters is not necessary. 
         We also need to change a bit of code in 
the server, als the stored JSON string already 
has its own quotation characters. 
For the GET method we modify the code that 
returns the JSON array and remove the quotes. 
We assume that each stored value is valid JSON 
on its own.

IETF - The Internet Engineering Task Force  
specification of the JSON data interchange format 
states:
“All Unicode characters may be placed within the 
quotation marks, except for the characters that MUST 
be escaped: quotation mark, reverse solidus, and the 
control characters (U+0000 through U+001F).”
Bray, T., Ed., "The JavaScript Object Notation (JSON) 
Data Interchange Format", STD 90,
RFC 8259, DOI 10.17487/RFC8259, December 2017, 
<https://www.rfc-editor.org/info/rfc8259>.

100



WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

 . ( , );gKeyValueStore AddOrSetValue '0' '"Zero"'

{this was gKeyValueStore.AddOrSetValue('0', 'Zero');}

       Also change the test value for key 0

 This is not totally foolproof, as it assumes
 anyone pushing data into the key value 
 store adds valid but it's good JSON, 

 enough for our simple web service.

 If we now test the service by storing 
 the two lines we get this correct result in
 the browser

 .  :=  +  + Response Content lValue'{"result":[' ']}’

{ this was Response.Content := '{"result":["' + lValue + '"]}';}

 All looks OK, however if this looks strange 
 to you, remember that we return a JSON 
 array of values with one item (0) with the 
 value for key 1
 Back to the client

procedure . ( : );TFormMain ButtonPOSTClick Sender TObject
var
  : ;   : ;lContentStream TStringStream lJSONString TJSONString
begin
  { Encode string stream as UTF8 }
   := . ( . . );lJSONString TJSONString Create MemoBody Lines Text
   := . (lContentStream TStringStream Create
    . ([ . . ]),lJSONString ToJSON TJSONAncestor TJSONOutputOption EncodeBelow32
    . );TEncoding UTF8
  . ;lJSONString Free
  . ( , . );lContentStream Seek TSeekOrigin soBeginning0
  . ( . , , , );NetHTTPRequest Post EditURL Text lContentStream nil nil
end;

 The code is the same as the PUT, with one 
 additional condition that a POST to a 
 non-existent key will fail with an internal 
 error. Note that the web service server
 neatly translates such an  internal exception
 to a HTML page

 The following code implements the POST
 functionality

Page 5/14

101



WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

 {existing code}
procedure .  ...TWebModule1 WebModule1WebActionItemKeyValuePOSTAction
  ...

  .  := ;Response ContentType 'application/json; charset=UTF-8'

  [ ] := ;gKeyValueStore lKey lValue
  .  := ;Response Content '{"result":[]}'

   := ;Handled True

 and modify it to return a formatted JSON 

 error string if the key is not found in the key
 value store

 new code}
procedure .  ...TWebModule1 WebModule1WebActionItemKeyValuePOSTAction
  ...

  .  := ;Response ContentType 'application/json; charset=UTF-8'

   . ( ) if thengKeyValueStore ContainsKey lKey
  begin
    [ ] := ;gKeyValueStore lKey lValue
    .  := ;Response Content '{"result":["OK"]}'

  end
  else
  begin
    .  := ;Response Content '{"error":"Item not found"}'

  ;end
   := ;Handled True

 and instead of returning an empty  JSON

 array, we now also return one array item 
 with “OK”, making it easier to parse
 After this code change the result after a 
 click on POST with a non-existent key
 should look like this

 Instead of this page I’d like it toHTML 

 return a  errorJSON

 Open the web service server and find 
 the code that handles the in the POST 

  unitWeb Module

Page 6/14

102



WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

 We go back to the web service client 
 and we finish the client side code with 
 the DELETE

procedure . ( : );TFormMain ButtonDELETEClick Sender TObject
begin
  . ( . , , );NetHTTPRequest Delete EditURL Text nil nil
end;

 After which we have a fully functional web 
 services client

The web services client adds values as JSON 

strings, the web services server stores these 
as-is and when requested returns the  JSON

value as the first item in a array.JSON 

Maybe at this point you are wondering why we 
use a array to return just one item. JSON 

That is because using an array is a flexible way 
of returning items with We can use the JSON. 

JSON iterator in a later article to parse for 
multiple items, for instance if we request the 
entire list, or if we want to return additional 
items that describe the content of the value for 
each key. We could put a value in the key value 
store that is actually a encoded binary BSON 

file with a descriptor that holds the file type 
and return the descriptor, which could be a 
MIME type, as an item as well.

On the subject of types, there is a small MIME 

improvement you could make to the header 
that is sent out by the server. It is currently just 
a manual string

 .  := ;Response ContentType 'application/json; charset=UTF-8'

but you could change it to
 .  :=   + . . ;Response ContentType TEncoding UTF8 MIMEName'application/json; charset='

Page 7/14

103



WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

This would result in almost the same string, 

but  would now be written in lower case.UTF-8

 'application/json; charset=utf-8'

Although using upper case is allowed, as the 
charset specification is case-insensitive, the 
default should be in lower case. I just made this 
mistake when typing the article, as in normal text 
I tend to use . UTF-8

Using instead TEncoding.UTF8.MIMEName 

makes sure I don’t  repeat that same mistake.

Another thing I forgot to mention was setting the 
TNetHTTPRequest Asynchronous property to 
True (default is False) in the web services client. 
The code also works in synchronous mode, but it 
is meant to be used asynchronously.

We also have some other things to do that we 
didn’t get around to in the previous article. Let’s 
revisit some code on the server side.

In our previous article we declared and created a 
global lock variable, but we did not actually use 
it. If you have Show Error Insight levels set to 
“Everything” Tools-Options Delphi under  in 
10.4.2 you’ll get a visual indication the code is 
incomplete if you open the unitWebModule 

We will add this code soon, but first we dig 
into the reason why we need to add a global 
lock. 
You may recall that a Web Broker application 
only has one WebModule class variable as you 
can see in the interface section of the 
WebModule unit

  var
  :  = ;WebModuleClass TComponentClass TWebModule1

However for each request a new WebModule 
instance of this WebModuleClass type may be 
instantiated and each incoming request is 
handled in its own thread. 

Page 8/14

104



WEB SERVICE PART 3 - CLIENT Page 9/14
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

Instantiation of  is handled by the WebModules

WebRequestHandler. WebModule instances 
(of the ) are kept in a pool in WebModuleClass

the handler, if one instance is available the 
WebRequestHandler will use that one, if not a 
new one will be created.
Threading is handled by the Indy Server. HTTP 

By default the handles each IdHTTPServer 

request by creating its own new thread. If we 
would create the web service server as ISAPI 
or Apache the threading would be handled 
there.

For us knowing that we have  multiple 
instances of used from multiple WebModules 

threads at the same time, means we will need 
to serialize access to our one global in-memory 
Key Value store to make it thread safe. This is 
where we will use the global lock variable 
gLock as a companion lock object for the 
TDictionary Tmonitor.in combination with 

TMonitor is an excellent choice for locking in 
multi-threaded applications. Internally 
TMonitor first uses spin waits before actually 
locking, which reduces context switching. 
The lock flag is also built into each class in 
Delphi through the base class. TObject 

When locking an object it's good practice to 
use a companion instance, instead of TObject 

just locking the class directly. 
This is because for some classes in the Delphi 

RTL TMonitor is also used in its internal code. 
Using on such a class could lead to TMonitor 

deadlocks. Instead just declare a new TObject 
variable, as we do in our code with gLock, to 
lock access to the key value TDictionary.

 In each of the methods that access the 
  store we add a lock by Key Value

 surrounding it with and TMonitor.Enter 

 For the  web action item Exit. GET

 handler the new code looks like this

105



WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

Response ContentType.  :=

   + . . ;'application/json; charset=' TEncoding UTF8 MIMEName
if then . ( , ) TMonitor Enter gLock 500
begin
  try
    . ( , );gKeyValueStore TryGetValue lKey lValue
  finally
    . ( );TMonitor Exit gLock
  ;end
end;

if not then ( . ) lValue IsEmpty
begin
  // {"result":[JSONValue]}
  .  :=  +  + Response Content lValue'{"result":[' ']}'

end
else
begin
  // {"error":"Item not found"}
  .  := ;Response Content '{"error":"Item not found"}'

end;

Handled True := ;

Response ContentType TEncoding UTF8 MIMEName.  :=  + . . ;'application/json; charset='

if then . ( , ) TMonitor Enter gLock 500
begin
    try
    . ( );  gKeyValueStore Remove lKey
    finally
    . ( );  TMonitor Exit gLock
  ; end
end;

 and the web action handlerPUT 

The  has a timeout  TMonitor.Enter

parameter, if the lock is not acquired within 
500 milliseconds it will return  and the False

TryGetValue will not be executed. 
Usually the lock will be acquired within < 1 
ms, but if the store is busy from Key Value 

multiple threads it may take longer and we do 
not want to wait indefinitely. Instead getting 
value will then fail and return a  error with JSON

Item not found. Alternatively you could also 
handle this with error codes as some HTTP 

web services do.

 We add similar code for the webDELETE 

 action item handler.

Response ContentType.  :=

   + . . ;'application/json; charset=' TEncoding UTF8 MIMEName
if then . ( , ) TMonitor Enter gLock 500
begin
   try
       . ( , ); gKeyValueStore AddOrSetValue lKey lValue
   finally
    . ( );  TMonitor Exit gLock
  ; end
end;

Page 10/14

106



WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

and the POST web action item handler

Response ContentType.  :=

   + . . ;'application/json; charset=' TEncoding UTF8 MIMEName
if then . ( , ) TMonitor Enter gLock 500
begin
  try
     . ( ) if thengKeyValueStore ContainsKey lKey
    begin
      [ ] := ;gKeyValueStore lKey lValue
      .  := ;Response Content '{"result":["OK"]}'

    end
    else
    begin
      .  := ;Response Content '{"error":"Item not found"}'

    ;end
  finally
    . ( );TMonitor Exit gLock
  ;end
end;

Handled True := ;

 After which we have a fully functional web
 services server

This web services server does have some 
limitations. Because it is using a globally 
locked key value store its performance will 
suffer as we get more simultaneous users. If 
they mostly just data the penalty for GET 

global locking is low as getting data out of a 
dictionary based key value store is a O(1) 
operation. It is very quick. However inserting 
(PUT) (DELETE) or deleting data from the 
key value store is somewhat slow as it needs 
to (re)calculate hash values. If you have many 
concurrent users that also write a lot I would 
not use this setup, but instead just use a fast 
database backend. Using a database backend 
has the added benefit of persistence. 
The current key value store holds values in 
memory, after a reset of the web service the 
data is gone. For simple web services that 
need this type of transient storage this 
approach works fine.

It's time to have some fun with our web 
services server. Let’s add some  to JavaScript

the mix.

In a previous article I wrote that a web 
service is not that much different from 
serving web pages from a web server. 
In fact you can add web page producers 
to the web service server we just wrote 
and have it return a page. HTML 

We have already seen that when it returned an 
internal exception as a page. HTML 

Page 11/14

107



WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

 In the handler we respond with a piece of 
 with codeHTML JavaScript 

<html>
<head><title>Call Number with JavaScript</title></head>
<body>Call Number with JavaScript 
<button onclick="getNumber()">
Get Number in Console Log (view Ctrl-Shift-I).</button>
<script type="text/javascript">
function getNumber() 
{ let url = 'http://localhost:8080/Number'; 
  fetch(url).then(resp=> resp.json().then(j=>
           console.log('\nNumber: ', j)));
}
</script>
</body>
</html>

 We add a new handler to theWebActionItem 

 unit, use the WebModule URL /JavaScript

 and the method mtGet

Kind of like a roundtrip, where the web service 
asks itself a question. This way we would let 
the web services server serve a web page that 
acts like a client to the same web JavaScript 

service.

The default handler in the  unit Web Module

does the same thing,it just returns some HTML.

This means that we could add an URL to the 
web service server that would result in a 
webpage with some  and a piece of HTML

JavaScript that would in turn request data 
from the same web service. 

Page 12/14

108



WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

The resulting Delphi code is this

procedure .TWebModule1 WebModule1WebActionItemJavaScriptAction
  ( : ; : ; Sender TObject Request TWebRequest
   Response TWebResponse Handled Boolean: ;  : );var
begin
  .  :=Response ContentType
     + . . ;'text/html; charset=' TEncoding UTF8 MIMEName
  .  :=Response Content
     +'<html>'
     +'<head><title>Call Number with JavaScript</title></head>'
     +'<body>Call Number with JavaScript '
     +'<button onclick="getNumber()">Get Number in Console Log (view Ctrl-Shift-I).</button>'
     +'<script type="text/javascript">'
     +'function getNumber() {'
     +' let url = ''http://localhost:8080/Number'';'
     +' fetch(url).then(resp=> resp.json().then(j=> console.log(''\nNumber: '', j)));'
     +'}'
     +'</script>'
     +'</body>'
    ;'</html>'
end;

 For web debugging I usually use either 

 or you can start the webFirefox Chrome,  

 debugging with the key combination 

 Ctrl-Shift-I

 Run the web services server, click the Start

 button, then the Browser button and open 

 the JavaScript URL 

      The result after clicking the t button JavaScrip

      on the page would look like this

http://localhost:8080/JavaScript 

Page 13/14

109



WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95  2021

 The output of clicking the Get Number

 button is only viewable in the Console view
 in the web debugger ( )Ctrl-Shift-I

The web service server we made can be used 
from any other platform that supports web 
services, from or  or  JavaScript, Python PHP

any other language or platform. 
This makes it a simple solution to enable 
sharing data from your application with Delphi 

other third-party solutions.

If you start using your web service from Delphi 

other platforms you may run into caching 
issues and having to configure Cross-Origin 

Resource Sharing.

We will look into these issues in our next article 
on deployment of the web service server.

A short recap of the things we have done in 
this article. We created a  and POST, PUT

DELETE request to the web services client. 
We also modified the data to be passed as a 
JSON UTF-8 string adding explicit encoding of 
the body content that is sent over the network 
to the web services server. We added thread-
safety code to the web service server and to 
top it all off we added a page with some HTML 

JavaScript code that does a roundtrip and asks 
our web service for a random number.

In our next articles, we will take a look at ISAPI 

and versions of our web services server Apache 

and also how to deploy each of these to a 
server and allow access to our web service. 
Along the way we will tweak some settings to 
improve interoperability, with headers HTTP 

for caching and and we will configure our CORS 

web service for better performance. We may 
also add some more support, parsing the JSON 

result array and adding serialization of objects 
or even use the web service to store other 
items besides plain text. 
Maybe that last bit will be in another article 
though. Stay tuned! 

Page 14/14

110



COMPONENTS
DEVELOPERS4

By Kim Bo Madsen
Page 1/9I18n with kbmMW #1 – Internationalization

Blaise Pascal Magazine 94/95  2021

PREFACE
In the upcoming 5.16.xx 
kbmMW Enterprise 
Edition will receive 
another new feature: 
internationalization also 
called I18n.

The idea about i18n, is to be able to translate an 
application in such a way that it is fully usable in 
other languages, and preferably it also contains 
the ability to allow end users easily to switch to 
their preferred language.

I18N
At first it seems simple… replace all texts with 
constant codes, and then look those up in a 
table and output the result of that lookup, 
and yes… most solutions, including the famous 
GetText 
(https://en.wikipedia.org/wiki/Gettext) 
solution that many mimics as a defacto. 

Basically  makes a fairly simple lookup GetText

to translate one text to a different one.

In later incarnations it has also gained some 
support for handling translation differently 
depending on a count. 
In many languages a translation which 
incorporates a count, changes 
depending on the count number, zero, 
one or many, and in other cases the 
count do not matter.

EXAMPLE:
I have 1 brother
I have 2 brothers
I have 0 brothers

ANOTHER EXAMPLE
I have one cookie
I have a few cookies
I have many cookies
I have no cookies

In English, it is obvious what the wording 
should be, but if you would translate the later 
example to Polish, you would have 4 different 
texts, while Japanese generally do not change 
wording based on plurals.

However for kbmMW I have chosen to take it a 
step further, and have been inspired by a more 
modern solution that is very popular in modern 
Javascript based development, i18next 
(https://www.i18next.com/).

What distinguishes i18next from  GetText?

Well one important thing is that i18next 
supports context sensitive translation. 
It is sort of an extension to the plural based 
translation.

EXAMPLE:
My sister she is nice
My brother he is nice

In the above example, the context is either 
sister or brother. 
If we are referring to my sister, the sentence 
will, in English require use of alternatively she 
he. 

In other languages there may be no 
differentiations.

ANOTHER EXAMPLE:
One of my secretaries was remarking only this 
morning how well and young I am looking.
In this example, secretaries is a context word 
which controls how the translation would be, 
because it is interpreted as a different gender 
in different languages. 
If another title would be used instead of 
secretaries, the translation would be different.

As you can see, translation is not always just as 
simple as replacing one text with another, 
because context may get into the equation.

French: Un de mes secrétaires [male]
Italian: Uno dei miei segretari [male]
Spanish: Una de mis secretarias [female]
Portuguese: Uma das minhas secretárias [female]
German: Einer meiner Sekretäre [male]

111



Page 2/9I18n with kbmMW #1 – Internationalization

Blaise Pascal Magazine 94/95  2021

i18n THE kbmMW WAY
Neither  nor kbmMW’s is the i18next i18n 

perfect tool for translation, but both gets 
closer to the perfect solution than others who 
do not consider context sensitive translation.

I looked at configuration files, i18next’s 

which defines how translations are done, 
and figured that they were quite ugly and not 
really suited for a framework like Delphi.

Further i18next only supports one level of 

context, while I decided to add support for 
multiple levels of context within the same 
sentence.

Also handles the concept of i18next 

pluralization as a separate topic, while I found 
that pluralization is simply a variation of the 
context. 
So by handling multiple levels of context, 
kbmMW’s i18n automatically supports both 
traditional context (for example gender) and 
pluralization in the same sentence.

Why not just use built in translation Delphi’s 

solution? Well the built in translation Delphi 

solution is generally based on constant 
resource strings, which are compiled to DLLs 
and used as a simple lookup translation. 
So you will need a tool to generate those 
DLLs and you will not have context sensitive 
translation. 
Further strings in your application will need to 
take advantage of resource strings and thus 
define a constant integer value for each string 
you will want to translate.

It is somewhat cumbersome and IMO not 
really a good way.

kbmMW’s i18n supports loading the 
internationalization from various storages, 
which currently includes  and  based JSON YAML

file formats. 
I personally find that format is the YAML 

easiest to digest for the human eye, and it also 
supports entering comments, which JSON 

does not support.

TRANSLATION IN CODE
It can be done in a couple of ways, either 
simple translation of a string without any 
consideration of context, or translation using a 
format string, where the arguments can be 
used as context.

It will attempt to translate the static text to the 
language that is currently selected. We will see 
shortly how to define languages, how to load 
them in and how to select them.

This is working quite much as a regular Delphi 

format and supports all its format specifiers,
but also supports additional formatting of date 
and time. The arguments will be understood as 
regular arguments, and optionally (depending 
on the language specification) also as context 
controlling values.
You can abbreviate Translate and Format by 
simply using an underscore. The following 
examples are doing exactly the same as the 
above examples:

and

Other formats can be    added, 
which could cross support existing translation 
description formats.

To make access to  easy, a singleton  i18n

instance is readily available when you include 
the unit in your application. kbmMWI18N 

The singleton is named and will be used i18n 

for all translation related functionality. 
It is possible to make your own instances of 
TkbmMWI18N if you so wish, but it should rarely 
be needed.

kbmMW’s i18n supports two ways to 
translate, auto translation of select properties 
on components and forms/frames, and 
translation of static and dynamic texts, 
used within the code. In addition it supports 
setting other properties, like size and position 
values, in case components require some 
slight rearrangement to fit a translation.

 ( . ( ));ShowMessage i18n Translate 'This is some text to translate'

 ( . ( ,[ , , ]));ShowMessage i18n Format 'This is %s %d of %d' 'brother' 1 3

 ( ._( ));ShowMessage i18n 'This is some text to translate'

 ( ._( ,[ , , ]));ShowMessage i18n 'This is %s %d of %d' 'brother' 1 3

112COMPONENTS
DEVELOPERS4



Page 3/9I18n with kbmMW #1 – Internationalization

Blaise Pascal Magazine 94/95  2021

TRANSLATION OF FORMS AND 
COMPONENTS
It is simple to translate any component or 
form.
You just register that component or form with 
the instance. Then the properties of the i18n 

form/components and sub-components will 
automatically be attempted to be translated 
when the current language changes.

The following will be a typical usage, you 
register the current form self with the 
translation framework, for example in the 
forms method, or AfterConstruction 

whenever the form has been fully constructed.

If you have multiple forms, and you instantiate 
and release them on the fly.

It is good practice to call:

 
before the form/component is released. 
kbmMW will, however usually detect 
destruction of a TComponent instance, and 
deregister it automatically from translation.

LOADING LANGUAGE FILES
As mentioned before, the language file can be 
in or format (or any format that YAML JSON 

has been registered with kbmMW’s i18n 
framework).

A language file can contain a single language 
translation, or multiple language translations.

Any language is identified by a name. 
The name can be anything, but I recommend 
that it follows the typical  language  ISO 639-1

code standard 

extended with a country code 

Eg. da-DK, en-US etc.

  . ( );i18n RegisterComponent self

 . ( );i18n UnregisterComponent self

The following code will   load the 
language(s) defined in the YAML file 
translation.yaml:

 
The first argument to is the name of the Load 

language to load. If an empty string is given, 
all languages found in the file are loaded. 
The next argument is the format to use, and 
the final argument is the settings for that 
format. In this case, it refers to a file placed 
two directories above the executables current 
run directory.

(https://www.w3schools.com/tags/ref_language_codes.asp) 

(https://www.w3schools.com/tags/ref_country_codes.asp). 

 . ( , , );i18n Load '' 'yaml' 'file:..\\..\\translation.yaml'

CHANGING THE CURRENT LANGUAGE
Loading the language(s) do not alter the 
applications translation. Not until you actively 
choose to change the current language.

i18n.CurrentLanguage:='da-DK';
If a language with the name da-DK has been 
loaded, everything will automatically be 
translated according to that languages 
translation rules.

Obviously you can query what the currently 
selected language name is right now, by 
checking the CurrentLanguage property.

At any time, you can get an array of loaded 
language names:

And you can get language captions and 
descriptions and, if defined, which graphic files 
should be used to show their flags:

var
  : < >;a TArray string
begin
   := . ;a i18n LanguageNames
...

end;

 var
   : < >;a TArray string
begin
   := . . ;a i18n Languages GetCaptions
   := . . ;a i18n Languages GetDescriptions
   := . . ( );a i18n Languages GetFlags true
 // Get the file names for the 
              small sized flags.
...

end;  

113COMPONENTS
DEVELOPERS4



Page 4/9I18n with kbmMW #1 – Internationalization

Blaise Pascal Magazine 94/95  2021

THE LANGUAGE FILE (YAML VARIANT)
Ok, now I have shown the relevant simple 
methods and properties, it is time to get into 
how you describe a language translation file.

To make it simple, I will show an example and 
explain from the example:

languages: 
  da-DK: 
    caption       : Dansk
    description   : "For folk der bedst forstår Dansk”
    flag          : 

      # some small flag
      small: “.\\DK_64x64.png"

      # a larger flag
      large: “.\\DK_512x512.png"

    formatSettings: 
      currencyString           : dkr
      currencyFormat           : 3
      currencyDecimals         : 2
      shortDateFormat          : “%D-%M-%Y"
      longDateFormat           : “%D. %M2 %Y"
      shortTimeFormat          : “%H:%N"
      longTimeFormat           : “%H:%N:%S"

      # Short Month Names
      shortMonthNames          : [ Jan, Feb, Mar, Apr, Maj, Jun, Jul, Aug, Sep, Okt, Nov, Dec ]
      longMonthNames           : [ Januar, Februar, Marts, April, Maj, Juni, Juli, August, 
                                   September, Oktober, November, December ]
      shortDayNames            : [ Søn, Man, Tir, Ons, Tor, Fre, Lør ]
      longDayNames             : [ Søndag, Mandag, Tirsdag, Onsdag, Torsdag, Fredag, Lørdag ]
      thousandSeparator        : “."
      decimalSeparator         : “,"
      twoDigitYearCenturyWindow: 50
      negCurrFormat            : 8
      negativeCurrencyFormat   : 1
      dateSeparator            : /
      timeSeparator            : “:"
      listSeparator            : “,"
      timeAMString             : AM
      timePMString             : PM

   properties    : 
      Form1.btnLoadLanguage.Caption   : Hallo
      Form1.Caption                   : Dansk
      Form1.btnLoadLanguage.Height    : 68

    phrases       : 
      Hallo                               : Hallo
      OK                                  : OK
      "Dette er en dato %{SHORTDATE}"     : "Dette er en dato %{SHORTDATE}"
      "Dette er et tidspunkt %{LONGTIME}" : "Dette er et tidspunkt %{LONGTIME}"
      "Dette er en dag %{SHORTDAYNAME}"   : "Dette er en dag %{SHORTDAYNAME}"
      "Dette er en måned %{LONGMONTHNAME}": "Dette er en måned %{LONGMONTHNAME}"
      "Dette er en numerisk værdi %f"     : "Dette er en numerisk værdi %f”
      "Dette er en valuta værdi %c"       : "Dette er en valuta værdi %c" 
      "Jeg har %d søster"                 : 

        # No CONTEXT definition, so all arguments will be considered context
        “1": "Jeg har 1 søster"
        “*": "Jeg har %d søstre”

114COMPONENTS
DEVELOPERS4



Page 5/9I18n with kbmMW #1 – Internationalization

Blaise Pascal Magazine 94/95  2021

        søster/1/1: "This is %{2:%d}. sister of %{3:%d} sisters" 
        bror/1/1  : "This is %{2:%d}. brother of %{3:%d} brothers"
        søster/0  : "There are no sisters"
        bror/0    : "There are no brothers"
        søster    : "This is %{2:%d}. sister of %{3:%d} sisters"
        bror      : "This is %{2:%d}. brother of %{3:%d} brothers"
        “*"       : "This is %{2:%d}. %{1:%s} of %{3:%d} %{4:%s}"

      Form1                                : "Dansk”
      "Current language:da-DK"             : "Nuværende sprog:da-DK"
      "Load language"                      : "Indlæs sprog”
      Learning                             : Lær
      "Save language"                      : "Gem sprog”
      Translate                            : Oversæt
      "Simple translate"                   : "Simpel oversættelse”
      "Format translate"                   : "Formateret oversættelse”
      “Memo1\r\n"                          : "Dansk data i Memo1\r\n"
      "Current language:%s"                : "Nuværende sprog:%s"
      "Learn phrases"                      : "Lær sætninger”
      "Learn properties"                   : "Lær properties”

    propertyNames : [ Text, Caption, Hint, Width, Height ]

  en-GB: 
    caption       : English
    description   : "For people who best understands English”
    flag          : 
      small: “.\\UK_64x64.png"
      large: “.\\UK_512x512.png"

    formatSettings: 
      currencyString           : “$"
      currencyFormat           : 2
      currencyDecimals         : 2
      shortDateFormat          : “%M/%D/%Y"
      longDateFormat           : “%M2 %D. %Y"
      shortTimeFormat          : “%H:%N"
      longTimeFormat           : “%H:%N:%S"
      shortMonthNames          : [ Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec ]
      longMonthNames           : [ January, February, March, April, May, June, July, August, 
                                   September, October, November, December ]
      shortDayNames            : [ Sun, Mon, Tue, Wed, Thu, Fri, Sat ]
      longDayNames             : [ Sunday, Monday, Tuesday, Wednesday, Thursday, 
          Friday, Saturday ]
      thousandSeparator        : “\0"
      decimalSeparator         : “."
      twoDigitYearCenturyWindow: 50
      negCurrFormat            : 8
      negativeCurrencyFormat  : 1
      dateSeparator            : /
      timeSeparator            : “:"
      listSeparator            : “,"
      timeAMString             : AM
      timePMString             : PM

      "Dette er %s %d ud af %d %s"        : 
        CONTEXT   : [ 1, 3, 2 ]

        # Propose which placeholders arguments should be considered context defining.
        # Starting with 1. The order of the argument indexes are significant.
        # If CONTEXT not defined, all placeholders arguments will be used in default order.
        # This example provides same result as if CONTEXT was not defined.
        # Arguments are numbered from 1. Syntax %{n:format} allows reordering arguments on 
   translation. 

115COMPONENTS
DEVELOPERS4



Page 6/9I18n with kbmMW #1 – Internationalization

Blaise Pascal Magazine 94/95  2021

  properties : 
      Form1.btnLoadLanguage.Caption    : Hello
      Form1.Caption                     : English
      Form1.btnLoadLanguage.Height     : 38

    phrases : 

      # Simple translation
      Hallo                              : Hello
      OK                                  : OK
      søster                             : sister

      #  
      # Translation with numerical values and no context variations.
      "Dette er en numerisk værdi %f"   : "This is a numerical value %f”
      "Dette er en valuta værdi %c"    : "This is a currency value %c”

      #  
      # Translation with functional arguments and no context variations.
      "Dette er en dato %{SHORTDATE}"      : "This is a date %{SHORTDATE}"
      "Dette er et tidspunkt %{LONGTIME}"  : "This is a time %{LONGTIME}"
      "Dette er en dag %{SHORTDAYNAME}"    : "This is a day %{SHORTDAYNAME}"
      "Dette er en måned %{LONGMONTHNAME}" : "This is a month %{LONGMONTHNAME}"

      #  
      # Translation with count context variations. Only one value is provided
      "Jeg har %d søster"                  : 

        # No CONTEXT definition, so all arguments (1) will be considered context
        “1": "I have one sister"
        "*": "I have %d sisters"                            # Fallback translation.

      #  
      # Context specific translation.
      "Jeg har 1 %s"                       : 
        søster: "I have one sister”
        bror  : "I have one brother”
        “*"   : "I have one unknown affiliate"

      #  
      # Context and count specific translation. Context is given as arguments.
      "Dette er %s %d ud af %d %s"         : 
        CONTEXT   : [ 1, 3, 2 ]
        # Propose which placeholders arguments should be considered context defining.
        # Starting with 1. The order of the argument indexes are significant.
        # If CONTEXT not defined, all placeholders arguments will be used in default order.
        # Only first 3 arguments of the 4 provided are considered context and in the specific
   order 1,2,3.
        # Optional context arguments must be last.
        # Arguments are numbered from 1. Syntax %{n:format} allows reordering arguments on
   translation.
        søster/1/1: "This is %{2:%d}. sister of %{3:%d} sisters" 
        bror/1/1  : "This is %{2:%d}. brother of %{3:%d} brothers"
        søster/0  : "There are no sisters"
        bror/0    : "There are no brothers"
        søster    : "This is %{2:%d}. sister of %{3:%d} sisters"
        bror      : "This is %{2:%d}. brother of %{3:%d} brothers"
        “*"       : "This is %{2:%d}. %{1:%s} of %{3:%d} %{4:%s}”

116COMPONENTS
DEVELOPERS4



Page 7/9I18n with kbmMW #1 – Internationalization

Blaise Pascal Magazine 94/95  2021

      Form1                                : English
      "Current language:da-DK"             : "Current language:da-DK"
      "Load language"                      : "Load language”
      Learning                             : Learning
      "Save language"                      : "Save language”
      Translate                            : Translate
      "Simple translate"                   : "Simple translate”
      "Format translate"                   : "Format translate”
      “Memo1\r\n"                          : "Memo1\r\n"
      "Current language:%s"                : "Current language:%s"
      "Learn phrases"                      : "Learn phrases”
      "Learn properties"                   : "Learn properties”

    propertyNames : [ Text, Caption, Hint, Width, Height ]

The  file is positional aware. YAML

Hence everything that belongs together must 
start at the same position on a line. 
Further property/object names are case YAML 

sensitive.

In the above example you will notice that an 
YAML described object named languages has 
been defined. 
The object contains a number of properties, 
which each of them are also objects.
The first one is called and the second ‘da-DK‘ 

one is called ‘en-GB‘.

These objects contain the actual language 
translation settings for that particular 
language. You can have one or more unique 
language objects in each file.

Each language object, have an optional 
Caption Description, and an optional and an 
optional set of flag graphics file paths, one 
named small and one named large.

Then comes a  object, which formatSettings

in turn contains the settings for 
TFormatSettings. Delphi You can lookup the 
manual for an explanation about its settings. 
However there is a significant difference in the 
sense that shortDateFormat, 
longDateFormat, shortTimeFormat  and
longTimeFormat TkbmMWDateTimeuse  
format specifiers which you can read more 
about here: 

https://components4developers.blog/2018/05/25/kbmmw-features-3-datetime/

Next optional object which is named 
properties, lists any properties for any 
instantiated component in your application, for 
which you want set to a specific value. It can 
be string or numerical properties, and thus 
allows you to resize or rearrange various 
controls if needed to make it perform well with 
your translation.

The values specified here will be used without 
further translation.

The optional object called  propertyNames

controls which properties will be scanned for 
potential translation. In this example, only 
properties named Text, Caption, Hint, 
Width Heightor  will be potentially translated. 
If is empty or not specified, propertyNames 

then all non empty string properties will be 
eligible for translation.

Finally we have the general phrase translation 
object which should be used for the bulk of 
translation.
The phrase object will contain any number of 
unique phrases, as you have defined them in 
your application. String properties on 
components, that has not already been 
translated in the properties section, will be 
attempted to be translated via the phrases 
section. The same will all runtime string 
translations, using or the Format, Translate 
_ methods.

117COMPONENTS
DEVELOPERS4



Page 8/9I18n with kbmMW #1 – Internationalization

Blaise Pascal Magazine 94/95  2021

A translation can be as simple as stating the 
original value and the translated value, but 
when using the Format, the arguments may 
need to be rearranged to make a correct 
translation, or perhaps the format is context 
sensitive. Those features can all be provided in 
the phrases object.

EXAMPLE OF A SIMPLE TRANSLATION:

If the string Hallo is being used with Translate 
or _ or any property that is not listed in the 
properties section contains the string Hallo, 
it will be automatically translated to Hello if 
the en-GB language is selected.

EXAMPLE OF A SIMPLE FORMAT 
TRANSLATION:

In this case, we make a simple translation, but 
includes a format specifier for a floating point 
value. This is used when calling or  in Format _

code.

EXAMPLE OF A REARRANGED FORMAT 
TRANSLATION:

In this example the order of arguments has 
changed in the translation. 
The index of the first argument in the original 
string is 1, the next is 2 etc. The full format 
specifier, in this case %d, can be copied over 
to the translated variant after the colon.

EXAMPLE OF A SIMPLE CONTEXT 
SPECIFIC FORMAT TRANSLATION:

This example makes a context specific 
translation depending on the argument given 
to or _. If the argument is 1, then the Format 

text will be translated to . “I have one sister”

In all other situations, the translation will be 
“I have n sisters” where n is the actual number 
given as the argument. Hence “*” is the 
default translation for the phrase if no other 
contexts matches.

EXAMPLE OF 
MULTIPLE ARGUMENT CONTEXT 
SPECIFIC FORMAT TRANSLATION:

This translation is triggered by the Format or _ 
methods like this:

In English, the Danish word will be ‘mand’ 

translated to either man or men, depending on 
the count, and similarly the Danish word 
‘kvinde’ will be translated to either woman or 
women.

For the English language, we want the or ‘mand’ 

‘kvinde’ word to be the primary context word. 
For that reason I have defined a  CONTEXT

property which controls in which order the 
arguments are used in building the context 
specifier. It is perfectly legal to omit arguments 
if they have no relevance in the context 
          specifier. Eg:

Then only the string argument will be used for 
defining the context specifier.

In this case I want the word to  ‘mand’/’kvinde’ 

appear first, and the count after. That makes it 
possible to define wild card style context 
specifiers, like  and , where the “mand/1”  “mand”

first specifier matches specifically the word 
‘mand’ “mand” and the count 1, while matches 
“mand” with any count. Contexts are attempted 
matched with most precise context match 
first. If none are found, another iteration is 
attempted, without the least significant 
context word and so on, until either a match 
has been found, or nothing is matched, after 
which the “*” match is used.
If no “*” match has been defined, the original 
string will be used untranslated.

 Hallo    : Hello 

 "Dette er en numerisk værdi %f" : "This is a numerical value %f" 

"Side %d ud af %d sider" : "Total %{2:%d} pages. This is page %{1:%d}”

"Jeg har %d søster": 
     “1": "I have one sister"
     “*": "I have %d sisters"

"Jeg har %d %s":
     CONTEXT    : [ 2, 1 ]
     “mand/1"   : "I have one man"
     "mand"     : "I have %{1,%d} men"
     “kvinde/1" : "I have one woman"
     "kvinde"   : "I have %{1,%d} women"
     "*"        : "I have %d %ss" 

ShowMessage(_('Jeg har %d %s',[1,'mand']));

"Jeg har %d %s":
    CONTEXT : [ 2 ]
    ...

118COMPONENTS
DEVELOPERS4



Page 9/9I18n with kbmMW #1 – Internationalization

Blaise Pascal Magazine 94/95  2021

If no CONTEXT property is given, all arguments 
will be used for defining the context specifier 
in their original order.

EXAMPLE OF TRANSLATION WITH 
FUNCTIONAL ARGUMENTS

This example shows how to use Format or _ to 
output a date, which will be autoformatted 
according to the chosen language.

Currently a number of functional arguments 
are supported:

The functional argument can be prepended 
with a argument index number to pick the 
relevant argument for translation, if more are 
provided.

This is the first version of  for , and I18n kbmMW

I’m certain new features will be added as it 
matures, and requirements are detected. 
One of the next things to add, is the 
integration between kbmMW SmartBind and 
kbmMW I18N.

Happy translating!

SHORTDATE – Converts a floating point, TDateTime or a TkbmMWDateTime value to a short date.
LONGDATE – Converts a floating point, TDateTime or a TkbmMWDateTime value to a long date.
SHORTTIME – Converts a floating point, TDateTime or a TkbmMWDateTime value to a short time.
LONGTIME – Converts a floating point, TDateTime or a TkbmMWDateTime value to a long time.
ISO8601 – Converts a floating point, TDateTime or a TkbmMWDateTime value to an ISO8601 date/time.

"Dette er en dato %{SHORTDATE}" : "This is a date %{SHORTDATE}" 

"Velkommen %s. Dette er en dato 
%{SHORTDATE}"     : "At date 
%{2:SHORTDATE}, we welcome %{1:%s}" 

119COMPONENTS
DEVELOPERS4



 Facts About Bumblebees              

Blaise Pascal Magazine 94/95  2021 120

Bumblebees are large, fuzzy insects with short, 
stubby wings. They are larger than honeybees, 
but they don't produce as much honey. 
However, they are very important pollinators. 
Without them, food wouldn't grow.
Two-thirds of the world's crop species depend 
on animals to transfer pollen between male and 
female flower parts, according to ecologist 
Rachel Winfree, an assistant professor in the 
department of entomology at Rutgers 
University. Many animals are pollinators — 
including birds, bats and butterflies — but 
"there's no question that bees are the most 
important in most ecosystems," she said in a 
2009 article in National Wildlife magazine. 
While other animals pollinate, bumblebees are 
particularly good at it. Their wings beat 130 
times or more per second, according to the 
National Wildlife Federation, and the beating 
combined with their large bodies vibrates 
flowers until they release pollen, which is called 
buzz pollination. Buzz pollination helps plants 
produce more fruit.

The wing sweeping is a bit like a partial spin of a 
"somewhat crappy" helicopter propeller, 
researcher Michael Dickinson, a professor of 
biology and insect flight expert at the University 
of Washington, told Live Science in a 2011 
article. However, the angle to the wing also 
creates vortices in the air — like small 
hurricanes. The eyes of those mini-hurricanes 
have lower pressure than the surrounding air, 
so, keeping those eddies of air above its wings 
helps the bee stay aloft. [Related: Explained: 
The Physics-Defying Flight of the Bumblebee]

This is three to four times longer than the 
American bumblebee, according to Scientific 
American. 

FLIGHT
It has often been said that bumblebees defy 
aerodynamics and should not be able to fly. 
However, a recent study resolved the enigma 
and showed how the tiny wings keep the bee in 
the air. The study, published in the journal 
Proceedings of the National Academy of 
Sciences in 2005, used high-speed 
photography to show that bumblebees flap 
their wings back and forth rather than up and 
down.

By  Alina Bradford

SIZE
There are over 255 species of bumblebees, 
according to the Integrated Taxonomic 
Information System (ITIS), so bumblebees can 
be many sizes.
The largest is the queen of the Bombus 
dahlbomii, which can grow up to 1.6 inches (4 
centimeters) long. 

A rusty patched bumblebee collects pollen and 
nectar from a flower. (Image credit: Dan Mullen, 
"https://www.flickr.com/photos/8583446
@N05/“

THE PHYSICS-DEFYING FLIGHT OF THE 
BUMBLEBEE
Bees have surprisingly fast color vision, about 3 
to 4 times faster than that of humans depending 
on how it's measured, a new study finds. 

Short and stubby, the bumblebee doesn't look 
very flight-worthy. 
Indeed, in the 1930s, French entomologist 
August Magnan even noted that the insect's 
flight is actually impossible, a notion that has 
stuck in popular consciousness since then.

Now, you don't need to be a scientist to raise an 
eyebrow at this assertion, but it sure is easier to 
explain the bumblebee's physics-defying 
aerodynamics if you're Michael Dickinson, a 
professor of biology and insect flight expert at 
the University of Washington.
https://www.youtube.com/
watch?v=W2YEzY8tzMU

120COMPONENTS
DEVELOPERS4

COMPONENTS
DEVELOPERS4



Blaise Pascal Magazine 94/95  2021

Other studies have confirmed that bees can flyin one 
of the more colorful projects, in 2001, a Chinese 

research team led by Lijang Zeng of Tsinghua 
University glued small pieces of glass to bees and 

then tracked reflected light as they flew around in a 
laser array. But now, Dickinson says, researchers are 

more interested in the finer points of how insects 
control themselves once they're in the air. Those 
studies will be especially important for a fleet of 

robotic insects in development, including robobees 
created by a team at Harvard University.

HABITAT
With so many species, it isn't surprising that bumblebees 

are found all over the world. For example, the largest 
bumblebee is found in Argentina and Chile and the rusty 

patched bumblebee is found in the United States and 
Canada. 

Bumblebees usually build their nests close to the ground 
— under piles of wood, dead leaves and compost piles — 

or even below ground in abandoned rodent tunnels, 
according to Orkin.

“The whole question of how these little wings 
generate enough force to keep the insect in 
the air is resolved," Dickinson told Life's Little 
Mysteries. "There are details remaining, but it's 
just not an enigma anymore."

Dickinson published a 2005 study in the 
journal Proceedings of the National Academy 
of Sciences on the flight of the bumblebee 
after gathering data using high-speed 
photography of actual flying bees and force 
sensors on a larger-than-life robotic bee wing 
flapping around in mineral oil. He says the big 
misconception about insect flight and perhaps 
what tripped up Magnan is the belief that 
bumblebees flap their wings up and down. 
"Actually, with rare exceptions, they flap their 
wings back and forth," Magnan said.

Take your arm and put it out to your side, 
parallel to the ground with your palm facing 
down. Now sweep your arm forward. When 
you reach in front of you, pull your thumb up, 
so that you flip
 your arm over and 
your palm is upwards.
Now, with your palm up, 
sweep your 
arm back. 
When you 
reach behind
you, flip your 
hand 
over again, 
palm down for the 
forward stroke. Repeat. 
If you gave your hand a 
slight tilt (so that it's not 
completely parallel to 
the ground), Dickinson 
said, you'd be doing 
something similar to 
a bug flap.

https://www.youtube.com/
watch?v=yRE2rMIXvyU 

or
{youtube yRE2rMIXvyU}

or
https://www.youtube.com/
watch?v=UZHa5Y8tZm8&t=14s

The fluid dynamics behind bumblebees' flight are 
different from those that allow a plane to fly. An 

airplane's wing forces air down, which in turn 
pushes the wing (and the plane it's attached to) 

upward. For bugs, it isn't so simple. 
The wing sweeping is a bit like a partial spin of a 

"somewhat crappy" helicopter propeller, Dickinson 
said, but the angle to the wing also creates vortices 

in the airlike small hurricanes. The eyes of those 
mini-hurricanes have lower pressure than the 

surrounding air, so, keeping those eddies of air 
above its wings helps the bee stay aloft.

 Facts About Bumblebees              

121COMPONENTS
DEVELOPERS4

COMPONENTS
DEVELOPERS4



Blaise Pascal Magazine 94/95  2021

OFFSPRING
The queen is the mother of all the bees in a 
colony. After waking from hibernation, the 
queen finds food and looks for a good location 
for a nest. Once the nest is found, she lays her 
eggs and stores up food for herself and the 
babies, according to ADW. 

The queen sits on the eggs for about two 
weeks to keep them warm. When the eggs 
hatch, the queen feeds pollen to the baby 
bees, called larvae. At two weeks old, the 
larvae spin cocoons around themselves and 
stay there until they develop into adult bees.
The queen only takes care of the first batch of 
babies.

CLASSIFICATION/TAXONOMY 
Here is the taxonomy of bumblebees, 

according to ITIS:
Kingdom: Animalia Subkingdom: Bilateria 
Infrakingdom: Protostomia Superphylum: 

Ecdysozoa Phylum: Arthropoda Subphylum: 
Hexapoda Class: Insecta Subclass: Pterygota 

Infraclass: Neoptera Superorder: 
Holometabola Order: Hymenoptera Suborder: 

Apocrita Infraorder: Aculeata Superfamily: 
Apoidea Family: Apidae Subfamily: Apinae 

Tribe: Bombini Genus: Bombus

DIET
Bumblebees eat nectar and pollen made by 
flowers. The sugary nectar provides the bees 
with energy while the pollen provides them 
with protein, according to  The Bumblebee 
Conservation Trust. They make honey by 
chewing the pollen and mixing it with their 
saliva, according to Animal Diversity Web 
(ADW). They feed the honey to the queen and 
the developing brood.

Compared to wasps, bumblebees are quite gentle and 
docile. They generally are not inclined to sting unless 

their nests are disturbed, and spend their days  
buzzing from flower to flower as they collect pollen. 

They dwell in ground nests and die when autumn rolls 
around. (Image credit: Ron James ) 

HABITS 
Bumblebees are some of the most social 
creatures in the animal kingdom. A group of 
bumblebees is called a colony. Colonies can 
contain between 50 and 500 individuals, 
according to the National Wildlife Federation. 
A dominant female called the queen rules the 
colony. The other bees serve her or gather 
food or care for developing larvae. During the 
late fall, the entire colony dies, except for the 
queen. She hibernates during the winter 
months underground and starts a new colony 
in the spring. 

 Facts About Bumblebees              
The first batch grows into worker bees that will 

clean and guard the nest, find food and take care of 
the next batch of baby bees. The queen is left to do 

nothing but lay and hatch new eggs.
Bees born in late summer are male bees, called 

drones, and future queen bees. Both leave the nest 
as soon as they are mature. The males from other 
nests mate with future queens and then die. After 

mating, the future queens fatten themselves up and 
hibernate throughout the winter.

COMPONENTS
DEVELOPERS4 122

COMPONENTS
DEVELOPERS4



Blaise Pascal Magazine 94/95  2021

 Facts About Bumblebees              

CONSERVATION STATUS
Many bumblebees are listed as endangered, 
vulnerable or near threatened by the 
International Union for Conservation of 
Nature and Natural Resource's Red List of 
Threatened Species. 

The variable cuckoo bumblebee is listed as 
critically endangered by the IUCN and is 
considered one of the rarest species in North 
American. The rusty patched bumblebee is 
also listed as critically endangered, and in 
early 2017 it became the first wild bee in the 
continental United States to get federal 
protection under the Endangered Species Act, 
according to Scientific American. 

There is a lot of discussion as to why the 
overall be population is declining. Some 
scientists think that there may be a sickness 
killing off the bees. Others think pollution, 
global warming or lack of native flowers may 
be to blame.

OTHER FACTS
Bumblebees are larger than honey bees and 

generate more heat. This allows them to work 
during cooler weather.Bumblebees don't die when 
they sting. This is trait found in honey bees. Bees 

are covered in an oil that makes them waterproof. 
Queens shiver to warm up and keep eggs toasty.

https://www.youtube.com/watch?v=RH7BPw4pQTg

COMPONENTS
DEVELOPERS4

COMPONENTS
DEVELOPERS4

123



EESB, SOA,MoM, EAI TOOLS FOR INTELLIGENT SOLUTIONS. kbmMW IS THE PREMIERE N-TIER PRODUCT FOR DELPHI / C++BUILDER

kbmMemTable is the fastest and most feature rich in 
memory table for Embarcadero products.
●   Easily supports large datasets with millions of records
●   Easy data streaming support
●   Optional to use native SQL engine
●   Supports nested transactions and undo
●  Native and fast build in M/D, aggregation/grouping,
      range selection features
●   Advanced indexing features for extreme performance

● RAD Studio XE5 to 10.4.1 Sydney supported
● Win32, Win64, Linux64, Android, IOS 32, IOS 64 and
 OSX client and server support
●  Native high performance 100% developer defined
 application server
●  Full support for centralized and distributed load
 balancing and failover
●  Advanced ORM/OPF support including support of
 existing databases
●  Advanced logging support
● Advanced configuration framework
●  Advanced scheduling support for easy access to 
 multithread programming
● Advanced smart service and clients for very easy
 publication of functionality
● High quality random functions. 
●  High quality pronouncable password generators.
● High performance LZ4 and Jpeg compression
● Complete object notation framework including full 
 support for YAML, BSON, Messagepack, JSON and XML
● Advanced object and value marshalling to and from
 YAML, BSON, Messagepack, JSON and XML
● High performance native TCP transport support
● High performance HTTPSys transport for Windows.
●  CORS support in REST/HTML services.
●  Native PHP, Java, OCX, ANSI C, C#, Apache Flex client
 support!

●  High speed, unified database access (35+ supported 
 database APIs) with connection pooling, metadata and 
 data caching on all tiers
●  Multi head access to the application server, via REST/AJAX,
 native binary, Publish/Subscribe, SOAP,
 XML, RTMP from web browsers, embedded devices, linked
 application servers, PCs, mobile   devices, Java systems 
 and many more clients
●  Complete support for hosting FastCGI based applications
 (PHP/Ruby/Perl/Python typically)
●   Native complete AMQP 0.91 support (Advanced Message
 Queuing Protocol)
●  Complete end 2 end secure brandable Remote Desktop with
 near realtime HD video, 8 monitor support,
 texture detection, compression and clipboard sharing.
● Bundling kbmMemTable Professional which is the fastest 
 and most feature rich in memory table for Embarcadero
 products.
 

COMPONENTS
DEVELOPERS4 DX

· New HTTP and kbmMW server status message handling  

 support in Smart services

· New support for TkbmMWGenericMagneticStripeReaderHID

 and TkbmMWGenericBarcodeReaderHID

· New support for pivot based counters in the ORM

· New support for transport native file sending for HTTP.Sys 

 transport

· New support for automatic GZIP compression of responses

 from HTTP Smart services

· Several feature improvements and fixes.

· More features improvements and fixes.

Please visit 

http://www.components4developers.com 

for more information about kbmMW

KBMMW PROFESSIONAL AND ENTERPRISE EDITION V. 5.15.00 RELEASED!

The wing of a Bumble Bee "https://www.flickr.com/photos/8583446@N05/“ 


	Blaise_94_UK_7_Printing_with_Delphi_12_Pages_1Adv_DelphiComp.pdf
	Page 11
	Page 12

	Blaise_94_UK_10_Components4Dvelopers_15.pdf
	Page 11
	Page 13

	Blaise_94_UK_0_CoverPages_5_Pages.pdf
	Page 5


	Editor: 
	Humor: 
	Barnsten: 
	C4D: 
	DelphiComapany: 
	LHPocket: 
	LHHardCover: 
	Subscr+HardCover: 
	Subscr+Lib USB: 
	Super: 
	MaxBox: 
	Miletus: 
	FreeTMS: 
	DTI: 
	WebForm: 
	PrintingInDelphi: 
	Webservice: 
	Flippos: 
	FastReport: 
	I18N: 


