N
- . ‘ 2 'r
2 #_.GAZNI’E 1027

Interne J‘ Script / WebAssembly / Pas2Js /
Databases / CSS Styles / essive Web Apps
Android / 10S / Mac / Windows & Linux

S Blaise Pasc

b1

NS

BLAISE PASCALZ MAGAZINE 102

Multi platform / Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js /
Databases / CSS Styles / Progressive Web Apps
Android / 10S / Mac / Windows & Linux

CONTENT

ARTICLES

From Your Editor Page 4

Cartoon, from our Technical Advisor Page 5

By Jerry King

Delphi VCL4Python Page 7

By Max Kleiner

Python install help Page 12

By Detlef Overbeek

The latest release of Delphi 11.1 Page 20

By Detlef Overbeek

Creating a Daily Snaphot of Lazarus with GIT Page 35
By Michael van Canneyt

The Droste effect: picture in picture in picture Page 42
By David Dirkse

Pas2]S: Leveraging Typescript to use existing Javascript libraries Page 46
By Michael van Canneyt

Library support in PAS2]S Page 57

By Michael van Canneyt

Pas2]S: Using multiple forms and routing Page 67
By Michael van Canneyt

Understanding Electron Page 89

By Detlef Overbeek

Blaise Pascal

ADVERTISERS

LIB Stick BlaisepascalMagazine Archive Page 88
LIB Stick + Subscription + two books ~ Page 6

Lazarus Handbook Pocket Page 56
Lazarus Handbook HardCover Page 45
Lazarus Handbk Pocket + Subscription Page 75
Barnsten Delphi Dag Page 19
Barnsten Delphi Offer Page 66
SuperPack Page 34

kbmM Page 96

Pascal is an imperative and procedural programming language, which Niklaus Wirth designed (left below) in 1968-69 and published in
1970, as a small, efficient language intended to encourage good programming practices using structured programming and data
structuring. A derivative known as Object Pascal designed for object-oriented programming was developed in 1985. The language name
was chosen to honour the Mathematician, Inventor of the first calculator: Blaise Pascal (see top right).

Niklaus Wirth Publisher: PRO PASCAL FOUNDATION in collaboration © Stichting Ondersteuning Programmeertaal Pascal - Netherlands

Blaise Pascal Magazine 102 2022 @

Contributors

Stephen Ball
http://delphiaball.co.uk
@DelphiABall

David Dirkse
www.davdata.nl
E-mail: David @ davdata.nl

Holger Flick
holger @ flixments.com

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

Vsevolod Leonov
vsevolod. leonov@mail. ru

Boian Mitov
mitov @ mitov.com

Howard Page Clark
hdpc @ talktalk.net

Rik Smit
rik @ blaisepascal.eu

Daniele Teti
www.danieleteti.it
d.teti @ bittime.it

Danny Wind
dwind @ delphicompany.nl

Editor - in - chief

Dmitry Boyarintsev
dmitry.living @ gmail.com

Michaél Van Canneyt,
michael @ freepascal.org

Benno Evers
b.evers @ everscustomtechnology.nl

Mattias Gartner
nc-gaertnma@netcologne.de

John Kuiper
john_kuiper @ kpnmail.nl

Paul Nauta PLM Solution Architect
CyberNautics
paul.nauta @ cybernautics.nl

Jeremy North
jeremy.north @ gmail.com

Heiko Rompel
info @ rompelsoft.de

Bob Swart
www.eBob42.com
Bob @ eBob42.com

Jos Wegman / Corrector / Analyst

Detlef D. Overbeek, Netherlands Tel.: Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Editors

Peter Bijlsma, W. (Wim) van Ingen Schenau, Rik Smit

Correctors
Howard Page-Clark, Peter Bijlsma

Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavour to ensure that what is published in the magazine is correct, we cannot accept responsibility for any errors or omissions.

If you notice something which may be incorrect, please contact the Editor and we will publish a correction where relevant.

Subscriptions (2019 prices)

Internat. Internat.
excl. VAT incl. 9% VAT Shipment

Printed Issue
+60 pages

€ 155,96 | €250 €80,00

Electronic Download Issue
60 pages

€64,20 | €70

Printed Issue inside Holland (Netherlands)

60 pages

Member and donator of WIKIPEDIA
€250,00] €70,00 Member of the Royal Dutch Library

Marco Cantu
www.marcocantu.com
marco.cantu @ gmail.com

Bruno Fierens
www. tmssoftware.com
bruno.fierens Q@ tmssoftware.com

Wagner R. Landgraf
wagner @ tmssoftware.com

Andrea Magni www.andreamagni.eu
andrea.magni @ gmail.com
www.andreamagni.eu/wp

Kim Madsen
www . component4developers.com

Detlef Overbeek - Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Wim Van Ingen Schenau -Editor
wisone @ xs4all.nl

B.J. Rao

contact @ intricad.com

Anton Vogelaar
ajv @ vogelaar-electronics.com

Siegfried Zuhr
siegfried @ zuhr.nl

.

Y ETER
& b
W
Q

Subscriptions can be taken out online at www.blaisepascal.eu or by written order, or by sending an email to office@blaisepascal.eu
Subscriptions can start at any date. All issues published in the calendar year of the subscription will be sent as well.

Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
Subscriptions can be paid by sending the payment to:

ABN AMRO Bank Account no. 44 19 60 863 or by credit card or Paypal
Name: Pro Pascal Foundation-Foundation for Supporting the Pascal Programming Language (Stichting Ondersteuning Programeertaal Pascal)
IBAN: NL82 ABNA 0441960863 BIC ABNANL2A VAT no.: 81 42 54 147 (Stichting Programmeertaal Pascal)

Subscription department

Edelstenenbaan 21 / 3402 XA IJsselstein, The Netherlands
Mobile: + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

Copyright notice

All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless otherwise noted and may not be copied, distributed
or republished without written permission. Authors agree that code associated with their articles will be made available to subscribers after publication by placing it
on the website of the PGG for download, and that articles and code will be placed on distributable data storage media. Use of program listings by subscribers for
research and study purposes is allowed, but not for commercial purposes. Commercial use of program listings and code is prohibited without the written permission

of the author.

Blaise Pascal Magazine 99/100 2021 @

From you editor

Hello dear readers,

the next issue is finally available and now we
need to explain why certain things happen.

In my country (Holland) it is springtime.

Now because of the rising temperatures it is very

nice to go out again and even Corona seems to
vanish.

This is exactly what I had in mind when I tried

to create an event in the Hortus Botanicus in
Leiden.

The plan was great: some of you were very
enthusiast, but there were to few of you.

Since | had to confirm the reservation within 2
weeks the risk was to large there wouldn't be
enough participants.

Now | advised my colleges from Barnsten to use
a later date for their event in May because than it
might be even warmer and no more real danger
of Corona. That will be on Thursday the 19th of
May in the Dutch “Brooklyn” Breukelen.

Alas that is not the only reason for being
cautious. Mr. Putin demonstrated he is a very
fearful men with a syndrome persecution
madness. This results in aggression and
oppressing his own people and even attacking
Ukraine.

To alleviate their fate of being driven from home
we need to help them. That's why we addressed
some advertisement for them to get free
subscriptions, a book and even a whole
programming tool from Componets4Developers.

I haven't seen many others but | urge them to do
something alike so these people will be able to
train for a better future. Lazarus itself is for free
for everybody and Delphi has a community tool.
Of course you can choose to help them in your
own way. | hope you will do so.

We all need to go on with our lives and one way is
to do programming.

Again, Michael van Canneyt (for Lazarus and FPC)
has been able to explain quite some things about
programming for the web and on the road to that
goal he created new abilities for Pas2]S.

Especially the explanation of how to use multiple
forms is very interesting. A MUST READ.

There is some extra news about Delphi 11.1 and
how to use it. The option to view the effect of
styles in design time is very helpful.

Because Artificial Intelligence is getting bigger
and better and thus more interesting | wanted
again to have an article on that subject.

There are some extra instalments to make and
Max Kleiner explains them, I try to make it easy to
install all the necessary tools : Python it self and
some extra’s from Delphi.

Jim McKeeth is organising an event about Artificial
Intelligence on 30 of March. See the address
below.

For Lazarus is the planning to do this as well, not
through Python but with a direct tool which will
be developed soon. Its not we don't want Python,
but it is an extra step and that is not necessary in
FPC.

At the end of the article list I explain things about
Electron, how it works and what you can use it
for.

Pleas take a look at Jims online event
(see the address below):
Thank you,

https://register.gotowebinar.com/register/8998248551997116685?source=eloqua

Blaise Pascal Magazine 99/100 2021

@ 4

From our Technical advisor: Cartoons from Jerry King

P‘r—-r.ﬂql_.___ \ —r— — e ——————————
‘ ‘ - ©

“Dad, lets play hide and g seek. I'll hide your
data, and you seek it. And when you cant find it,
you pay me to return it.”

Blaise Pascal Magazine 99/100 2021 @

Show Thumbeanils

5] h -

phi
install
The late: of Delpl
e-é% icture in pi
¥ ary support in PA:
eraging Typesm’p\ use existing Javascriptlbra
Pas2J5: Using multiple forms and routing

Creating a Daiy Snaphot of Lazarus with GIT
Und rstanding TORF W,

LCE3 % e T4 X

ool oleforepelo, procedure ;

——

PR ATATA ST | var

- begin
) for i := 1 to
DEgzoaca a0a0ag T 9 do
_OE0aCER T J0aRARaaEnIE _
begin

BLAISEEPASCALI%AGAZINE(;>€E>

www.blaisepascal.eu

COMPUTER (GRAPHICS)
& GAMES IN
PASCAL

https://www.blaisepascalmagazine.eu/product/bundle-download-subscription-libstick-two-books/

LEARN TO PROGRAM
USING LAZARUS

/CL 4 PYTHON
92-1 Code with vc|. Python @ Page 1/6

KLEINE
R People lie, nNumbers don't
+ — unknown.

ABSTRACT:
In the last few Articles we have seen that P4D is a set of free components that wrap up
the Python packages into Delphi and Lazarus (FPC). This time we go(t) the other way
round: How can we show the Python User to profit from the VCL Components. To be able to
use this article you should read the Articles from Issue Nr: 96 Page 9 / Nr: 97 Page 9 / Nr: 9
Page 9 / Its all available on your LIB stick.

INTRODUCTION

We create Python extension modules from Delphi classes, records or functions.

It can be the beginning of a long journey to provide Delphi's VCL library as a certain
Python module to build powerful Windows GUI out from a Script.

The Python module we take a look at is called: DelphiVCL.pyd

Pip install delphivcl >

It can be simply installed from the shell via pip:

[t supports:

O Win32 & Win64 x86 architectures

O Python cp3.6, cp3.7, cp3.8, cp3.9 and ¢p3.10
For other platforms, check out DelphiFMX4Python.

Another way to install is explicit with: python.exe -m pip install delphivecl -

in case you want to install the 32bit version with the 32bit executable.

On Win, the standard Python installer already associates the . py extension with a file

type (Python.File) and gives that file type an open command that runs the interpreter
(G:\Program Files\Python\python.exe "%1" %*).

This is enough to make scripts executable from the command prompt.

We can use the python-dll as we use a windows dIlI.

Therefore * . pyd files are dll-libraries, but there are a few differences:

So far you have to know 3 different file types you can import from, after installed a known
package like Delphi VCL:

The norm input source code that we had written.

The compiled bytecode. If you import a module, P *.pyc file that
contains bytecode to make importing it again later ster.

The mentioned windows dll file for Python.

If you have a DLL named bee.pyd, then it must have a function PyInit _bee ().
You can then write Python "import bee", and Python will search for bee.pyd (as well as bee.py,
bee.pyc) and if it finds it, will attempt to call PyInit bee () to initialize it.
Of course you don't link your . exe with bee.1ib, as that would cause Windows to require the DLL to be
resent, we load it dynamically at runtime.

Blaise Pascal Magazine 102 2022

L 4 PYTHON
?2-1 Code with VCL python Page 2/6

import importlib.machinery, importlib.util
def new_import(ext_file):
loader = importlib.machinery.ExtensionFileLoade
spec = importlib.util.spec_from file_locatio
loader = loader, submodule_search locations=
#print ("spec", spec, spec.loader, modulefullpath, =

,ext file)
jexthfile,

https://github.com/maxkleiner/DelphiVCL4Python/blob/main/tests/ init__ .py

The project which we introduce is in the subdirectory Delphi and generates a Python
extension module (a DLL with extension "pyd" in Windows) that allows you to create a user

interface using Delphi from within Python.
A part of the VCL or LCL (almost and maybe) is wrapped with a few lines of code!

The small demo TestApp.py gives you a flavour of what is possible.
The machinery by which this is achieved is the WwrapDelphi unit.
The subdirectory DemoModule demonstrates how to create Python
extension modules using Delphi, that allow you to use in Python,
functions defined in Delphi.

Compile the project and run test.py

from the command prompt (€.8. py test.py).

The generated pyd file should be in the same directory as the Python file.
This project should be easily adapted to use with Lazarus and FPC.
After compiled to the DelphiVCL.pyd we want to use it in a Python script, which is the main

topic of this article:

from delphivel import * -

Python code in one module gains access to code in another module,
by the process of importing it. The import statement is the most common way of invoking the

import machinery, but it is not the only way.

First we check our Python installation.
Python 3.% provides for all user and current user installations.
All user installations place the Py-d11 in the Windows System directory

and write the registry info to HKEY LOCAL MACHINE.
Current user installations place the d11 in the install path and
the registry info in HKEY CURRENT_USER version < PY 3.5.

So, for current user installations we need to try and find the install path or package path since it

may not be on the system path as an environment var.
In our case we set a const to demonstrate:

Blaise Pascal Magazine 102 2022

4 PYTHON

Code with vc|. Python Page 3/6

st PYHOME ='C:\Users\max\AppData\Local\Programs\Python\Python36-32\';
VCLHOME ='r"C:\users\max\appdata\local\programs\python\python36-32\lib\site-packages\delphivcl\win32\delphivcl.pyd"’;

So next we load the dll (with or without import statement possible),
call the VCL class and start the main procedure:

eg:= TPythonEngine.Create(Nil);
try
eg.pythonhome:= PYHOME;
eg.loadDLL;

eg.execStr(LoadPy VCLClass);
eg.execStr(STARTMAIN);
eg.execStr('main()');

@
| > i | @ | ir [& = 5 [4 . L - =
Load Find Replace / Refact Go Compie! Use Cases | Tutoral Resource Seralg 7 7
> TS UMM e o & e 12 O [li2 1096 pep_voLapython.pas &9 G
:= TPythonEngine.Create (Nil); ~ L]
€5/ onhome:= PYHOME;
€€ loadDLL;
€7 tln('test import '+GetPythonEngine.EvalStr(' I imal L
8 In('t t impor '+eg.Evalstr('_ i o = imal®™) .L imal 1}')):
writeln('')
70/ //println(eg.EvalStr(' import ("faker").Faker()')): — A
7 sw:= TStopWatch.Create () : i i
72 sw.Start;
z &, g e S b gt Hello DelphiVCL maXbox4 Python
@O o
0§ .
Type here to search (@] Ei t m = E3 L] @ @ @ @ ‘i E @ (% @ i o g E}O‘Em EshéiG 14/%2?5022 D

We can see the simple VCL-form as it says "Hello":

https://github.com/maxkleiner/DelphiVCL4Python/tree/main/samples/HelloWorld

Blaise Pascal Magazine 102 2022 @ o Xb@x 9

HON

ith vcL Python

Page 4/6

As a special proof of
concept | run the hello world sample with P4D in a
maXbox script to show the compatibility between the two type- and memory layout
systems. But of course normally the script runs in a shell or with PyScripter. As a caveat |
can run this "test toggle workaround" only once, could be that a finalizer,
dispose or destructor is missing.

ARTMAIN =
'def main(): "+ LF+
' Application.Initialize() "+ LF+

' Application.Title = "Hello Python" '+LF+
' Main = MainForm(Application) '+LF+
' Main.Show() '+LF+
' FreeConsole() '+LF+
' Application.Run() '+LF+
, Main.Destroy() F

We pass with the
MainForm () call our initialized Application to a Python class defined
in LoadPy_VCLClass which has the class name 'class
MainForm (Form): with two method-functions (def in class):

def __init (self, owner):
def __on form close(self, sender,
action):

Imagine on the VCL-form from Python

is a SsynEdit-control which enables to script in Pascal and Python
together, fascinating it:

% Python Chats ta Svg TestDemo2

matplotiib seaborn free code
| il #from 2delphi module import svc
| @ # single f‘.-."f_:"'\\if-" one "E_
‘ 3 [n for n in range(300) if n % 2 !=0]
4
5
6
7

< >

[1, 3,5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71,

' | 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131,
133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183,
185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235,

| | 237, 238, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 268, 271, 273, 275, 277, 279, 281, 283, 285, 287,

| 289, 291, 293, 295, 297, 299]

RunPy

YTHON

Page 5/6

In P4D you do have the mentioned memo with ExecStrings:

procedure TForml.ButtonlClick(Sender: Tobject);
begin PythonEnginel.ExecStrings(Memol.Lines);
end;

This explains best the code behind, to evaluate an internal Python expression or statement.
You are responsible for creating one and only one TPythonEngine instance.

CONCLUSION
The VCL/LCL is a mature Windows/Linux native GUI framework with a huge library of included
visual components and a robust collection of 3rd party components and classes. It is the finest
framework for native Windows applications, and we can use it with Python!
Python has only one type of module object, and all modules are of this type, regardless of whethe
module is implemented in Python, Delphi, FreePascal, C, or something else.

VCL4Python topics
ehttps://learndelphi.org/python-native-windows-gui-with-delphi-vcl/
ehttp://www.softwareschule.ch/examples/weatherbox. txt
ehttp://www.softwareschule.ch/examples/pydemo37.htm
ehttps://github.com/maxkleiner/DelphiVCL4Python
ehttps://t.co/1NhgxqNr7B

[g, Python Chats to Svg TestDemo2VCL4Python

matplotlib seaborn free code

8 #from del dule import maqe ~
2 from io import StringIO
3 import numpy as np
4 import matplotlib.pyplot as plt
| 5 import matplotlib.cbook as cbook
& from delphivcl import = |
7

z a mg e rray fron ih csv data with fields te e e

8
9
10 AT Tte dateti i +h dar Qf . the date

64

11 price_data:= (cbook.get_sample_data('goog.npz', np_load=True)['price_data']

12 .view(np.recarray))
| 43 price_data:= price_data[-25@:] # get the most recent 250 trading da
i 14

15 deltal:= np.diff(price_data.adj_close) / price_data.adj_close[:-1]

16

A3 £ Marker i

18 volume:= (15 * price_dat:a.volume[:-Q] / price_data.volume[@])**2
19 close:= 0.883 * price_data.close[:-2] / ©.803 * price_data.open[:-2]
28
| 21 fig, ax:= plt.subplots()
! 22 ax.scatter(deltal[:-1], deltal[1:], c=close, s=volume, alpha=8.5)
23
| 24 ax.set_xlabel(r'Δ_i', fontsize=15)
| 25 ax.set_ylabel(r'Δ_{i+1}', fontsize=15)
26 ax.set_title('Volume and percent change')
27
! 28 ax.grid(True) v
16 >

‘| #even numbers:

.| [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
| 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94,
96, 98]

Run

Blaise Pascal Magazine 102 2022

j =Y Py " Page 1/7

INSTALLATION
PROCEDURES FOR PYTHON AND DELPHI4APYTHON

If you follow the guidelines of this article it will be fairly easy for you to handle.
For Lazarus we will have an other implementation because we will make Lazarus directly
approachable for the use of special Libraries we need to connect to for Artificial
Intelligence. That will probably become available in the next Issue (103). That said we will also
create a future possibility to have Python for Lazarus.

There might be a confusion about several titles for the Delphi Projects, there is Delphi4Python and
there is Python4Delphi as well of course Python itself.First of all yo need to install Python.
You need to have the program because all other subjects use it.

The “Delphi for Python” way means you will install a group of components for direct use and get
about 34 example programs. Its nice to install them, because otherwise you will need to get the
Python4Delphi which is much harder and confusing to install as well get it organized.

So I will give a short explanation.

Installing Python (in this case for Windows)

To download it go to: https://www.python.org/
(there is of course a list of beta versions if you want to use those, but I advise you to
chose a stable version).

Pythan PEF Docs PyPI Jobs Community

e python’

About Downloads Documentation Community Success Stories News Events

GO Socialize

Download for Windows
ents thatother

/thon 3.10.2
Python 3.10.2 —with some

Notethat Python 3,9+ cannot be used on Windows 7 or toolsin
eatlien
an be used on
Other Platfo
The product 1s
License

Alternative Implemer

Python is a programming language that lets you work quickly

and integrate systems more effectively. 2> Learn More

M Get Started : =2 Jobs

refor? Qurrelaunched
community-run job board isthe

place

Jobspyth

Blaise Pascal Magazine 102 2022

TALL HELP

IDLE Help

File Edit Shell Debug Options Window Help Turtle Demo

Python 3.10.2 (tags/v3.10.2:a
AMDE4)] on wini3z
Type "help™, "copyright'™, "cre

| o

& About IDLE 3.10.2 (64 bit) >

Python's Integrated Development
and Learning Enviranment

ernaili idle-devi@python.org
https:;‘;‘ducs.p}-’thun.urg;‘B.'lU,-‘Iihrar},-';‘idle.\‘html

Python wersion: 3.10.2 Tk wersion: 8612

License | Cu:up'_-,fright| Credits \

IDLE wersion: 3.10.2

F{E.&DME| MEYYS | Credits |

Blaise Pascal Magazine 102 2022 @

Python Docs F1

boe, Jan 17 2022, 14:12:15)

= . Pandoc
.é IDLE B PuTTY (64-bit)

| B Python 3.0

[M3C w.1929 64 bit

its™ or "license(] "™ for mwore information.

% IDLE {Python 2.10 64-bit)
@@ Python 3.10 (64-bit)
B® Python 3.10 Manuals (64-bit)

BB Python 3.10 Module Docs (64-bit)

There are two different apps
combined: The IDLE Shell witch is
“Pythons Integrated Development and
Learning Environment”.

The next one shows the Python Index of
Modules: see page 7 of this article.

There are quite a lot of possibilities:

you will have to try them your self

{

staller e pg’[hon”” Page 2/7

L HELp P

er

Python"

Page 3/7

Cormmand Prampt

Microsoft wWindows [Yersion 18.8.19844.1526]
{c) Microsoft Corporatilon. ALl rights reserwved.

C:hUsersheditorpip install delphi wel

Collecting delphi

Downloading delphi-Zz.6.1-py3-none-any.whl (7.4 kB

ERROR: Could not find a wersion that satisfies the requirement wcl {from
ERRCR: Mo matching distribution found for wcl

WARMNING: %ou are using plp wersion 21.Z2.4; however, wversion 22.8.3 is av
ou should consider upgrading via the "C:ivUsersheditoMAppDatadlocalwProg
--upgrade pip" command.

CiwUsersheditor g

I have inverted
the Command |
ITIIRN R Cownloading delphi-2.8.1-py3-none-any.whl (7.4 kBE)

shown here, ERRCOR: Could not find a werslon that satlsfles the requirement wcl {(from we
RO RO Mo matching distribution found for wcl

PN VP TR WARNING : You are uslng plp wersion 21.2.4; howewver, wersion 22.8.3 is awaill
PSPPI . chould consider upgrading via the 'C:i‘Usershedito‘AppDatailLocald\Progran

Cornmand Prormpt

text and it will
help you during
installation.

You can set the
PDF file to show
two pages side
by side, so can
read the whole
texst.

C Wsersheditor-m pip install--upgrade pip

'-m' 1s not recognized as an internal or external command,
operable program or batch file.

CivUsersheditorpip install--upgrade pip
ERROR: unknown command “install--upgrade™ - maybe you meant "install®

C:ywUsersheditor-m plp install --upgrade pip

-m" is not recognized as an internal or external command,
operable program or batch file.

CiwUsersheditorpython.exe -m pip install --upgrade pip
Requirement already satisfied: pip in c:wsersheditovappdatatlocaliprogram:
Collecting pip
Downloadin ip-22.8.3-py3-none-any.whl (2.1 MB)
| | 2.1 mB
Installing collected packages: pip
Attempting unilnstall: pip
Found existing installation: pip 21.2.4
Uninstalling pip-21.2.4:
Successfully uninstalled pip-21.2.4
Successftully installed pip-22.8.3

C:hUsersheditor

Blaise Pascal Magazine 10

Page 4/7

I have inverted the Command Prompt
which is shown here,
so they will be better readable.

Please read the text and it will help you
during installation.

You can set the PDF file to show two pages
side by side, so can read the whole texst.

versions: none)

ailable.
ramsyPython\Python31l8ypython.exe -m pip install

rsions: none)

able.
1shPythonyPython3l8spython.exe -m pip install --upgrade pip' command.

Spythonspython3lghlibysite-packages (21.2.4)

RAD Getlt Package Manager Pyt Page 5/7

p}l"tth‘q-DE‘lphl 1.0 by Dietrnar Budelsky, Morgan Martinet, Kiriakos Wahos

7 Pythan for Delphi (P40 is a set of free cormponents thatwrap up the Python DLL into Delphi, They let
P wou easily execute Python scripts, create new Python modules and new Python types, You can create

Python extensions as DLLs and much maore,
Q Install

1 Oct 2021
MIT license

Demo02.dproj - Projects B X
@VEEC%@V@\/-..\/

Dermos_01_to_34
v [EF] Dermo0l.exe
» #{} Build Configurations (Debug)
» l::l Target Platforms (indows 64-hit)

ij Unitl.pas

@' Install

=] Unit1.dfrm
CDFT‘IF”E*IEC” ~ [Ef| Demo02.exe
@ Adding environrment path "Sourcelfrr” > ’:".;} Build Configurations (Debug)
@ Cornpiling project "Python.dpk”... » () Target Platfarms (¥indows B4-bit)
@ Cormpiling project "Pythontecl.dpk”... ij Unit1.pas
@ Cormnpiling project "PythonFrecdpk®... D Unit1.dfm
@ Cormpiling project "delPython.dpk”.. > El DErnolaexe

@- Cornpiling project "delPythontcl.dpk”... > [E] Demold.exe
@- Cormpiling project "delPythonFra:.dpk”, > [E Demol.exe
@- Installing package "dclPython280.bpl".. > [Demoliexe
@- Installing package "dclPythontcl280.bpl' > [Ef DemolT.exe
@- Installing package "delPythonFrx280.by > [E Demo0B.exe

. o > [EZ Derno0B.exe
@- Opening project "Dermos_01_to_34.grouj

) > [E3 demadlldll
@- Executing command "start " "C\Usersh,

p Dermollexe
Process completed successfully. E

> [Ef ThrdDerno.exe
> [Ef Dernol6a.exe
> [EF Dernol6h.exe
> [E5 Dernol.exe
Installation of the components of > [Ef Dernodlexe
Delphi for Python works inside > [68 DemoZi.exe
Delphi and the easiest way is to % [Ef Demo?3.exe
handle it is through the Getlt Package
manager.

> [E7] VarPythUnitTest.exe

Search for “Pyt” (See at the top) > [E] Demo26.exe
and the click install. » [E2 Demo?7.exe
The demo apps and components i [E5 Dermo2Bexe
will be installed automatically. [EEREGLFEE

> [E3 Dermol0exe
Some are shown on the % [E2 Dernallexe
next page 6 of this article > [Demo32.exe

v [EF] ThrdDermo2.exe
b #{} Build Configurations (Debug)
) lr_::l Target Platforms (indows B64-bit)
D SortThds.pas
» Ej Th=ort.pas
Blaise Pascal Magazine 102 2022 > [E5) Demo3d.exe 16

Python™ Page s

Welcorne Page | Thi3ort Unit1 | Unit1 |

@ WarPyth unit tests

[Py{PythonGUIInputOutput

Ao a a A242 a2 A%

class XvZ{object):
pass

class Foo:

def _ init_ (self, value=2):
self.value = value

def _ del (5elf):
print (“delete”, self)

def _ add_ (self, other):
return Fooiself.¥alue + other.¥alue)

Adef Trefcelf Malne = 14 -

@ WarPyth unit tests

Test Objects
B Included

delete <_ main_ .Bar cbject at @x@202020006228F 7@ ~
sequence test was Ok.

Mapping test was Ok.

Dates test was Ok.

delete <_ main_ .Foo cbject at @x@202020@06505 706>
Created <_ _main_ .Foo object at Ox@02002020062202EQ>
delete <_ main_ .Bar chject at Gx@PREERERRE2DAEIE>

Instanciate class Foo: < main_ .Foo object at @x@@022202@51BSFCR:»
Test -» a, b, ¢ : 1@, 5, 15
Objects test was Ok.

delete <_ main_ .Foo cbject at @x@202020@@51BSFCE»
delete <_ main_ .Foo cbject at ex@2020200052202EQ»
delete <_ main_ .Foo object at 0x200200200622253@>
delete <_ main_ .Foo chject at 0x@PR2ERERRE22319@>
delete < main_ .Foo cbject at ex@2020200062231F@»
v
class X¥Z(object): A
pass @ Python 3.70.2 docurmentation
class Fo?:. = = @ o
def _ init_ (5Self, value=2): Hide Locate EBack Fomard Home Faort Print Options
self.value = value

def _del_ (selfy: Cantents Ilgdax | ﬁearchl Favuurjlesl
print (“delete", self)
def _ add_ (self, other):
return Foe{self.value + other.value)
def Inc(Self, Avalue = 1):
self.value = self.value + Avalue
def Getself(self):
return Self
def Getvalue(self):
return self.value

@ Python» 3.10.2 Documentation »

@ Python Module Index
(2 What's Mew in Pythan .
3 P o g Python Documentation contents
(2] The Python Language Referenc
(£ The Python Standard Library 5 .
(Z] Extending and Embedding the Py + What's New in Python

(2 Python/C AP Reference Manua = What's New In Py’[hon 310
def SetaBC(self, A, B, (): {1 Distributing Python Modules -~ .
self.h o= A [Installing Python Modules = Summary — Release highlights
self.B = B (2 Puthon HOWTOs = New Features
self.C = C

% E-‘I‘“‘”” Frequently Asked Questic = Parenthesized context managers
ossary
(27 About these dacuments = Better error messages
class Bar(Foo): [Dealing with Bugs = SyntaxErrors
Copyright -
def Inciself, Avalue = 1): E H?S'ﬁ:faﬂdl_icem = IndentationErrors
self.value = Self.value - Avalue « AttributeE
def Add(a, b): ributeErrors
return a + b
def MakeList(a, b, c, d):
return [a, b, €, d]

def Add(self, AFoolnst):
self.value = Self.value + AFoolnst.value

f = Foo()
print (“Created”, f)

Execute Script

Test Integers

Included

Test Floats
Included

Test Stings
Included

Test Sequences
Included

Test Mappings
Included

Test Dates
Included

Run selected tests once Run selected tests n times

@ Pydoc: Index of Modules x

+

C Y @ localhost63083

Python 3.10.2 [tags/v3.10.2:a58ebce, MSC v.1929 64 bit (AMDG4)]
Windows-10

Built-in Modules

_abe

_ast

_bisect
_blake2
_codees
_codecs_en
_codees_hk
_codecs_is02022
_codees jp
_codees_kr
_codees tw
_collections
_contextvars
_esv
_datetime
_functools
_heapq

C:\Users\edito\AppData\Local\Programs\Python\Python310

_io

_json
_locale
_lsprof
_md3
_multibytecodec
_opeode
_operator
_pickle
_random
_shal
—shas6
_sha3
_sha312
_signal

_ste

‘

* puthon”

Module Index : Topies : Keywords =

Page 7/

~

a @ &0 n@:

|| Search ‘

[oet] |

_stat
_statisties
_string
_struct
_symtable
_thread
_tracemalloc
_warnings
_weakref
—winapi
_xxsubinterpreters
array

atexit
audioop
binascii
builtins

emath

C:\Users\edito\AppData\Local\Programs\Python\Python310\python310.zip

C:\Users\edito\AppData\Local\Programs\Python\Python310\DLLs

_asyncio
_bz2
_ctypes
_ctypes_test
_decimal
_clementtree
_hashlib

_lzma

_msi
_multiprocessing
_overlapped
_queue

_socket

_sqlite3

_ssl

_testbuffer
_testeapi
_testconsole
_testimportmultiple
_testinternalcapi
_testmultiphase

C:\Users\edito\AppData\Local\Programs\Python\Python310\ib

_ future
aix_support
_bootsubprocess
_collections _abe
_compat_pickle
_compression
_markupbase
_0sx_support
_py_abe
_pydecimal
_pyio
_sitebuiltins
_strptime
_threading_local
_weakrefset

abe

aifc

antigravity
argparse

ast

asynchat
asyncio (package)
asynecore

base64

bdb

binhex

bisect

bz2

cProfile
calendar

dataclasses
datetime

dbm (package)
decimal

difflib

dis

distutils (package)
doctest

email (package)
encodings (package)
ensurepip (package}
£nuim

filecmp

fileinput

fnmatch

fractions

fiplib

functools
genericpath

getopt

getpass

gettext

glob

graphlib

gzip

hashlib

heapq

hmac

html (package)

multiprocessing (package)
netre
nntplib
ntpath
oturlZpath
numbers
opeode
operator
optparse
o8
pathlib
pdb
pickle
pickletools
pipes
pkgutil
platform
poplib
posixpath
pprint
profile
pstats
pty
py_compile
pyelbr
pydoc
pydoc_data (package)
queue
uopri

<rmo
faulthandler
g

itertools
marshal
math
mmap
msvert

nt

sys

time

winreg
xxsubtype
zlib

_tkinter
_uuid
_zoneinfo
pyezpat
select
unicodedata
winsound

sre_constants
ste_parse

ssl

stat

statistics
string
stringprep
struct
subprocess
sunau
symtable
sysconfig
tabnanny
tarfile
telnetlib
tempfile

test (package)
textwrap

this

threading
timeit

thinter (package)
token
tokenize
trace
traceback
tracemalloc
tty

turtle
turtledemeo (package 2

Blaise Pascal Magazine 102 2022

hitp (package)

HXbex

Datum en tijd
do 19 mei 2022
09:00 - 17:00 CEST

Locatie
Van der Valk Hotel Breukelen
91 Stationsweg

3621 LK Breukelen

Restitutiebeleid
Geen refunds

- sten

Kom naar de Delphi Dag 2022!

Wat hebben we hiernaar uitgekeken! Een LIVE Delphi dag met interessante sessies verzorgd door Delphi Experts.

Wat kunt u verwachten?

Maak kennis met ervaren Delphi experts die u tijJdens hun boeiende sessies meer vertellen over de door hen gebruikte
technieken, nieuwe technologieén, Delphi innovaties zoals bijvoorbeeld het gebruik van Delphi in combinatie met Mendix
(Low-Code en Web) en Python (Al).

Bent u of gaat u bestaande applicaties migreren? Onze sprekers kunnen u daar zeker bij helpen! Of leer meer over Duster,

de ideale tool om u te ondersteunen bij de migratie van uw Delphi code naar de nieuwste versie. Buiten de sessies om heeft
u alle gelegenheid om contact te hebben met de sprekers en collega-ontwikkelaars.

Wie zijn de sprekers?

De sprekers vandaag zijn Delphi MVP's Bob Swart (Bob Swart Training & Consultancy), Danny Wind (The Delphi Company)
en Marco Geuze (GDK Software). Ook zal Laurens van Run van het bedrijf Mendrix een interessante presentatie verzorgen.

Alle sessies zijn nederlands gesproken.

Dagprogramma

09:00 - 09:30 - Welkom met koffie/thee en lekkers

09:30 - 09:45 - Opening door Barnsten

09:45 - 10:45 - Gebruik Delphi met Python in Artificial Intelligence Neural Networks - door Danny Wind
10:45 - 11:15 - Pauze

115 - 12115 - Delphi en Mendix - een mooi duo - door Marco Geuze en Kees de Kraker

12:15 - 13:00 - Lunch

13:00 - 14:00 - High quality and maintainable code in Delphi - door Laurens van Run van Mendrix
1410 - 5:10 - Duster migratie tool - door GDK Software

15:10 - 15:30 - Pauze

15:30 - 16:30 - Delphi (Automatisch Testbaar) Web Development met IntraWeb - door Bob Swart
16:30 - 16:45 - Q&A

Kosten en voorwaarden:

De toegangsprijs is € 99,-- excl. BTW en incl. toegang tot alle sessies, koffie/thee/frisdranken, snack en lunch. De tickets zijn
niet te annuleren, maar kunnen wel worden overgedragen aan een collega. Sessies en datum kunnen wijzigen in geval van
onvoorziene omstandigheden.

https://www.eventbrite.nl/e/tickets-delphi-dag-2022-290410775447

DELPHI 11.1 THE LATEST VERSION

UPDATE OR UPGRADE?

RAD

Studie 11.1

ABSTRACT

an increase in value.

you have to replace the older version 11.

INSTALLING

MIGRATION

Because of that you need to (make a backup)

create a Migration file before you install the new
version:

Installing will help you to first uninstall and
then install. After the install you can set your
original migration file to recreate your

settings as much as possible to overcome
the endlessly and irritating reinstalling of
all kinds of components. This means the
creation of a migration file. Let us start

with that. In windows choose pen the
program overview by clicking the
(probably - left bottom) Windows
Symbol. Here you search for
Embarcadero and will see
Figure 1.

Blaise Pascal Magazine 102 20

PAGE 1/14

11

@ RAD Studio 11

@mbarcadero

The SplashScreen:The New Logo

UPDATE: A change in information, a modification of existing or known data.

An update is a concept that in itself means that there is an improvement.
UPGRADE: Upgrading is the process of replacing a product with a newer version
of the same product. An upgrade is a concept that in itself means that there is

| felt it necessary to clarify for myself the difference, because among other
things | wanted to know what is the real nature of the latest version.
According to this is Delphi 11.1 an Upgrade, and that means we need to

expect it as a new version, which in consequence means :
. Embarcadero RAD Studic 11 -~

RAD C++Builder 11

RAD C++Builder 11 [DPI Unaware)
RAD Delphi 11

RAD Delphi 11 (DPl Unaware)

% Migration Tool

RAD RAD Studio 11

RAD RAD Studio 11 {DPl Unaware)
m RAD Studic Command Prompt

. Samples

RAD Uninstall
Figure 1: Finding the Migration tool

DELPHI 11.1 THE LATEST VERSION PAGE 2/14
UPDATE OR UPGRADE? D11 1

Type of Migration

Expart th Figuration settings to an XML File with .id

If you already have created a file

) you don’t need to follow these steps.

sz foisnmrstonlic ' Otherwise you create your First Migration file. Click
“Next” and than chose the Delphi version you want to put
i e s the settings in your migration file. Click“Next” again and a

window jumps up that lets you make choices.
ettings from backup

() Import settings From a migration File

Jinclude addi
include Getlt Pa

Finish
Figure 2: Export settings

After that, you can save the file. Be
aware that Windows does only allow you to save it in
certain places, because of security reasons.

There is something | should warn you about: | tried to do a complex export
by including additional configuration files and Include Getlt packages. That
was not a good idea. Since the Getlt files caused quite a lot of work and
finally created a mess. Probably because there were newer files.

After that | had to reinstall Delphi 11.1 and after simply

not doing extras it all worked.

Do you want to switch to Online mode? You need an
Internet connection.

Figure 3: You'd better be sure

Figure 4: Settings for import

Finish Cancel

DELPHI 11.1 THE LATEST VERSION PAGE 3/14
UPDATE OR UPGRADE? D11 1

Lﬂ Migration tool

Import settings from a migration file

Select the GetIt Package to install

cept the ELLA of

Finish

Figure 5/6: here you select the GetltPackage:
the problem is that if you choose to do s
become a problem.

Replacing lib/wingd/release/FMX.Memo.5tyle.New.dcu
Replacing lib/wingd/release/fr/rtl.a
Replacing lib/wingd/releasesfrivcl.a
Replacing lib/wingd/releasesjasrtl.a
Replacing lib/wingd/release/jasvcl.a
Replacing lib/wing4/release/rtl.a
wWarning: libfwingd4freleasefrtl.a not found, new flle successfully copied

Replacing lib/wingd/release/system.Classes.dcu

Replacing lib/wingd/releasefvcl.a

Warning: lib/wingdfreleasefwcl.a not found, new file successfully copied

Replacing lib/wingd/releaseswcl.Controls.dou

Replacing lib/wingd/releases/vcl.Forms.dcu

Replacing lib/wingd/release/Wcl.Imglist.dcu

Replacing lib/wingd/releases/wcl.Menus.dcu

Replacing lib/wingd/releaseswcl.Themes.dcu

Replacing PAServer /PaSerwver2Z.@.pkg

Replacing source/fmx/FMX.FontGlyphs.Android.pas

Replacing source/fmx/FMi . FontGlyphs.105.pas

Replacing source/fmx/FMA.FontGlyphs.Mac.pas

Replacing source/fmx/Fmx.Memo.5tyle.New.pas

Replacing source/rtl/common/System.Classes.pas

Replacing sourcefvcl/vcl.Controls.pas

Replacing sourcefwcl/¥cl.Forms.pas

Replacing sourcefwcl/vcl.Imglist.pas

Replacing sourcefvcl/vcl.Menus.pas

Replacing sourcefwcl/vcl.Themes.pas

Fatch successfully applied. Backup and log flles are in "C:%Program Files (x8&)%EmbarcaderotStudion2Z.8%_patch-backuph2e
22-83-18 12.11.34",

Closing in 3 seconds.

Figure 7: Not knowing this | executed it and than a lot of
time was used to install all the old Getit packages.

DELPHI 11.1 THE LATEST VERSION PAGE 4/14
UPDATE OR UPGRADE? D11 1

I was not able to start Delphi again.
The easiest solution | found was reinstalling.
Since | am using the .iso file (RADStudio_11 1 esd_10_8973a.iso)
it does not need that much time to do it all over. Much better than it ever was....

Home Share

2 items

Figure 7:
For installing you will find if you use the .iso
a new virtual DVD player.

onal Edition

Unpacked to a virtual DVD
drive the number of the
Delphi version is 11. But do
not worry. its correct.

®mbarcadero

w 2rba ca nts

Figure 8: The new version starts:

DELPHI 11.1 THE LATEST VERSION PAGE 5/14
UPDATE OR UPGRADE? D11 1

After creating
the Migration setting file you can start.
We need to find out what are the essential new things for
this version, and that's exactly what I want to do in this article...

If you have a version of Delphi 11 it will ask you if you want it to be uninstalled.
Alas that needs to be done.

RAD RAD Studio 11

Cownloaded
Android Common Files Enterprise features

Downloaded

Installing

Owerall progress

Cancel
Figure 9: The new version progress

Here | show what is new and updated in the 11.1 version:

© IMPROVED IDE

Figure 10: The new version is shown for the first time

elcome to RAD Studio

'R

REE

DELPHI 11.1 THE LATEST VERSION PAGE 7/14
UPDATE OR UPGRADE?

w0 RAD Studio 11 [Defoutt Layout ~| | o @ = = o x

File Edit Search \Mew Refactar Project Run Component Tools Tabs Help
@-qc@Fm % -& DO @ F-w-1UN PR R

Structure R X Welcome Page 3

@ Welcome to RAD Studio L Exdendthe IDE f3! Manage Platforms . Getlt Package Manager

Create Delphi or C+-+ Open Recent i ® Lesn

Lap

RAD

Studio 11.1

— VCL Form - Delohi
topped

Projects Model View | Data Explorer | Multi-Device P...
Palette

[ER

> Delphi | Individual Files

al Files

RAD RAD Studio platform Selection

Delphi | DURX

Platforms Additicnal Opticons Bl

Delphi |

== Delphi Windows Enterprise Instatied

-
' Delphi macDs Enterprise instaited

A Delphi Linux Enterprize instaitad Select your platforms

iOS Delphi iOS Enterprise Instatizd
with Ral studio 11, you can huild
lil Delphi Android Enterprise Instaiied data-rich, hyper connected, visually
engaging applications.
. C++Builder Windows Enterprize Installed Select the platforms you want to

install and start building
iOS C++Builder i0S Enterprise Instaiiedt applications,

Yfou can easily install additional

A
g C++Builder Android Enterprise instatiset
" p target platforms later from the IDE.

4 Extend the IDE__

Cownload Size: ~ 0,0 MB
Cownload Time: ~ 0 sec Apply
Required Space: ~ 0,0 MB

Figure11 :Make sure you have Checked these three options.

PAGE 7/14

e RAD Studio 11 | Default Layour ~] [o @ » - O x

File Edit Search View Refactor Project Run Component Tools Tasbs Help
8 v IR E wib v IR e

bievs- AavABR &

v Projects ' X
F'EECH By G- v

[<Ma Project Group >

RAD Welcome to RAD Studio B Extendthe IDE 7} Manage Platforms [, Getit Package Manager

Create Delphi or C++

Windows VCL Application...
AUl spp using Windaows
native controls, using..

Multi-Device Application ...
AUl 3pp that warks on any
05 or device, using..

Package - Delphi
A smart dynamically loaded
library, carmying...

Console Application - Del...
A command-line app

Open Recent -
PGGLedenAdmin.dproj

SpeakingSportsClack...
DASpeakingSpartsclo...

a Prajectl.dproj

DH\SPPBlalse\Blalse_UK_
1

Demos_01_to_34.gro...
D cusersiedito\Docum,

; \

Learn

RAD Studio 11,1 Alex...
Embarcadera is pleased
to announce the
release of RAD Studio
Ty

E\;El

New in 11.1 - Linker ...
For both Delphi and
C++ linker options are
included for ASLR,
DER/NX, and...

i\\\
i

Android on Windows...

The Windows
Subsystem for Android
[WSA) brings native

Android...

Dynamic Library - Delphi delPythonFms dproj
1 Alibrary that can be loaded a CiUsersiedito\Documer VCL Styles: Master th...
DLL and unicaded 10444 Webinar replay: Similar
i/ L to Windows themes,
DUnitX Project - Delphi delPythonVcl.dpro] (S VCL styles make it easy
' Create Mew DUnitx Test ﬁ CiUsers\edito\Documer to.
Project 104+
Linux GUI Applicatio...
eew WEL Form - Delohi b delPython,dproj Windows 11 expanded
Q CiUsersiedito\Documer The Winelowe Cadelnsight: Stopped
104+\ Subsystem for Linux
...
?’\‘S:’;f\':;fﬂ:’ggmw Python for G++ Déven Projects Model View | Data Explorer | Multi-Device ..
10441, Dauid I, has 3 fantastic
'EJZED"H‘?,’SJS."”.”J& Palette 3 X
PythenVcl.dproj CooBuider...
e CAUsers\edito\Documer Bvx ol
s = “mise Your Delph... PRI
x e > Delphi| Indnidual Files
n feel free to > Co+Builder | Indiidual Files
fthe following 5 Other| UnitTest
\ o > Delphi
4 e " S:::'::f‘;" & > Delphi | Multi-Device
UQAIO Additional Options > i Widows
/ (OIS RRoOUC > Ce+Builder| Windows
4 b e » C++Builder
et > G+ +Builder | Multi-Device
faze - & highelevel > Other | Web
Iowontim, 3 Other
o 5 . > Delphi | DUnitx
orms Additional Options PO 3 CooBuilder| DataSrap
10 you can 3150 > Delphi | DataShap
> Co+Builder | Web
> Delphi | Web
Additional Languages > Ce+Builder | RAD Server
> Delphi | RAD Server
> C++Builder | ActiveX
ificantly expand
French Language Pack Gk) S
> Delphi| TMS Farms
Gerrnan Language Pack > Delphi| TMSWEB
Rethyorand > CoeBuilder | Wizards
lapanese Language Pack is for the Winsd > Delphi | Wizards
Fonts
the full MOTT
Samples
He |p with native Pascal
&, object
TeeChart Standard
DUnit Unit Testing Frarmeworks €L style with
InterBase Express (IBX) Components apening anew project
3%

InterBase 2020 Developer Edition

Android 5Dk 25.2.5 - NDK r21

AdoptOpenIDE CpenlDK 8 (LTS) HotSpot WM

This Tab is extra important
because of all the items

Download Size: ~ (0,0 bB
Download Time: ~ [sec

Appl
Required Space: ~ 0,0 MB il

Figure12 : The dark mode and the menu showing Additional options

Zo<

W

Blaise Pascal Magazine 102 2022

DELPHI 11.1 THE LATEST VERSION PAGE 8/14
UPDATE OR UPGRADE?

CODE INSIGHT
Code Insight for Delphi, is improved. The Delphi LSP (Lan-
guage Server Protocol architecture) engine is greatly improved with
most projects loading and UPDATING ERROR INSIGHT between 5 and 30
times faster. Type parameters are now visible when completing a class declaration,
including T in a generic declaration, and showing set types.

Hprocedure TfrmLedenAll. ClrBtn_Expired Listcli nder: TObject);
I: Integer;

begin 1]

ClrBtn_Expired_List.a

Action: TB

11

IsCustomStyleActive: ; ExecuteAction function
procedure Initiatefction; Parameters
property ScaleFactor 3 Action
function TBasicAction
- function i
"2 Project Options for |

' Building
~ Delphi Compiler
Compiling Target
Hints and Warnings
Linking
Output - C/Ces
> Resource Compiler
Build Events

Debug configuration - Windows 32-bit platform

v

Data Execution Prevention compatible
Debug information

'

Enable large addresses
EXE Description

Application N
Generate console application

Image Base

Forms
Manifest

lcons

Include remote debug symbols
Map file

Services Maximum Stack Size

Minimum Stack Size

Qutput resource string .drc file

Place debug information in separate TDS file

Set base address for relocatable images

Set extra PE Header flags

Set extra PE Header optional flags

Set OS Version fields in PE Header as <major>.<minor>

Set Subsystem Version fields in PE Header as <major>.<minoi &
minor>

Version Info

Appearance

VVVVVVVV

Packages
Runtime Packages
* Debugger
Symbol Tables

v

VN W WV

Environment Block
Set User Version fields in PE Header a5 <m3)

ddress space layout randomization (ASLR)

Depluyment
Provisioning
Project Properties

Support &
Terminal Server

W

|7 ;Nei | Cancel

COMPILERS AND DEBUGGERS
Improved stability and performance of Delphi compilers
for various platforms. The Delphi macOS 64-bit ARM and Android 64-bit debuggers are
now based on the LLDB debugger architecture, which was already in use for the Delphi iOS 64-bit
debugger.

As a result, Delphi debuggers are unified on this technology for most of the supported platforms, as a way
to deliver increasingly better quality over time. Moreover, there are quality improvements for a better Delphi

RTL integration,

The LLDB Debugger (LLDB) is the debugger component of the LLVM project. It is built as a set of reusable

components which extensively use existing libraries from LLVM, such as the Clang expression parser and

LLVM disassembler. LLDB is free and open-source software under the University of Illinois/ NCSA Open

WikiREDIA
License 2.0 with LLVM Exceptions.

Source License, a BSD-style permissive software license. Since v9.0.0, it was relicensed to the Apache

DELPHI 11.1 THE LATEST VERSION PAGE 9/14

UPDATE OR UPGRADE? D11 1
[]
RTL, Ul AND DATABASE LIBRARIES
a There are new Optimizations and quality
improvements to the core Delphi RTL in the 11.1 Release.
= | New TURLStream class, a TStream descendant with support for

async operations.

O Support for Windows 11 and Server 2022 in the ToSVersion data structure.
VCL enhancements to TTreeView, TRichEdit, TEdgeBrowser,
TLabelledEdit and TNumberBox, flickering and DoubleBuffering,

VCL high-DPI and scaling.

New Demo through GetIt showing the use of WinUI 3 library in Delphi.
FireMonkey quality improvements to TListView, improved Android SDK
integration, TwebBrowser, Windows high-DPI-related issues, and performance.

= | FireDAC adds Structure View integration and offers support for MariaDB 10.6,

SQLite Encrypted Edition (SEE), and Firebird 4 new data types.
= | RAD Studio 11.1 also improves DataSnap quality and the ability to deploy a
WebBroker application on Android.
= | RAD Server adds SysAdmin endpoints including logs handling,
backups management, and database validations, plus integrated
deployment for RSLite.
You can find some details about RSLite at
https://ashleyit.com/ or a demo
https://ashleyit.com/rs/rslite/

R0 richedit - RAD Studio 11 - remain [Built] Default Layout & = 'm’ ? = x

File Edit Search View Refactor Project Run Component Tools Tabs Help

oR @ s-BEBEER:r-a-1N1E -

Structure remain ®
& Rich £dit Cont -

File Edit RichEdit Help

+
L]

| ECEN | b
e New RichEdit 4.1 Support BB absoiit s
Object Inspector | remain.pas
Editor TRichEdt = remain.dfm
Properties Events
Font (TFont)

Height 864 \
0 Model Vi Data Exp.. M De.

htContext Palette U

M True
[Jralse

ImeMode imDontCare

ImeName

(TMargins)
0

Editnr

Quick Edit... Bind Visually...

All shown Code Design History

THE LATEST VERSION PAGE 10/14

INTEGRATION / NEW PLATFORM TARGETING
Starting the 11 Alexandria release, Enterprise and Architects users get a preview
of the new AWS (Amazon Web Service) SDK for Delphi (licensed from Appercept),

and in the future new releases are expected.
https://blogs.embarcadero.com/appercepts-new-aws-sdk-for-delphi-
available-with-rad-studio-and-delphi-enterprise-and-architect/

Customers have access to free Delphi UI libraries for Python developers, and can
also use Python libraries in RAD Studio applications. RAD Studio 11.1 delivers
official support to operating systems released after 11.0 shipped: Windows 11,
macOS 12 Monterey, iOS 15, and Android 12! (Python for Delphi will be an article in

the next issue)

Blaise Pascal Magazine 102 2022 @ 29

DELPHI 11.1 THE LATEST VERSION PAGE 11/14
UPDATE OR UPGRADE? D11 1
RAD ON 4K+ SCREENS! v
RAD Studio 11 adds high-DPI support to the IDE, enabling
developers to work on larger, high-resolution screens. Full support for
the latest 4k+ high-resolution monitors improves daily developer activities
with cleaner, sharper fonts and icons, and high-resolution support throughout
the IDE windows, including in the VCL and FMX form designers and code editor.
FireMonkey for Windows now uses the same DP model (rather than Pixel model) of all
platforms, offering a significant enhancements of the apps rendering on Windows HighDPI
and 4K monitors.

Settings

{1 Home DISplay

Find a setting f COlOUI’ Sleep better

System Night light
@ o

Display Night light settings

Sound Help from the web

Windows HD Colour Setting up multiple monitors

BoRlctinusEa:fas : Changing screen brightness
Get a brighter and more vibrant picture for videos
. support HDR. Fixing screen flickering
Focus assist

Windows HD Colour settings Adjusting font size

Power & sleep

Scale and layout @ Gethelp
Storage

- -
Change the size of text, apps and other items & Give feedback
Tablet

100%

i Multi-tasking 125%

Projecting to this PC 175%

Shared experiences 200%

225%

Clipboard 250%

Remote Desktop 300% (Recommended)
350%

About Connect to a wireless display

Older displays might not always connect automatically. Select Detect to
try to connect to them.

Detect

Advanced display settings

Graphics settings

DELPHI 11.1 THE LATEST VERSION PAGE 12/14
UPDATE OR UPGRADE? D11 1

VCL STYLES AT DESIGN TIME
VCL Styles now provides design-time support:

Prototype stylish UIs even faster by seeing immediately at design-time how your styled forms
and controls will look when running.

Viewing at design time how styles will impact the UI at runtime improves the design and testing

process for modern UIs. Creating better UIs faster is especially useful when working with per-
control styles.

dit1

O Form

Buttoni RichEdit1

|

RSN @ Faorm1

RichEdit1

Button

M CheckBox1

Tools Tabs Help

&, ICL Options...

Dptions..,

RAD Oiptions
Template Libraries...
Getlt Package Manager.. > IDE

Form Designer

s UserInterface

DPI IDE creates a very Object Inspectar
clear look and design by
showing during designtime Sifererce Vieyver v component captions
wat the final product -
might look like.
This happens through Editor
the VCL styles Reopen Menu
design-time support.
You must of course not
forget to enable the
VCL STYLES w Form Designer

Fireldl Live Prewiew

v designer hints *

Therme Manager

Explorer

Device Manager Wiodule creation options

DELPHI 11.1 THE LATEST VERSION PAGE 13/14
UPDATE OR UPGRADE? D11 1

COMPILE POSSIBLE FOR ANDROID API 30
Android API and Libraries updated - API 30, Google Play V3, Android X.

b This includes the latest billing API (required by Google Play Store). Enhanced Delphi RTL for
' Android, supporting for Android API level 30.

Support for the new “AndroidX” libraries.

In-app purchase component to help monetize your applications.

You can of course do without. There is an investigation from the EEC if this is allowed.

Android solution Google Play Billing Library Version 4.
Enhanced FireMonkey Application Platform for creating native Android ARM
applications for Android 11, 10, Pie (9.0), Oreo (8.1)

Blaise Pascal Magazine 102 2022

PAGE 14/14

DEVELOPMENT FOR
M-SERIES APPLE SILICON

Compile for macOS and eventually use the new
universal package for AppStore submission.
You can now compile for both existing Intel and new M-series
macOS processors (Apple Silicon).
Compiling for the newest processor versions enables the fastest
performance across all platforms, and supports universal packaging for the
macOS app store.

With RAD Studio 11 it is possible to compile binaries for macOS ARM.
Since the new M1 processor is incredibly fast it is more than important to create
native apps for it.

Blaise Pascal Magazine 102 2022

Including
the new
designed

LIB STICK
Program

Subscription O F F E R) 3
Combi fieeiles)™ W
Sabscription + Lgzarus Handbocl € 1 5 0
€75 ex Vat A
B Normal Price € 280
Viaisemralnsgun i eyt e bbbt i 75+60+50+35+50 BLAISE PASCAL MAGAZINE

LIBRARY 20

DAVID DIRKSE

including 50 example projects

DBOOK

NG WITH FREE PASCAL AND LAZARUS

procedure ;
var
begin
for i :
to 9 do
begin

including
19 example

projects

end;
end;

BLAISE PASCAL MAGAZINE @

www.blaisepascal.eu

COMPUTER (GRAPHICS
& GAMES IN
PASCAL

LEARN TO PROGRAM
USING LAZARUS

1. One year Subscription

2. The newest LIB Stick
- including Credit Card USB stick

3. Lazarus Handbook - Personalized
-PDF including Code

4. Book Learn To Program using Lazarus PDF
including 19 lessons and projects

5. Book Computer Graphics Math & Games
book + PDF including £50 projects

BLAISE PASCAL MAGAZINE e g BLAISE PASCAL MAGAZINE ‘

editor@blaisepascalmagazine.eu

https://www.blaisepascalmagazine.eu/product/
bundle-computer-graphics-math-games-pascal-libstick-download-subscription/

USING A DEVELOPMENT VERSION OF LAZARUS

By Michaél Van Canneyt

PAGE 1/7

ABSTRACT
Lazarus evolves continuously.
Because it is an open source project, you don’t need to wait for a

release to be able to use the latest features. In this article we show

how to compile and use the latest development version of the
Lazarus IDE.

©® INTRODUCTION

The Lazarus team keeps on developing the Lazarus IDE and the
LCL (the Lazarus Component Library). If you are eager to use one of
the new features, it is not necessary to wait for the official release
of a new version of Lazarus.
Because Lazarus is an open source project, you can perfectly
install the latest sources and build Lazarus for yourself.
The sources of Lazarus are available publicly on Gitlab:
https://gitlab.com/freepascal.org/lazarus/lazarus
In order to build Lazarus yourself, you need 2 things:

B AN EXISTING LAZARUS INSTALLATION.
At the moment of writing, this is version 2.2.0, sing Free

Pascal compiler 3.2.2. In this text we assume Lazarus is
installed in its default location: c: \Lazarus

B A GIT CLIENT.

This is not really a necessity, but makes life
easier if you want to update Lazarus on a
regular basis. The Lazarus installation has
everything to build a new version of Lazarus.
This should not come as a surprise, because
the Lazarus IDE rebuilds itself as soon as
you install a new package in the IDE. You
can make do without git, as it is always
possible to download lazarus sources in a
zip file:
https://gitlab.com/freepascal.or
g/lazarus/lazarus/-/archive
/main/lazarus-main.zip
This URL gives you a ZIP file
with the latest version

Blaise Pascal Magazine 102 2022 @ 35

USING A DEVELOPMENT VERSION OF LAZARUS <> git PAGE 2/7
SOME PRELIMINARIES

Building Lazarus requires you to enter some commands on the command-line:
Lazarus is built using the GNU Make tool, which is a command-line tool.

=

4 3, Control Panel » All Control Panel ltems » System v (] Fo

File Edit View Tools System Properties X

Control Panel Home Computer Mame Hardware Advanced System Protection Remote
G Device Manager r You must be logged on as an Administrator to make most of these changes.
| @) Remote settings Performance
!; System protection Visual effects, processor scheduling, memory usage, and virtual memary DWS ‘I O
E; Advanced system settings
5 User Profiles
Desktop settings related to your sign-n GHz
See also
Security and Maintenance Settings..

Startup and Recovery
System startup, system failure, and debugging information

Settings...

Environment Yariables. ..

0K

Cancel Apply

Figure 1: System control panel page with advanced settings

The tool is called make, and is installed together with

Free Pascal on Windows. Linux or Mac installations have a make tool installed by default.
To be able to use the make tool, it must be in a directory that is included in the PATH
environment variable. So, you must make sure this is the case, Again, on Linux and Mac
this is normally the case.

If you are on Windows, and have Delphi installed, you will also have the Delphi make tool
installed. It serves the same purpose as the GNU make tool, but has much less features.

It is therefore important that when you enter the make command on the command-line,
that the correct version of make is used.

During its installation procedure, Delphi changes the PATH environment variable to include
the directory with the Delphi version of make (as well as the other delphi tools).

So, it is imperative that the PATH environment variable must be set in such a way that the
directory with the FPC version of make comes before the one with the Delphi version of
make. Delphi no longer uses its make tool, so changing this will not damage the Delphi
installation.

Blaise Pascal Magazine 102 2022 @ 36

USING A DEVELOPMENT VERSION OF LAZARUS <> git PAGE 3/7

To set the PATH variable, in the Windows Control Panel, choose 'System’.
In this dialog, the 'Advanced system settings’ link must be used , in which case you
will see a dialog pop up which resembles figure 1 on page 2.

The 'Environment variables...’ button in the bottom-right of that dialog allows you to set the
environment variables of Windows. There are 2 sets of variables: user-specific variables (at the top)
or system variables. Both will contain a PATH variable.

In the command-line window, both PATH variables will be used. The directories in the system PATH
variable take precedence over the ones in the user-specific PATH variable.

If you have Delphi installed, it is therefore best to change the system PATH variable. Select the

' PATH’ variable, and press the 'Edit..."” button. A special dialog will pop up in which the contents
of the PATH variable have been split into lines: one per directory, see figure 2 on page 3.

In this dialog the "New’ button can be used to add a new directory to the PATH.

The directory to add is:

C:\lazarus\fpc\3.2.2\bin\x86_64-winé64

If you have the Win32 version of lazzrus installed, the directory to use is:
C:\lazarus\fpc\3.2.2\bin\i386-win32

if you have another version of Lazarus (or Free Pascal), you may need to adapt the path.
You can use the 'Move up’ and 'Move down’ buttons to move the new directory before the
entry of the Delphi IDE (as visible in figure 2 on page 3).

After you confirm the new PATH settings with the 'OK’ button, you can check that the correct
version of make is called, by entering the following command on the command-prompt:
make -v

The output will be something like this:

c:\Development\lazarus>make -v

GNU Make 3.80
Copyright (C) 2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.

There is NO warranty;
not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

m variables

Variable Value

Mew
Edit
Browse...

nbarcadero\Stu Delete
\Embarcade

Move Up

Blaise Pascal Magazine 10

USING A DEVELOPMENT VERSION OF LAZARUS <> git PAGE 4/7

DOWNLOAD USING GIT

In an earlier series of articles in

Blaise Pascal Magazine,

the installation and use of Git has been covered in depth. In this article we will therefore
limit the instructions to the download of Lazarus sources.

The repository can be cloned from:
https://gitlab.com/freepascal.org/lazarus/lazarus.git

or, if you prefer to use SSH:
git@gitlab.com: freepascal.org/lazarus/lazarus.git

4 MINGW64:/c/development

/c/development
$ cd /c/development
/c/development
$ git clone https://gitlab. com/freepascal.org/lazarus/lazarus.git
cloning into "lazarus’...
remote: Enumerating objects: 516055, done.
remote: Counting objects: 100% (82/82), done.
remote: Compressing objects: 100% (63/63), done.
remote: Total 516055 (delta 26), reused 66 (delta 19), pack-reused 515973
Receiving objects: 100% (516055/516055), 166.50 MiB 26.75 MiB/s, done.
Resolving deltas: 100% (426518/426518), done.
Updating files: 100% (12821/12821), done.

/c/development

Figure 3: Git clone on the command-line

We’'ll install the lazarus sources below a directory c: \Development\
Obviously, you're free to choose whatever directory you want.
If you have Git for Windows installed, then you can clone the sources with the following

command in the Git bash window:

cd /c/Development
git clone https://gitlab.com/freepascal.org/lazarus/lazarus.git

This is also the command you can give on Mac or Linux, and the output will look like
figure 3 on page 4. If you are using TortoiseGit, then you can use the context menu of the

Windows file explorer:

View
Sort by
Group by

Refresh

Customize this folder...

Undo Rename O Doing so,

will show the Git clone dialog, shown in figure 4 on
page 5, where you can enter the URL mentioned
above. See the first article of the Using Git

(BPM issue 97, 98 and 99/100).

clone operation, you can a

sources with the gi

Give access to

Git Create repository here...

5 TortoiseGit
New

Properties

Blaise Pascal Magazine 102 2022

USING A DEVELOPMENT VERSION OF LAZARUS <> git PAGE 5/7

BUILDING LAZARUS

When the git clone operation is complete, Lazarus can be built. For this, the windows
command-line windows must be used. Do not attempt to use the bash shell from your Git
for windows installation: this build environment is not supported.

Building the Lazarus IDE is a matter of 2 commands:

cd c:\Development\Lazarus

make bigide
The make bigide will actually build Lazarus, together with some commonly used

packages. Building Lazarus takes some time. The make command will also build
Startlazarus.exe and some other tools.
When make stops running, please take a look at the output of the make command

- in particular, check whether errors are displayed or not.
If not, all went well, and a 1azarus, startlazarus and lazbuild command will be present

in the build directory. . B
Git clone - TortoiseGit x

Clone Existing Repos

Browse... -

URL:
Directory: Browse...

[Depth [Recursive [JClene into Bare Repo [No Checkout

[Branch [Origin Name
g

Pu

[C]From SVN Repository
Trunk: trunk gs: tags Branch: branches

From: Username:

CONFIGURING LAZARUS oK Cancel
To start your new version of lazarus, you
must use the newly created application binary. Figure 4: Tortoise Git clone dialog
You can start it in the Explorer, but it is of course easier to create a shortcut on the desktop:

in the File explorer, simply drag the lazarus executable to the desktop while keeping the
Alt key pressed. (Or use the context menu ’New - shortcut’ in the fle explorer).

When you first start the new Lazarus, you may get some dialogs in which Lazarus tells you
that the settings have changed: see figure 5 on page 6 and figure 6 on page 6.

If you wish to use two separate configurations for your installed lazarus and the newly
compiled Lazarus, you should cancel here, and adapt the shortcut so it contains the
commandline option -pcp indicated in figure 6 on page 6, for example:
--pcp=C:\test_lazarus\configs

You can of course choose any directory you want for the configuration.
When you did all this, you will probably still get the Lazarus installation check-up dialog
shown in figure 7 on page 7. In particular, the GDB (gnu debugger) location will be missing.

You can reuse the one from the original lazarus installation:
C:\lazarus\mingw\x86_64-win64\bin\gdb.exe

To ensure that you are now really working with the latest lazarus, you can check the
Help - About Lazarus dialog. It should display the latest version number, which is 2.3.0
at the time of writing of this article, as can be seen in figure 8 on page 7.

Blaise Pascal Magazine

USING A DEVELOPMENT VERSION OF LAZARUS <> git PAGE 6/7

- Local Disk (C:) » Development » lazarus v O

A

Name Date modified Ty,

Uy .

lazarus.app 1
fel ! | Welcometo Lazarus.
packager 1 : The IDE cenfiguration found was previously used by another installation of Lazarus.

If you have two or more separate installations of Lazarus, they should not share the same

startlazarus.app ! configuratien. This may lead to cenflicts and your Lazarus installations may become

test 1 unusable.
tools 1 :
] | If you have only one installation and copied or moved the Lazarus executable, then you
units may upgrade this configuration,
|| .gitattributes 1 If you want to use two different Lazarus versions you must start the second Lazarus with
[gtignore . the command line parameter primary-config-path or pcp.
|Z| COPYING.GPL.bxt 1 For example:
[E] COPYING.LGPL it 1 C:\Development\lazarus\startlazarus.exe --pep=Citest_lazarus\configs
|=] COPYING.modifiedL GPL.txt 1 Choose:
|Z] COPYING bt 1
= * Update info: Use this configuration and update it for being used with this Lazarus in
E}‘ fpmake.pp ! future, The old installation will no longer use this.
E:;‘- fprmake_add.inc 1 " Ignore: Use this configuration but keep the warning. This may lead te cenflicts with the

other installation.

* Abort: Exit now. You can then fix the problem by starting this Lazarus with the correct
@ lazarus.exe ! configuration,

[lazbuild.exe 1

E:;‘-fpmake_pm(.inc 1

Additional information:

Ellocalizebat] This configuration is at: C\Users\Filip\AppData‘Local\lazarus
localize.sh 1 It belongs to the Lazarus installation at: Ci\lazarus\lazarus.exe
[Makefile] The current IDE was started from: C\Developmentilazarushlazarus.exe
|| Makefilefpc 1
| | README.md 1 =
Update info Ignore Abort
v @ startlazarus.exe 1

Figure 5: Starting a new Lazarus version for the first time

Upgrade configuration

Welcome to Lazarus 2.32.0

There is already a configuration from version 2.2.0 in
ChlUsershFiliphAppDatatLocallazarus
The old configuration will be upgraded.

If you want to use two different Lazarus versions you must
start the second Lazarus with the command line parameter
primary-config-path or pep.

For example:
Ch\Development\lazarushstartlazarus.exe
--pop=Chtest_lazarushconfigs

Upgrade Abort

Figure 6: Creating a new confiuration or not

Blaise Pascal Magazine 102 2022 . 40

USING A DEVELOPMENT VERSION OF LAZARUS <> git PAGE 7/7

#1 Welcome to Lazarus IDE 2.3.0

d

f& Configure Lazarus IDE

Lazarus Lazarus Compiler FPCsources Make Debugger Fppkg

& il

F|:£npl & The debugger executable typically has the name "gdb.exe”, Please give the full

SRCES file path. A useful setting on Windows systems is:

Make ${LazarusDir)\mingw\$(TargetCPU)-$(TargetQS)\bin\gdb.exe
Debi

ebugger | Ci\lazarus\mingw\x86_64-winf\bin\gdb.exe B
Fpplkag

oK

Start IDE

Figure 7: Lazarus start-up check-up result

iai About Lazarus SlON

Version About an open source tool. This me

o wait for the latest version to

. Instead, in this article we h

Free Pascal B, ted how you can build your o
Laza rus fig) Lazarus:

& 1 be within reach for every Ob

regardless of the level of exp

Contributors Acknowledgements

Version: 2.3.0

Date: 2022-03-19

Figure 8: 'About Lazarus’ version check

41

Blaise Pascal Magazine 102 2022 @

THE DROSTE EFFECT

By David Dirkse

INTRODUCTION

David has created the so called Droste effect program:

Just for fun! The Droste effect is nothing but a picture in a
picture in a picture etc. Its nice to how this is handled and as an
extra you get some nice extra controls for free. So he created the
Droste-Effect-App. So thank David Dirkse and if your interested buy

his book about Computer, Math & Games and Graphics.
Available at:

https://www.blaisepascalmagazine.eu/
product/books-computer-graphics-math-games-downloai

SOME SHORT STORY ABOUT THE “DROSTE EFFE
The Droste effect, known in art as an example of mise en
(ranslation placement at the escutcheon's center: depiction of the escutcheon itself
within an ,escutcheon: image within an image : story within a story.),

is the effect of a picture recursively appearing within itself,

in a place where a similar picture would realistically be expected to
appear.

This produces a loop which mathematically could go on forever,
but in practice only continues as far as the image's resolution
allows. The effect is named after a Dutch brand of cocoa, with an
image designed in 1904.
It has since been used in the packaging of a variety of products.
Apart from advertising, the Droste effect is displayed on the
tins and boxes of Droste cocoa powder which displayed a
nurse carrying a serving tray with a cup of hot chocolate and
a box with the same image, designed by Jan Misset. The
effect has been a motif, too, for the cover of many comic
books, where it was especially popular in the 1940s.

Mathematics

The appearance is recursive: the smaller version

contains an even smaller version of the picture,
and so on. Only in theory could this go on
forever, as fractals do; practically, it continues

only as long as the resolution of the picture
allows, which is relatively short, since each
iteration geometrically reduces the
picture's size.

Blaise Pascal Magazine 101 2022 @

Page 1/3

Figure 1: The Cats Eye

DROSTE
CACAOQ.

42

THE DROSTE EFFECT d 5 PAGE 2/3

7" welcome at the Recursive Image Project

load/save file tof/from disc

load image from disc in PIP area

clear o/

LS] clear image

frame

+ color 4—7es - frame around image

reload ¥ reload image
e inser®————————= copy image to PIP area
top
PIP

left margi are
—

—+ select PIP area This is all create in Delphi 7.
Take a look and see the
difference on the next page.

o TITTAARS | — |

Cresetel 1 . reset PIP dimensions

3 welcome at the Recursive Image Project

At the top you see the functionality
of the app. Its all very easy.

Of course if you want to see the
code used for this: as a subscriber 1eolor | 2 colors
you have the projects (D7+D11.1)

available. _reload |
It is originaly written in Delphi 7,

but [recreated it in Delphi 11.1 AP eeiHinge
(Alexandria).

As you can see on page 3 of this
article | used the new

VCL style sheet and chose the
“Ruby Graphite”. In the next issue
I’ Il explain how it works.

%top

Blaise Pascal Magazine 101 2022

THE DROSTE EFFECT

L=

Page 3/3

Components
Installed components

E TDaw FotationBtn

Components
Installed cormpaonents
I‘:'I. Tdaw7Colormixer

E TdawTColorPicker
[4 TaavreLBox
ﬁ TdawTTimer

EE ThawhrrayBin

Blaise Pascal Magazine 101 2022

@

bh b

44

ADVERTISEMENT

LAZARUS HANDBOOK 2

&,
o

= LAZARUS HANDBOOK 1

\ N
N
\ y 7
" . Delphi VCL4Python.
“Python ipstallhel
test release of Delphi
r fect: picture icture
sing T X Eldl X
ibra 0
ng 0 us! stin
i

(o
4
[2

[/

Subscription
Combi

Subscription + Lazarus Handbook
(hardcover incl sending)

€ 100

Ex Vat 9%

https://www.blaisepascalmagazine.eu/product/lazarus-handbook-hardcover-subscription/

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

By Michael van Canneyt
O INTRODUCTION TS

To say that there are a lot of free Javascript
libraries or frameworks out there is an understatement.

Normally, any Javascript class or function can be used in
PAS2]S: By falling back on assembler blocks, any
Javascript function can be called. The transpiler will happily
insert any Javascript in your final transpiled code. But if
the transpiler has external declarations for the Javascript
classes or functions, the transpiler can and will check your
code against the definitions it has.

S: contains a tool to
convert TypeScript declaration
modules to a pascal unit with
external class definitions. This can be
used to create import units for many
Javascript libraries. In this article, we

Plain Javascript has a major drawaback: it is not typesafe. ~SNOWHhOw to use this tool.

To remedy this, people at Microsoft created TypeScript:

a type system for Javascript. It is a superset of

Javascript, which is transpiled to Javascript.

(One of the authors of TypeScript was also one of the

creators of Delphi)

This type system is made popular by Angular and other

large Javascript frameworks. People writing

TypeScript code face the same problem as Pas23S

users: how to make use of the many Javascript

libraries, and still write Typesafe code?

The answer to this problem are declaration modules

(files with extension .d.ts): these modules

do not implement any functionality. They just e r——
describe the API offered by an external
Javascript library. The TypeScript compiler

reads this declaration and uses it to validate

the TypeScript code that makes use of the

Javascript library: It serves exactly the

same purpose as a PAS2J]S unit with

external classes.

Many plain Javascript libraries offer It is available at:
such a TypeScript declaration https://github.com/DefinitelyTyped/Definit
module in their distribution.

But there are also a lot of libraries
that do not offer such a
declaration module.
Because there are a lot of
TypeScript
programmers, there is
an ongoing effort to
describe these
JAVASCRIPT
libraries: the

It contains many tens of thousands of declaration
TypeScript programmers that wish to use a javasc
can just check out this repository and use the declarat
of the package they wish to use in their project. PAS2]S
similar repository of import units. Indeed, ideally, the Typ
declaration modules can just be re-used so all the hard work
ypeScript would benefit the PAS23S users as well.

ortunately, this is possible to a certain extent:
The upcoming version of pas2js comes with a tool that converts a T
DefinitelyType declaration mosiule to a pasc.al unit yvith externa! definitjons: dtstopa
d repository Better yet, an online service exists which makes this possible today.

on Github. Last but not least, the tool and the webservice have been integrated in th

You can create an import unit directly in your project from within the Lazarus

Simply use the File-New menu item.
We’ll discuss each of these possibilities in turn.

Blaise Pascal Magazine 102 2022 @ 46

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

2 DTS2PAS

The dts2pas tool is a small command-line tool which will transform a *.d.ts file to a
pascal unit. Running it without options (or option -h) gives the following output:

Usage: dts2pas [options]

Where options is one or mote of:
-a --alias=ALIAS Define type aliases (option can be speficied multi
where ALIAS is one of

a comma-separated list of Alias=TypeName values
a @FILE : list is read from FILENAME, one line pe
-h --help Display this help text
-i --input=FILENAME Parse .d.ts file FILENAME
-1 --1link=FILENAME add {$linklib FILENAME} statement. (option can be
-output=FILENAME Output unit in file FILENAME
-s --setting=SETTINGS Set options. SETTINGS is a comma-separated list o
coRaw
coGenericArrays
coUseNativeTypeAliases
coLocalArgumentTypes
coUntypedTuples
coDynamicTuples
coExternalConst
coExpandUnionTypeArgs
coaddOptionsToheader
coInterfaceAsClass (*)
coSkipImportStatements
Names marked with (*) are set in the default.
-u --unit=NAME Set output unitname
-w --web Add web unit to uses, define type aliases for web
-x —-extra-units=UNITLIST Add units (comma-separated list of unit names) to
This option can be specified multiple times.

From this output we can see the minimal operation options are:
dts2pas -i 7zip-min/index.d.ts -o 7zip.pp

This will run the declaration conversion on the file 7zip-min/index.d. ts and will write the
resulting pascal file to 7zip.pp
This is what the declaration input file looks like:

export function unpack(pathToArchive: string,
whereToUnpack: string,
errorCallback: (err: any) => void): void;
export function unpack(pathToArchive: string,
errorCallback: (err: any) => void): void;
export function pack(pathToDirOrFile: string,
pathToArchive: string,
errorCallback: (err: any) => void): void;
export function list (pathToArchive: string,
callback: (err: any, result: Result[]) =>
export function cmd (command: stringl[l],
errorCallback: err: any) => void): void;
export interface Result {
name: string;
date: string;
time: string;
attr: string;
size: string;
compressed: string;

}
Blaise Pascal Magazine 102 2022 @ 47

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

And this is what the tool produces as output
(lines have been formatted for better readability):

Unit _7zip;

{$MODE ObjFEC}
{$H+}

{$modeswitch externalclass}
interface
uses SysUtils, JS;

{$SINTERFACES CORBA}
Type
// Forward class definitions
TResult = Class;
Tunpack errorCallback = Procedure (err : JSValue);

// Ignoring duplicate type Tunpack errorCallback (errorCa

Tpack_errorCallback = Procedure (err : JSValue);
Tlist_callback = Procedure (err : JSValue; result
Tcmd _errorCallback = Procedure (err : JSValue) ;
TResult = class external name ’'Object’ (TJSObject)

name : string;

date : string;

time : string;

attr : string;

size : string;

compressed : string;

end;

Procedure cmd (command : array of string;
errorCallback : Tcmd_errorCallba
external name ’'cmd’ ;

Procedure list (pathToArchive : string;
callback : Tlist_callback) ;
external name ’1list’;

Procedure pack (pathToDirOrFile : string;
pathToArchive : string;
errorCallback : Tpack_errorCallba
external name ’'pack’;

Procedure unpack (pathToArchive : string;
whereToUnpack : string;
errorCallback : Tunpack_errorCall
external name 'unpack’; overload;

Procedure unpack (pathToArchive : string;
errorCallback : Tunpack_errorCall

external name ’'unpack’; overload;

implementation
end.

Blaise Pascal Magazine 102 2022 @

48

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

Some things to note:
types are prepended with T: Javascript is case sensitive, and often you will encounter
variables with the same name as a type, but with different casing - a class name
usually starts with a capital. To avoid name clashes, the tool prepends a T to type names.
The tool correctly spots overloaded versions and marks them as such.
The tool creates auxiliary types for complex function argument types.
The special any type is replaced with JSValue.

The JS unit is automatically used.
The resulting file can be compiled as-is:

> pas2js 7zip.pp
Info: 11458 lines in 6 files compiled, 0.3 secs

The dts2pas tool has several options, we’ll explain them here (using the long version of each option):

alias This can be used to define type aliases. Aliases can be specified in 2 w.
©® As a comma-separated list of Name=Alias pairs:
--alias=AType=MyType
This will replace every occurence of the AType in the declaration file wi

® Using a @ character, a filename to load a list of Name=Alias pairs (one
--alias=@MyAliasFile.lst

This will read file MyAliasFile.1lst. Each line of the file must contain a

help Display a help text
input as seen, this is used to specify the input file to parse.
link with an argument FILENAME will insert a linklib statement:

{$1linklib FILENAME}

When using the resulting unit, this will insert an import statement in the final
import FILENAME from "FILENAME";

output with an argument FILENAME sets the output filename.

setting with an argument SETTINGS sets various conversion options, they are discuss
Names marked with (*) are set in the default

unit with an argument NAME sets the output unithname to NAME. When not specifie;
it is deduced from the output filename. .

web Adds the web unit to the uses clause and defines type aliases for all web unit
this unit is part of pas2js and contains definitions of all classes exposed by th
extra-units with an argument UNITLIST will add the units in UNITLIST
(a comma separated list of unit names) to the uses clause.
Some TypeScript modules depend on other modules using import statement
the dts2pas tool will not recursively translate these other modules, but if you
translated them already, this option can be used to add the converted unit na

Blaise Pascal Magazine 102 2022 @ 49

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

The setting argument accepts a comma-separated list of named flags that influence

the conversion process and the generated code. When translating TypeScript to Pascal,
sometimes choices must be made because some TypeScript structures to not translate
oneon-one to pascal constructs. Many of these choices are controlled using the flags which
you can specify in the settings option. Here is an overview:

coRaw This will not generate a unit header or implementation section. You can use this to
generate an include file.

coGenericArrays
Instead of using array of Type for array types, the converter tool will write arrays as TArray<Type>.
There is no functional difference in PAS2JS between the 2 declarations.

coUseNativeTypeAliases
This will translate some basic types such as long to Integer.

colLocalArgumentTypes
If auxiliary types are generated for methods, these will be generate
in a Type section within the class, for example:

type
TSomeClass = Class
Public
Type
TMyMethod B _Array = Array of integer;
Function MyMethod (B : TMyMethod B Array)
end;

The default behaviour is to generate a global type with the class name prepended:

type
TSomeClass_MyMethod B Array = Array of integer;
TSomeClass = Class
Public

Function MyMethod (B :
end;

coUntypedTuples

A tuple* in TypeScript is a fixed-length array of values. If the
tool can determine the type of the element, it will generate a typed array:
(In mathematics, a tuple is a finite ordered list (sequence) of elements.)

Type
TSomeTuple = array[l..3] of st-

If this flag is set, the array element will be untyped (type JSValue):

Type
TSomeTuple = array[l..3] of JSVa-

coDynamicTuples
A tuple in TypeScript is a fixed-length array of values. The dts2pas

tool will declare the type with the same number of elements. However, javascript
allows you to specify less elements than in the definition of the tuple. To accomodat¢g

TSomeClass_MyMethod B Array)

for this, using this flag you can let the converter generate a dynamic array:
Type

TSomeTuple = array of string;

Blaise Pascal Magazine 102 2022 @ 50

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

coExternalConst
A constant in a TypeScript declaration will be translated literally. For example:

const myConst = "Hello, World";
Is translated as:
const

myConst = 'Hello, World’;

This means the constant is duplicated in the pascal code. Using the flag
coExternalConst, the constant is translated as a reference instead:

const
myConst : String; external name 'myCons

coExpandUnionTypeArgs
A variable of union type in TypeScript can have one of the
possible types in the union type. This cannot be expressed in Pascal, so the default
behaviour is to replace this with the JSValue catch-all type:

function func (a : string | number) -
is translated to Pascal as
function func (a : jsvalue) : int-

With the coExpandUnionTypeArgs switch, for function or method arguments
with union type, the converter will create overloaded versions for each type. In the
above example this means the following declarations are produced:

function func (a : string) : integer; overl

function func (a : double) : integer; overl
coaddOptionsToheader

If this switch is present, the converter will insert a comment with

the used conversion options to the unit header. If the unit needs to be regenerated,
the options used to create the original are available.

coInterfaceAsClass
TypeScript knows interface definitions. The standard behaviour of the dts2pas tool is to
translate this to an interface definition. With this switch,
the interface will be declared as a Pascal class.

coSkipImportStatements
Any import statements in a TypeScript module are written to
the converted pasal file as comments. With this option, these comments are not
generated.

Blaise Pascal Magazine 102 2022 @ 51

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

© THE WEB-BASED SERVICE

On the Free Pascal server, a (cgi) web service exists that can be used to translate any file
from the DefinitelyTyped repository to a Pascal unit. The service is located at

https://www.freepascal.org/~michael/service/dts2pas.cgi

On the server, the DefinitelyTyped repository is checked out, and is updated daily.
By specifying a file name (relative to the types directory in the repository), the service
outputs the translated unit. Using the following URL

https://www.freepascal.org/~michael/service/dts2pas.cgi/
convert/?file=7zip-min/index.d.ts&unit=7zip

(the line has been split for readability) you will get the same file as in the result above.
The following query variables are accepted, they have the same meaning as their commandline
counterparts.

file the file to convert, relative to the types directory in the DefinitelyTyped repositor,
unit the unit name to use.
aliases Aliases to to use, using the same format as the command-line tool.
extraunits Extra units to add to the command-line tool.
prependlog Insert conversion log as comments in the source.
flagname=1 Switch on any of the flags mentioned earlier.
You can get a list of files available for conversion, one per line:

https://www.freepascal.org/~michael/service/dts2pas.cgi/list?raw=1

By leaving out the raw=1 the output is a Javascript array variable definition.
The latter option is used in a small web page, shown in figure 1 on page 7:

" Convert definitelytyped Typ x +

G @ e 94 https;/fwww.freepascal.org/~michael/pas2js-demos/ts2pas/ o

Convert typescript to Pas2JS import

File Name: Unit Name:
‘ 7zip-min/index.d.ts m ‘ _7zip ‘
Use generic arrays Use native type aliases
Create class local argument types Use untyped tuples
Use dynamic tuples Use external consts
Expand union type arguments Add options to header
Interface as class Skip import statements
Do not generate unit header Prepend conversion log to unit as comment
Output
Unit _7zip;
{$MODE ObjFPC}
{SH+}

{Smodeswitch extemalclass}

interface

Figure 1: dts2pas web front-end

https://www.freepascal.org/~michael/pas2js-demos/ts2pas/

Blaise Pascal Magazine 102 2022 @ 52

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

This page (obviously written in pasZ2js) is a simple front-end to the service. The service
and front-end page will still be extended to provide more options, such as entering aliases
or uploading a TypeScript file to convert.

® INTEGRATION IN THE LAZARUS IDE

Both the web-based service as the command-line tool have been integrated in the Lazarus
IDE: using the File-New menu, you can directly convert a TypeScript file and make the
resulting pascal file part of your program, see figure 2 on page 8.

When clicked, a small wizard pops up which allows you to select a description file from

disk, or you can opt to use the web-based service:

enter the name of a module - a list of matching files will be presented as soon as you enter 2
characters: see figure 3 on page 9.

On the same tab, you can enter extra units, aliases and indicate that the web unit must be
used - together with all known aliases: basically the same options as available in the web
interface or command-line.

The second tab (figure 4 on page 9 of the wizard page) allows you to specify the conversion
settings (or flags).

When done, you can click OK, and the IDE will create a new unit, part of your PAS23S
project, containing the converted TypeScript declaration module.

If all goes well, it is ready to use, as seen in figure 5 on page 10

Module Description

#| Pascal unit Pas2Js import unit from

% Form Typescript declaration

%] Data Module module.

% Frame Create a Pas2JS import unit

7 Text from a Typescript declaration
module.

% IDE window, dockable

% FPCUnit Test Case

%) InskantFPC script

% MyForm

| Pas2Js class definition from HTML file

Pas2Js import unit from Typescript declaration module.
#) SQL Sscripk file

HTML Web Module

% Web Module

% Web DataProvider Module

% Web JSON-RPC Module

% Web Ext.Direct Module

% File serving Module

Inherited Item

Help

Figure 2: The File-New entry to import
a TypeScript descripton file

Blaise Pascal Magazine 102 2022 @ 53

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

Input Code generation
Local file
Declaration File
FPC DefinitelyTyped Service

Module name capture-c

Extra units

web, console

Use Web unit and aliases

Aliases
Class Alias
Console TJsConsole
TJSLODash

Figure 3: Selecting a TypeScript file or module

Convert typescript module declaration to pascal unit - 0

Input Code generation
Options
Raw code (no unit)
Use native type aliases
Untyped tuples
External consts

Add used options to header

Skip Import skatements

Figure 4: Setting the conversion flags

Generic Arrays
Use class local argument types
Dynamic tuples
Expand union-typed argumentks

Generate Interfaces as classes

Cancel OK

Blaise Pascal Magazine 102 2022

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

Sou
Project Inspector - project... &)
v &« J) pe proj
. L] = 'S Q
*project1.lpr X unit1 X Addv Options e Help
& |s |2 L
220 [#] project1.lpr
Vrit T B unit1.pas
3 Required Packages
225

. |{$INTERFACES CORBA}
230 (type

TCaptureOptions = class;

. Tcapture_exec = procedure;
235 Tcapture_Result = array of string;

TcaptureStderr_exec = procedure;

240 | TcaptureStdio_exec = procedure;
TcaptureStdio_Result = class external name 'Object' (TJSObject)
Public
stdout : string;
- stderr : string;
245 end;

Figure 5: The converted result is part of your project

©® CONCLUSION

At ime of writing this article, the DefinitelyTyped contained well over 36.000 declaration

fil eoretically, these can now all be used in PAS23S You may wonder why the converted units
are not made part of the PAS23S repository. The answer to this question is twofold:

O The archive evolves continously: the PAS2JS units would be outdated almost daily.
O The conversion is not always perfect:
sometimes some manual work is needed to fix the generated unit.

Javascript and Typescript have a lot of idioms which do not always translate well to
Pascal. What is more, the declaration files are sometimes ‘messy‘ — despite being more
strict than Javascript, TypeScript still leaves a lot of room for interpretation and the
translator sometimes simply cannot translate correctly what is being defined in TypeScript:

Different people may have used different methods to describe the same Javascript interface and
some descriptions may translate better to pascal than others.

Some declarations are simply outdated:

TypeScript has evolved, but the declaration files have not been updated accordingly.

The Javascript/Typescript parser included in Free Pascal is not perfect either:

IT TRANSLATES WELL OVER 99% OF THE FILES IN DEFINITELYTYPED, BUT NOT 100%.

Still, using the tool does most of the work for you. Even if some manual work is involved,
the amount of work that you must still do will be negligable compared to writing the import
units manually.

Blaise Pascal Magazine 102 2022 @

55

BLAISE PASCALCMAGAZINE

The books

Sewn POCKET,
almost thousand pages

written by the makers of FPC and Lazarus

934 Pages in two books 50 € (euro)

LAZARUS ‘a
HANDBOOK

FOR PROGRAMMING WITH FREE PASCAL AND LAZARUS

PDF '
934 Pages ’}e

containes _
electronic index

Including the PDF, INDEX and Code Examples

PAGE 1/€

LIBRARY SUPPORT IN PAS2¢” 3

BY MlCHAEL VAN CANNEYT

4 T— 2 JAVASCRIBEMIODULES

Javascript modules are nothing but Javascript
files which export a number of symbols, but
which otherwise do not share any code or
namespaces. Especially the latter is important.
By default, if you link 2 Javascript scripts to a
HTML page:

== 24> & LIBRARIES

ABSTIBCT

This article is meant to show a new feature:
With ver§ion 2.2, PASZJS intrgdl{ces library <script sro="scriptl.js"s</script>
support in the compiler. Libraries in <script src="script2.3s"></script>
PAS2J]S translate to Javascript modules:

independent blocks of Javascript code which
must be explicitly imported in another block: In
this article we show to use them.

then the code script1 has access
(variables, functions etc.) of script
and vice versa. This means they can
even annihilate each others’ working.
With Javascript modules, this is not the case.
Take the following HTML snippet:

o INTROBIETION
For the experienced pascal programmer, usi
libraries is not uncommon. Till recently, using
in PAS2JS was not possible.

With release 2.2 (released on 22-02-2022) of
PAS2]S libraries can now also be used in PAS231S

<script type="module"
src="scriptl.js"></script>

<script type="module"

X \) src="script2.js"></script>

For the pascal programmer, libraries - (DLLs in <script src="script3.js"></script>
Windows) - are independent programs which export
certain functions and variables.

In Javascript, a similar concept exists: Modules.

Here scriptl, script2
distinct namespaces. The!
with each other: both script!
have a variable Myvar, but ea
local copy of this variable. If serip
MyVar, it will only modify its own co|
What is more, script3 has no access to the
symbols defined in scriptl and script2.
Only modules can import symbols of other
modules. Imagine scriptl.js has the
following content

Modules can import symbols from other modules,

and can export symbols to other modules.

It is therefore natural to transpile a Pascal library to a

Javascript module, and this is now what can be done

with PAS23S

B Import symbols from a module.

B Create a module that exports functions and
variables.

In contrast to Delphi, no special precautions

are needed for using strings or classes in a export const MyTextl = "Hello,";
PAS23S library: in particular, there is no export const MyTextz = " World!";
need to enable a module to use shared g
memory.

This means
constants as

import { MyTextl, MyText2 } from "./scriptl.js";

document.title = MyTextl+MyText2;

Blaise Pascal Magazine 102 2022 <> 57

LIBRARY SUPPORT IN PAS2¢”

When loading script2, the browser will also automatically load seriptl.js, thereis

no need to include it explicitly in the HTML file. The file script1 must of course exist

in the specified location.

In contrast with script2, script3 can never access the symbols, because it is not a

module itself. Only modules can import and export symbols.

It is of course possible to share some symbols between modules and non-modules by attaching
them to a global symbol such as the window.

© IMPORTINGIBIBRARIES

To import symbols from a module (written in Pascal or not) 2 things are needed:
O alinklib directive:

this will be transformed to the following

import * as myfile from "./my-file.js";

Javascript supports some more fine-grained import statements, but these are not yet
supported in Pas2]S. The myfile name is optional, in which case the filename
without path or extension will be used.

O an external declaration for each function or variable exported by the module (the
declaration has been split over 2 lines for readability):

Function MyFunction (S: String) : Integer;
external name 'myfile.myFunction’ ;
var

MyVar : String; external name 'myfile.myVar’;

Note that these external names contain the prefix 'myfile.” as part of their name: this
is because all symbols of the module are available as myfile.NNN, due to the way
the import statement is constructed from the {$Linklib } directive.

Note that the use of the {$Linklib } directive also requires the use of the module
compiler target. More about this later.

EEEENSS ——————

IES

To write a library using Pas23S, you can write a library just as you would in Delphi or Free Pascal;
using the library keyword, instead of the default program keyword:

library htmlutils;
{$mode objfpc}
// Your exports Here
// exports a, b, c;

begin
// Your library initialization code
here

Blaise Pascal Magazine 102 2022 <> 58

LIBRARY SUPPORT IN PAS2¢” 35S

However, this is not enough. A new transpiler target was introduced: module.
The reason for introducing a new target is the following:

Depending on the target, the transpiler will include a Pas2JS rt1.run() ; statement at the
end of the generated Javascript (or not). The output for the nodejs target includes such a
statement, but the browser target does not - because, as a rule, the rt1.run () statement is
included in the .htm1 file: this will ensure that HTML tags and their ids have been processed by
the browser before the program is run.

Since a library (or module) can be used both in node.js and in the browser, a new target has
been created: module. This target will always include the rtl.run () statement.

The {$Link1lib} directive also requires the use of the module target.

No import statement will be generated, unless the target is set to module.

DULES USING PASCAL

So, how to use libraries and {$Linklib} directives to create Javascript modules?
We will demonstrate this with an example.

We create a library that allows to clear the HTML page below a certain tag (identified by [
it’s id attribute), and which allows to set the page title. This is quite simple:

library htmlutils;
uses web;
Var DefaultClearID: String;

Procedure SetPageTitle(aTitle : String);
begin

Document.Title:=aTitle;
end;

Procedure ClearPage(aBelowID: String);
Var
EL:TJSElement;
begin
if (aBelowID=") then aBelowID:=DefaultClearlD;
if (aBelowID=") then el:=Document.body
else
el:=Document.getElementById(aBelowID);
if Assigned(El) then El.innerHTML:=";
end;

exports
DefaultClearID, SetPageTitle, ClearPage;

reate a new project
end.

ject Description
[E] Application Pas2Js Library / JavaScript module
Simple Program A pas2js library that is transpiled to

Program a JavaScript module.

Console application

Library

FPCUnit Console Test Application

FPCUnik Test Application

InstantFPC program

Daemon (service) application

Web Browser Application

MNode.js Application

Atom package

Cancel

Figure 1: Pas2]S module support in the Lazarus new project menu

Blaise Pascal Magazine 102 2022 <> 59

LIBRARY SUPPORT IN PAS2¢” 35S

To demonstrate the export of variables, we also export a variable befaultClearID.
The value of this variable is used to determine which HTML tag to clear. If it is not set,
and no tag ID was specified in the call to clearPage, the whole HTML body element is cleared.

This library can be compiled with the -Tmodule target:
/home/michael/bin/Pas2JS -Tmodule -Jirtl.js -Jc htmlutils.pas ‘

The Lazarus IDE has support for creating a Pas23S library in the Project-New project
menu, which will set all necessary options, as can be seen in figure 1 on page 3.

As indicated earlier, to use a library (or module), we must use again a Javascript module:
only javascript modules can use other modules. To create this module, we have 2 options:
O Create another library.
O Createa program. Pas2.JS Browser project options
Create initial HTML page

Maintain HTML page

Run RTL when all page resources are fully loaded

Let RTL show uncaught exceptions

Use Browser Application object

Use Browser Console unit to display writeln() output

Project needs a HTTP server

Create a javascript module instead of a script

Figure 2: Pas2]S program as module support in the Lazarus new project menu

It is clear why a library will work: the Javascript
script will need to have the module type and must be compiled with
the module target. However, a program will also work.

From the Javascript point of view, there is no difference between a library and a program.
From a Pascal point of view, the only factor of importantce is whether you want to export
symbols from your module. If you do, then you must create a library.

For demonstration purposes, we’ll create a program, because the Lazarus IDE wizard then
also creates a HTML page which we will need to show the functionality of our library.
In older versions of Lazarus the TargetOS of our program must manually be set to module in the
compiler options. In the latest (trunk, hence not yet released) version, the

Project - New project dialog already offers an option which does this for you,
see figure 2 on page 4.

Blaise Pascal Magazine 102 2022 <> 60

LIBRARY SUPPORT IN PAS2¢”

We start by creating all code that is needed to import the library:

program htmlutilsdemo;

{$mode objfpc}
{$linklib ./ htmlutils.js utils}

uses
Web;

Procedure SetPageTitle(aTitle : String);
external name 'utils.SetPageTitle’;

Procedure ClearPage(aBelowID: String);
external name 'utils.ClearPage’;

var
DefaultClearID: string;

external name 'utils.vars.DefaultClearID’;

Note the utils.vars.DefaultClearID: the prefix vars is needed for all variables
exported by a Pas2JS-created library.

To use these routines, we create a HTML page with 2 edits (IDs edtTitle, edtBelowID)
and a checkbox (ID cbUserDefaultClearID) and 2 buttons (IDs btnSetTitle

and btnClear) . These edits can be used to specify a page title and an element ID,

the onclick event handlers of the buttons will call our imported functions.

The element definitions are bound to the HTML tags in the BindElements function:

Var
BtnSetTitle,BtnClear : TISHTMLButtonElement;
edtTitle,edtBelowID,cbUseDefaultClearID: TISHTMLInputElement;
Procedure BindElements;

begin
TJSElement(BtnSetTitle):=Document.getElementById('btnSetTitle');
BtnSetTitle.OnClick:=@DoSetTitle;
TJSElement(BtnClear):=Document.getElementById(‘btnClear');
BtnClear.onclick:=@DoClear;
TJSElement(edtTitle):=Document.getElementById(‘edtTitle');
TJSElement(edtBelowID):=Document.getElementById('edtBelowID");
TJSElement(cbUseDefaultClearID):= Document.getElementById('cbUseDefaultClearID');

end;

e ————

The BindElements function is called in the program startup code.
The DosetTitle and DoClear methods are callbacks that will call our imported function:

function DoSetTitle(aEvent: TISMouseEvent): boolean;
begin

Result:=False;
SetPageTitle(edtTitle.Value);
end;

Blaise Pascal Magazine 102 2022 <>

61

LIBRARY SUPPORT IN PAS2¢” 3S

The DoClear function is a little longer, since it must take into account the

value of the cbUseDefaultClearID element:

function DoClear(aEvent: TdSMouseEvent): boolean;
begin
Result:=False;
if cbUseDefaultClearID.Checked then
begin
DefaultClearID:=edtBelowID.value;
ClearPage(");
end
else
begin
DefaultClearID:=";
ClearPage(edtBelowID.value);
end;
end;

Module demo — Mozilla Firefox

File Edit WView History Bookmarks Tools Help

Module demo * +
S C @ © O [localhost:3030 2% | | Q. search ; O B &% » =
Clear Enter the name of a tag ID (content ,
content2) to clear HTML below

Title GeTe that ID. Specifying no |D will clear the
whole page

[Use DefaultBelow!D Enter a title to set the title of this

page. See the effect in the browser
tab or window title bar.

Box withID content

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's
standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a
type specimen book. It has survived not only five centuries, but also the leap into electronic typesetting, remaining
essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum
passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum

Box withID content2

Figure 3: Our page in action

The HTML will not be presented here, except to show that the script tag must be modified,
the type of the script must be set to module:
<script type="module" src="htmlutilsdemo.]js"></script>
(again, in the latest development version of Lazarus, this is already done for you).
The resulting HTML page can be seen in see figure 3 on page 6, it is available online at
https://www.freepascal.org/~michael/pas2js-demos/modules/htmlutils/

Blaise Pascal Magazine 102 2022

LIBRARY SUPPORT IN PAS2¢”3S

In the exports statement only variables and functions can be specified. Despite this
restriction, it is possible to use classes which are exported from libraries.

The simplest way to do so is to create a function that creates an instance of a class.
Alternatively, for global instances, you can declare a variable of type of the desired class.
To demonstrate this, we’ll rewrite our example to use a class called THTMLUtils:

library htmlutils;

uses web;

Type
THTMLUtils = class(TObject)
Public
DefaultClearID: String;
Procedure SetPageTitle(aTitle : String);
Procedure ClearPage(aBelowID: String);
end;

Procedure THTMLUtils.SetPageTitle(aTitle : String);
begin

Document.Title:=aTitle;
end;

Procedure THTMLUtils.ClearPage(aBelowID : String);
Var EL:TJSElement;

begin
if (aBelowID=") then aBelowID:=DefaultClearID;
if (aBelowID=") then el:=Document.body
else
el:=Document.getElementById(aBelowID);
if Assigned(El) then El.innerHTML:="};
end;

Since we cannot export a class directly from our module, in order for users of the library to
be able to use the class, we must export a function that creates an instance of the class:

Function CreateUtils : THTMLUtils;
begin
Result:=THTMLUtils.Create;
end;

exports
CreateUtils;
end.

Blaise Pascal Magazine 102 2022

LIBRARY SUPPORT IN PAS2¢” 3S

Obviously, if you need to specify options to your class’ constructor you'll need to define
these options in your function.
Note: Due to a bug in the released Pas23S compiler it is necessary to disable optimizations
when compiling this library:
in the cCustom options part of the compiler options dialog, the -O- option must be added.
This bug has meanwhile been fixed.
To use this class, we must also rewrite our program.
We start by defining the THTMLUtils class as an external class:

program htmlutilsdemo;

{$mode objfpc}
{$linklib ./ htmlutils.js utils}
{$modeswitch externalclass}

uses JS, Web;

type
THTMLUtils = class external name 'Object' (TJSObject)
Public
DefaultClearID: String;
Procedure SetPageTitle(aTitle : String);
Procedure ClearPage(aBelowID: String);
end;

Function CreateUtils : THTMLUtils; external name 'utils.CreateUtils";

Note the use of the {$moduleswitch externalclass}, needed to be able to define
external classes.

Now, to use this class, we must also rewrite our program a little. We define a variable of
the class, which we use in our callbacks:

Var
BtnSetTitle,BtnClear : TISHTMLButtonElement;
edtTitle,edtBelowID,cbUseDefaultClearID: TISHTMLInputElement;
UtilsObj : THTMLUtils;

function DoSetTitle(aEvent: TISMouseEvent): boolean;
begin
Result:=False;
UtilsObj.SetPageTitle(edtTitle.Value);
end;

function DoClear(aEvent: TdSMouseEvent): boolean;
begin
Result:=False;
if cbUseDefaultClearID.Checked then
begin
UtilsObj.DefaultClearID:=edtBelowID.value;
UtilsObj.ClearPage(");
end
else
begin
UtilsObj.DefaultClearID:=";
UtilsObj.ClearPage(edtBelowID.value);
end;
end;

Blaise Pascal Magazine 102 2022 <> 64

LIBRARY SUPPORT IN PAS2¢”

We initialize the variable with the CreateUtils call exported from our library:

begin
UtilsObj:=CreateUtils;
BindElements;

end.

The resulting page works in exactly the same way as the original example, only
now it uses a class. You can test this at:

https://www.freepascal.org/~michael/pas2js-demos/modules/classes/

For this simple example, exporting a variable of the correct type is also sufficient.
It requires only a few changes. In the library, the createUtils function can be
replaced with an exported variable declaration:

var Utils:THTMLUtils;
exports Utils;

initialization
Utils:=THTMLUtils.Create;
end.

The variable is initializd in the initialization section of the library.
To use this variable, only a small change is needed in our program.
We remove the 'CreateUtils’ function, and change the declaration of the UtilsObj variable:

var
UtilsObj : THTMLUtils; external name 'utils.vars.Utils';

And of course the statement to assign the variable must be removed.
After these changes, again the example will function as the original example.

You can convince yourself at the live demo:
https://www.freepascal.org/~michael/pas2js-demos/modules/classusingvar/

In this article we’ve shown one of the latest features of the Pas2]S transpiler: libraries and
how to use them. We’ve also shown that libraries in Pas23S are more powerful than libraries
in native code: there is no need for special memory managers, and classes can be used as-is.
There are some small glitches in the library support for classes: the optimization switch,

and using overloads is possible but requires some tweaking of the external names.

Despite this, the support for modules is sufficiently mature to be used in production.

Blaise Pascal Magazine 102 2022 <> 65

Promotions

Delphi & C++Builder are the best development tools on the market to design and develop modern, cross-platform
native apps and services. Also for Windows 11! It's easier than ever to create stunning, high performing apps for
Windows, macOS, iOS, Android and Linux Server (Linux Server is supported in Delphi Enterprise or higher), using the
same native code base. Share visually designed Uls across multiple platforms that make use of native controls and
platform behaviors, and leverage powerful and modern languages with enhancements that help you code faster.

Introduction offer on RAD Studio, Delphi and C++Builder 11.1 Alexandria — until March 31, 2022:

20% discount on Professional

30% discount on Enterprise
30% discount on Architect

Buy directly in the webshop or ask us for a quote.

This offer is not valid on Academic licenses, term licenses and/or existing contracts.

You can not combine this with other offers.

-1

SAoLE

@ DELPHI 11
ALEXANDRIA

Delphi 11.1 Alexandria
Professional

Delphi
=EED000 €£1.359,00

ADD TO CART

https://www.barnsten.

MOST SOLD!

;
@ DELPH) 11

ALEXAMDRIA

Delphi 1.1 Alexandria
Enterprise

Delphi
EEO00.00 £2.799 00

ADD TO CART

com/promotions/

@ DELPH] 11
| ALEXANDRIA

Delphi 1.1 Alexandria
Architect

Delphi
D00 £4.549,00

ADD TO CART

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢°3S PART 3 PAGE 1/21
BY MICHAEL VAN CANNEYT

expert

DIT N s

In Delphi, it is very common to show a second
form with code like this:)

Procedure TMainform.mnShowUserClick(Sender : Tobject);

ABSTRACT var

In this article we show how to reduce coding frm: TUserForm;
when creating forms in a PAS23S web Regin

. . - . frm:=TUserForm.Create(Self);
application. Additionally we show how routing B shows
can be used to show multiple forms in end

an SPA (Single Page Application) and keep

the browser experience of the user intact.
It is possible to mimic this behaviour in a web

application. But this is in fact not really

o I_N l how a user will expect a web application to
function:

The previous articles showed how to implement a

PAS2]S dialog, and how to switch to another when the user form appears as shown

dialog when the user logged in. All the examples in the code, the user expects to be able to use
the browser’s back button to return to the

shared a common approach:
T S RUNSATETe R TR L A AT LT Rl T IR VA Previous form, or to reload the page using the
refresh button.

plain HTML classes, they always had one field per
HTML tag element in the web page: the field was
either a TWebWidget component or one of the
HTML classes found in the Web unit. This is identical
to how Delphi code deals with forms.
For example, the login page resulted in this The URL must contain enough information to
declaration: reconstruct the form.

For example, the following 3 URLs could be used
to respectively show the overview of users,create

The solution for this problem is called routing.
With each form of the application, a URL
is associated.

TMyApplication =
class (TBrowserApplication) a new user and edit user with ID 123:
edtEmail : TISHTMLInputElement;
edtPassword : TIJSHTMLInputElement; /users/
btnLogin : TISHTMLButtonElement; /users/new
procedure dolLoginClick (aEvent: TJSEvent) ; /users/123
This is of course similar to a form declaration in If the user is currently viewing URL /users, and
Delphi. In the previous articles, these navigates to the details of user 123
"form declarations" were created manually. then the URL becomes /users/123.
In the followins line§, we show how to generate When the user wants to go back to the overview of
such a declaration directly from the HTML file. users, he’ll press the back button.

The application should catch this event and
present the user again with the overview of the
users. We'll explain how this can be achieved
in a PAS2]S application.

Blaise Pascal Magazine 102 2021 <> 67

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢’3S PART 3 PAGE 2/21

2 GENERATING | ARATIONS]

To avoid having to manually create a form declaration for each HTML file in a web application,
a tool called html2form has been created. Its sources are distributed with Pas23S,
in the directory tools/html2£form. It is a command-line application. When executed with the
-h command-line option, you get some help messages which explain the various options:

a help show a help message
o below-id=ID Only create fields for child elements of element ID in the HTML page.

a formclass=NAME The name of the pascal "form" class to create.

a form-file Generate also a form .frm file (see below?).

a getelementfunction=NAME
Name of getelementByID function: this is the function that is used in a
BindElements method to look up an HTML element based on
their ID attribute.

a events When specified, the tool will emit code to bind event handlers to methods.

a input=file With this option, you specify the html file to read.

a map=file Read a mapping file, which is used to map HTML tags to Pascal classes,
based on tag and attributes. By default, the tool maps HTML tags to the
native Javascript HTMLElement child classes.

O no-bind By default, the BindElements call which maps variables to actual instances

is called from the class constructor. When this option is specified,
the call to BindElements is omitted from the constructor

a output=file The pascal file to write a unit to.
a parentclass=NAME Name of pascal "form" parent class.
There is no fixed TForm class in Pas2JS, so the tool needs a class name.
By default, this class is Tcomponent.
a exclude=List You can specify a comma-separated list of IDs to exclude:
for these Ids, no field will be created.
If the value for this option starts with @,
then the remainder of the option is assumed to be a filename,
and the list is loaded from the file.

These options give you an idea of the possibilities.

So, how to use this tool?
Let’s take the index.html file from our previous examples
— it contains a login dialog — and run it through the tool using the following command-line:

html2form --input=index.html -o frmlogin.pas -f TLoginForm

e —

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2v°3S PART 3 PAGE 3/2

« The result is a file that looks like this (some comments have been removed): >

unit frmlogin;
{$MODE ObjFPC}
{$H+}

interface
uses js, web,Classes;

Type
TLoginForm = class(TComponent)
Published
edtEmail : TJSHTMLInputElement;
error : TISHTMLE lement;
edtPassword: TOSHTMLInputElement;
btnContinue : TISHTMLButtonElement;
Public
Constructor create(aOwner : TComponent); override;
Procedure BindElements; virtual;
end;

implementation

Constructor TLoginForm.create(aOwner : Tcomponent);

begin
Inherited;
BindElements;
end;

Procedure TLoginForm.BindElements;

begin
edtEmail:=TJSHTMLInputElement(document.getelementByID('edtEmail’));
error:=TJSHTMLElement(document.getelementByID(‘error"));
edtPassword:=TJSHTMLInputElement(document.getelementByID(‘edtPassword"));
btnContinue:=TJSHTMLButtonElement(document.getelementByID('‘btnContinue'));

end;

end.

This "form" declaration will compile as-is and can be added to the Pas23S project.

Many controls on a page need some kind of event handler: a button without event handler
is of little use.
Luckily, the html2form tool can also generate event handlers for you. For this, a convention is used.
hen looking at a tag, all attributes that begin and end with an underscore character (_) are considered
event names. The value of the attribute is the event handler method name.
To demonstrate this, we modify the index.html a little.
The login button becomes:

<button id="btnContinue"
class="button is-block is-info is-large is-fullwidth"
_click ="DoLoginClick">
Continue <i class="fa fa-sign-in aria-hidden="true"></i>
</button>

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2v°3S PART 3 PAGE 4/2

The idea is that the 'click’ event for the btnContinue button is handled by a method
called boLoginClick.
We run again the HTML2FORM TOOL on this file, but we also pass the -event command-line option

html2form --input=index.html -o frmloginbase.pas --event -f TBaselLoginForm

As you see, we also specify another name for the class file and the unit name. The reason
for this will become apparent soon.

The resulting class has more methods:
TBaseLoginForm = class(TComponent)
Published

edtEmail : TOSHTMLInputElement;
error : TISHTMLE lement;
edtPassword: TISHTMLInputElement;
btnContinue : TISHTMLButtonElement;
Procedure DolLoginClick(Event : TISEvent); virtual; abstra
Public
Constructor create(aOwner : TComponent); override;
Procedure BindElements; virtual;
Procedure BindElementEvents; virtual;
end;

-
¢ The BindElementEvents is where the events are bound to the callbacks:

Procedure TBaseLoginForm.BindElementEvents;

begin
btnContinue.AddEventListener(‘click',@DoLoginClick);

end;

Note that the callbacks are marked virtual; abstract;.
This is configurable:
If you prefer, you can also simply generate virtual methods with an empty body.

But there is a reason for making these methods abstract:
The class above is not meant to be used directly:

If you generate a class from the HTML file, it can happen that the HTML changes, and
you must change the class definition.

If you do this and regenerate the file, any changes you made to the file will be lost.
This is of course not very convenient.

Instead, the above file is generated with abstract methods.

To actually code the form'’s business logic, you create a new unit with a descendent
of TBaseLoginForm:

unit frmlogin;
{$MODE ObjFPC}
{$H+}

interface
uses js, web, Classes, frmloginbase;

Type
TLoginForm = class(TBaseLoginForm)
Public

end;

implementation

end.

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢°3S PART 3 PAGE

Source Editor
By @ »
< PJSDsgnRegister X pjscontroller X strpas2jsdesign X PJSDsgnOptsFrame X pjsprojectoptions X Skdé

1 |unit frmlogin;
. [{$MODE ObjFPC}
. [{$H+}

interface

W o

.Iuses js, web, Classes, frmloginbase;

. |Type

10)| TLoginForm = class(TBaseLoginForm)
Public

12 Abstract methods of TLoginForm - ° 0
end; | There are 1 abstract methods to override. L

| Select the methods For which stubs should be created:

15 |implementatid Abstract Methods - not yet overridden

B Procedure TBaseLoginForm.DoLoginClick(EventTJSEvent);

Select All Selectnone

Override first selected | Override all selected Cancel

Figure 1: override abstract methods

this ‘form’ class, we override the abstract methods, and implement the
of the form. Now, when the HTML File changes, we can simply regenerate
se unit, and continue to work in the £rmlogin unit.

e abstract methods can be done trivially in the Lazarus IDE:
nder the Source - Refactoring - Abstract methods menu (see figure 1 on pa
lo this with a couple of mouseclicks.

also available from the source editor context menu popup,
ach a shortcut key to it.

g code looks like this:

TLoginForm = class(TBaseLoginForm)
procedure DoLoginClick(Event: TISEvent); override;
Public
end;

implementation
procedure TLoginForm.DoLoginClick(Event: TOSEve
begin
end;

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢’3S PART 3 PAGE 6/21

New ...
= Maodule Description
| Pascal unik Pas2Js class definition from HTML file
% Form Create a Pas2J5s "form” class definition from
% Data Module HTML File using ID attributes in the HTML
& Frame File.

#| Text

) IDE window, dockable
% FPCUnit Test Case

| InskantFPC script

E MyForm

% Pas2Js impork unit from TypeScript decl

%) SQL Scripk File
i HThIL Weah Mndnla

Help Cancel OK

Figure 2: Create a class definition from ii Ni

All that is needed is to code the necessary UI or business logic.
If you forget to implement some abstract methods, the compiler will warn you about this
when you create an instance of a class which has abstract methods:

frmlogin.pas(29,14) Warning:
Constructing a class "TLoginForm" with abstract method "DolLoginClick”

If you have the latest development version of Lazarus,
this whole process has been automated in the IDE.
In the File-New dialog, you can choose the Pas23S Class definition from HTML file option (see figure
2 on page 6). When you choose this, you will be presented with a dialog that allows you to enter all
possible options for the generating of the class definition, see figure 3 on page 7 and figure 4 on page 7.
In this dialog, you can also opt to add the HTML file to the Lazarus project.

Once all the options have been set, the IDE will create the unit with the class declaration, and adds the
new file to the project. In figure 4 on page 7 you can see that more options are available in the dialog
than on the command-line.

In these screenshots, you see two toolbuttons: With these buttons you can load and save theoptions
set in this dialog: this allows you to quickly re-use the same options for all forms in your application,
and also allows you to use the saved options in an automated build procedure: the command-line
appplication can read this file as well.

To ensure that you can recreate the class definitions at any given moment, the IDE
automatically stores the options used to generate the unit in the Lazarus project file

(the .lpi file). In the project inspector, you can use the context menu to regenerate one
or more (the selected units) or all html form class files (see figure 5 on page 8).

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢°3S PART 3 PAC

HTML ko Form

&

Load Save

HTMLFile Generated code

HTML File = /home/michael/source/farticles/pas2js/autoform_events/index.htr
Add HTML File to project

Below element ID

Exclude elements

Figure 3: Options for creating a class definition from an HTML File

HTML ke Form

i R

Load Save

HTML File GCenerated code

| Overrides

Class name | TLoginForm

Constructor
Parent class name | TComponenkt .
BindElements

GetElement document.getelementBylD BindElemenktEvents
Generate event handlers Add methods

Event signature | Event:TJSEvent Constructor

b BindElements
Event modifiers | virtual; abstract;

BindElementEvents

Constructor args aOwner : TComponenkt
Virtual methods
Use default Elements Constructor

Bind elements in constructor BindElements

Extra units in uses | Classes = BindElementEvents

Tag Map File

Cancel

Figure 4: More options for creating a class definition from an HTML File

e

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢’3S PART 3 PAGE 8/21

' Project Inspector - autofor...

*, = ¥ 0
Add Remove Options Help

I |22 AT
Files
autoform.lpr

|

index.ht Open
ik Required P Remove

Copy/Move File to Directory

Fte%esh all classes from HTML source

Figure 5t ions from their HTML files

3 NAVIGATING FRO O THE NEXT
A web application usually shows one form at a time:

for instance, an overview of projects is shown, and when the user clicks a project,
the overview disappears, and the details for the selected project is shown.

In a SPA (Single Page Application) this usually happens by showing all ‘forms’ below a
designated HTML tag (let’s give it an id: form-parent). This operation resembles docking a form in a
main form in Delphi.

There are several ways to do this: all forms can be made part of the html - you just insert their HTML
below the designated tag form-parent, give each form'’s top level HTML an ID. Then we can just

show or hide parts of the HTML by adding or removing the following style element to the top level tag
of the forms: style="display: none;”

You could make the routine that does this part of the form constructor, and just create the
form you need. This is easy and convenient if there are only a few forms in your application.

But in an application with many forms, the page’s HTML will become unwieldy.

Far better and easier is to have the HTML for each form in a separate file. By loading the HTML file at
runtime, we can replace the HTML below the form-parent tag, and the browser will

happily refresh the screen with your new form.

A difficulty with this approach is that loading a file from the server is an asynchronous operation;
it takes some time. But this is not a big issue: we can start loading the forms as soon as the page is
loaded. A second issue is of course that we should not reload a form each time it is opened:

once it was loaded, we better keep the HTML somewhere in the browser, so we don’t need to
download it again next time the form is shown.

To help with all this, Pas2JS comes with a unit called Rt1.TemplateLoader. This unit will load
a bunch of files (called templates) and keep them in some memory structure.

When it is time to load a form, the needed template is requested from the template loader,
and the form can be shown. If the template loader does not have it yet, you will need to tell
it to load it and wait till it is loaded: the component will notify you when it was loaded
so you can display the form.

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢’3S PART 3 PAGE 9/21

The TTemplateLoader class is defined as follows:

——
TTemplateLoader = Class(TComponent)

Procedure RemoveRemplate(aName : String);

Function FetchTemplate(Const aName,aURL : String) : TISPromise;

Procedure LoadTemplate(Const aName,aURL : String;
aOnSuccess : TTemplateNotifyEvent = Nil;
AOnFail : TTemplateErrorNotifyEvent= Nil);

Procedure LoadTemplates(Const Templates : Array of String;
aOnSuccess : TTemplateNotifyEvent = Nil;
AOnFail : TTemplateErrorNotifyEvent=nil);

Property BaseURL: String;

Property Templates[aName : String] : String;
Property OnlLoad: TTemplateNotifyEvent;

Property OnLoadFail : TTemplateErrorNotifyEvent;

end;

The method names speak for themselves:

RemoveTemplate clears the template with name aName.
FetchTemplate Loads the template from URL aURL and stores the template with name
aName. Returns a promise you can use to wait for the result.
LoadTemplate Loads the template from URL aURL and stores the template with n
aName. You can optionally specify 2 event handlers, which will be
called when the template is loaded or when the load fails.
LoadTemplates Passes a list of strings, strings at even indexes are the names of
templates, strings at odd indexes are the URLS to load.
You can optionally specify 2 event handlers,
which will be called when a template is loaded.

The property names are equally clear:

BaseURL All urls in FetchTemplate, LoadTemplate (s) are relative to this URL.
Templates Here you can access a loaded template by name.

If the template does not exist, an empty string is returned.
OnLoad Allows you to set a global template load notification event.

This is called in addition to the ones specified in the load call.

OnFail Allows you to set a global template load failure notification event.

To demonstrate the use of this component, we’ll make a web page with 3 "forms" — actually
an HTML template file, and a button to show each form. The HTML template files will have
an accompanying form declaration (we now know how to generate one quickly), which we

will instantiate once the HTML has been loaded. For this, we need 3 html files:

The global HTML file. We'll name it index.html, and it will contain the buttons
to display the 2 forms. This file would normally contain a menu, nav bar etc:

the things which are always the same in every form.

® The HTML file for the first form, a login page: we’ll name it login.html.

©® The HTML file for the second form, a projects list page: we’ll name it projects.html.
The HTML file for the third form, a users list page: we’'ll name it users.html.

Each HTML file will be accompagnied by a class form file, and we’'ll add some events to
it, to demonstrate the capability of the html-to-form converter.

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢”3S PART 3 PAGE 10/

(The index.htnl file is quite simple (we show just the HTML body):

<divclass="contalner">
<div class="box">
<button class="button is-primary" id="btnLogin"
_click ="DoLoginClick">Login</button>
<button class="button is-info" id="btnProjects"
_click ="DoProjectsClick">Projects</button>
<button class="button is-info" id="btnUsers"
_click ="DoUsersClick">Users</button>

</div>
<div class="box form-container" >
<divid="form-parent" >
<divclass="notificationis-info is-light">
Click one of the buttons above.
</div>
</div>
</div>
</div>

As you can see, there are 3 buttons, plus some tags that use Bulma CSS to create a
visually more pleasing HTML page.
From this we use the File-New wizard to create a frmIndex.pp unit with the following class

TIndexForm = class(TComponent)

Published
btnLogin: TISHTMLButtonElement;
btnProjects : TISHTMLButtonElement;
btnUsers: TISHTMLButtonElement;
form parent : TOSHTMLElement;
procedure DoLoginClick(Event : TISEvent);
procedure DoProjectsClick(Event : TISEvent);
procedure DoUsersClick(Event : TISEvent);

Public

constructor create(aOwner : TComponent); override;

procedure BindElements; virtual;

procedure BindElementEvents; virtual;

We do the sa ogin, projects and users HTML files:
For these files, the IDE will generate a class definition that looks much like the above.

fter doing this, we end up with 4 units in our project: frmIndex, frmLogin, frmProjects and
rmUsers.

r simplicity, we will deviate from the 'proper’ way to do things and simply implement the
eeded functionality in the units themselves.

he TIndexForm class is the 'main’ form of our application. In this form, we must
implement the logic for navigation between the login, projects and users form. Here is the
logic to show the login page:

procedure TIndexForm.DoLoginClick(Event: TISEvent);

Procedure ShowLogin;

begin
form parent.innerHTML:=GlobalTemplates.Templates['login'];
FreeAndNil(FCurrentForm);
FCurrentForm:=TLoginForm.Create(Self);

end;

procedure DoShowLogin(Sender: TObject; const aTemplate: String);
begin

ShowLogin;
end;

begin
if GlobalTemplates.Templates['login']<>" then ShowLogin
else
GlobalTemplates.LoadTemplate('login’,'login.html’,@DoShowLogin);
end;

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢”3S PART 3 PAGE 11/2

Multi-Form demo Project x +

&= C @ o« O D localhost:3030 | | Q Search

o | o [

[«
a
|
&
B8
H
%
%

Project list

Project Due date
Implement interfaces May 2018
Implement libraries Februari 2022
PWA Wizard March 2022
Electron Wizard April 2022

WebAssembly Widgetset December 2022 g q q
TR The code is quite straightforward.

GlobalTemplates is a global instance of the

TTemplateLoader class, defined in the
ql .TemplateLoader unit. If the template is known,
then the showLogin is called. If the template is not yet known, it is loaded, and in the success

andler, ShowLogin is called. For simplicity, we didn’t use a failure event handler.

he ShowLogin routine enters the template HTML below the HTML tag with id form-parent.
then destroys any previous form instance in FCurrentForm - a variable that keeps the
urrent form. Finally it creates the new form class and saves it.

hat’s all there is to it. For the Projects and users pages, a similar routine is made, only the names
liffer. The result after pressing the Projects button is shown in figure 6on page 11.

4 USING A FAGEORY PATTERN

e routines to show the login, projects, an users pages are the same. All that differs is the class
name, and the name of the template and html file. If there are a lot of forms, then repeating the
above code is of course not very efficient.

So, an obvious improvement to reduce code is to create a routine (or better, a class) which does al
his in one call. It would also be nice if we could just pass a form name which says which form
ust be shown, without having to specify a class or a HTML file name.

o achieve this, we create a TFormManager class in a frmBase unit, which looks like this:

In class-based programming, the
factory method pattern isa

A creational pattern that uses factory

methods to deal with the problem of

reating objects without having to specify the

xact class of the object that will be created.

his is done by creating objects by calling

1 factory method - either specified in

in interface and implemented by

TFormManager = Class(TComponent)
Public
Procedure RegisterForm(aClass : TBaseFormClass;
const aName : String ="
aHTMLFile : String =");
Procedure UnregisterForm(aName : string);
Procedure ShowForm(aName : string;
OnShow : TFormProcedure = nil);
Property CurrentForm: TBaseForm;
hild classes, or implemented in a base class Property FormParent : TJSHTMLE lement;
and optionally overridden by derived classes - Class property Instance : TFormManager;
rather than by calling a constructor. end;

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2y°3S PART 3 PAGE 12/21

The Instance class property returns a global instance, which can be used to manage
all forms.
With the RegisterClass routine, we can register a form class, using a name with which
it can be shown, and a HTML file with which to load the HTML for the form. You can
choose these last 2 parameters at will, but if you don’t specify them, some defaults will be
taken.
The showForm method can then be used to show a form using just the name used to
register the form; A callback handler can be specified: it will be called when the form is
shown.
The showForm routine looks much like the onclick handler which we presented
before, with as an addition a call to the onshow handler that can be
passed to the method:

procedure TFormManager.ShowForm(aName: string; OnShow: TFormProcedure);
Y Var Idx:Integer;Reg:TFormRegistration;

Procedure ShowForm;

var html : string;

begin
If Assigned(FCurrentForm) then FreeAndNil(FCurrentForm);
html:=GlobalTemplates.Templates['form:'+Reg.Name];
FFormParent.innerHTML:=html;
FCurrentForm:=Reg.FFormClass.Create(Self);
If Assigned(OnShow) then OnShow(Self,FCurrentForm);

end;

procedure FormFailed(Sender: TObject;)
const aTemplate, aError: String;
aErrorcode: Integer);
begin
Writeln('Error loading form template',aTemplate,': ",
aError,' (Code:,aErrorCode,")");
end;

procedure HaveForm(Sender: TObject; const aTemplate: String);
begin

ShowForm;
end;

begin

Idx:=FForms.IndexOf(aName);

if Idx=-1 then
Raise EForms.CreateFmt(SErrUnknownForm,[aName]);

Reg:=TFormRegistration(FForms.Objects[Idx]);

if GlobalTemplates.Templates['form:'+Reg.Name]=" then
GlobalTemplates.LoadTemplate('form:'+Reg.Name,Reqg.HTML,

@HaveForm,@FormFailed)

else
ShowForm;

end;
The onclick handlers of our menu buttons in the index form can now be reduced to the
ollowing:

procedure TIndexForm.DoLoginClick(Eve
begin

FormManager.ShowForm('login');
end;

procedure TIndexForm.DoProjectsClick(Event: TISEvent);
begin

FormManager.ShowForm(‘projects');
end;

procedure TIndexForm.DoUsersClick(Event: TISEvent);
begin
FormManager.ShowForm(‘users');
end;

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢”3S PART 3 PAGE 1

bviously, before this can work, the login, projects and users forms need to be registe
he RegisterForm method of the TFormManager class, the aclass parameter is
e TBaseFormClass. This class reference type is also defined in the £rmBase unit:

TBaseForm = class(TComponent)
Public

Class Function FormName : String; virtual;
Class Function FormHTMLFileName : String; virtual;
Class Procedure Register;

end;

TBaseFormClass = class of TBaseForm;

‘The Register class method looks like tD

class procedure TBaseForm.Register;
begin
With TFormManager.Instancedo
RegisterForm(Self,FormName,FormHTMLFileName);
end;

e FormName and FormHTMLFileName look like this:

class function TBaseForm.FormName: String;
Var P:integer;

begin
Result:=LowerCase(ClassName);
if Result.StartsWith('tfrm') then
Result:=Copy(Result,5,Length(Result)-4)
else if Result.StartsWith('t') then
Result:=Copy(Result,2,Length(Result)-1);
if Result.EndsWith('form') then
begin
P:=Pos('form',Result);
Result:=Copy(Result,1,P-1);
end;
end;

class function TBaseForm.FormHTMLFileName: String;
begin

Result:=FormName+'.html';
end;

e result of all this code is that the line

mLogin.Register;

egister the form class TFrmLogin with name login and html file 1ogin.htm
echanism presented here is of course just a convention which makes life easie
can perfectly invent other algorithms. The start of our program becomes theref

TUsersForm.Register;
TProjectsForm.Register;
TLoginForm.Register;
FIndex:=TIndexForm.Create(Self);
FormManager.FormParent:=FIndex.form parent;

te 3 o ot registered:
as no associated HTML which must be loaded:
2 index.html file is already loaded.

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢’3S PART 3 PAGE 14/21

m reaucea M! ll la!es to show a form to a one-liner in an onclick handler.

However, this does not solve our principal problem: the use of the back and
forward buttons in the browser:
if the user first opens the projects list and then goes to the users list, he will naturally assume he
can go back to the projects list by hitting the back button.
With the application as it is coded now, if you press the back button while the users list is
shown, either

B Nothing will happen if the demo is the first page loaded in your browser.

B Or you will be taken back to the website you were looking at before you opened the demo.

T

The solution to this problem is called routing: with each form we associate an URL.
As the user navigates between the forms, the URL changes.
This is easy with a website where each form is an actual and separate HTML page.

But how to do this in a Single Page Application (SPA)?
Luckily, in HTML 5, this is possible: the browser offers access to the history mechanism

of your browser page. You can be notified if the URL changes, and you can also change

the URL. Since we are creating a SPA (Single Page Application) we must of course try to
avoid a page reload, and remain in the current page.

But how to stay on the same page when we require that the URL must change when navigating
from one form to another? This also is possible: the hash part of the URL can
be used. The following 3 URLs are the same page:

http://localhost:3000/index.html#/login
http://localhost:3000/index.html#/users
http://localhost:3000/index.html#/projects

These are 3 different URLs, but they all refer to the same HTML page. When you are on
the last URL in the list, and press the back button, the browser will see that the previous
URL is actually the same page, and will not reload the page from the webserver.

This mechanism can be further expanded, you can pass more information in the URL.
The following can refer to 1 page (a fictitious project detail page), which will — in turn —
show the details for project 1, a new project and project 2.

http://localhost:3000/index.html#/project/1
http://localhost:3000/index.html#/project/new
http://localhost:3000/index.html#/project/2

can copy the URL, send it to someone else, and the receiver can
open the appllcatlon and be presented with the same page.

So, how to achieve this?
The Pas23S RTL comes with a webrouter unit, which implements

a TRouter class. This class allows you to associate a callback with a route. A route is
simply a URL fragment: when the URL changes, the router will catch the browse event
for it, and match the new URL with the list of known routes. If it finds a route definition
that matches the URL, it will call the registered callback for that route.

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢”3S PART 3 PAGE 15/21

For example, these are possible routes for our application:

/login

/project

/project/new
/project/:ID
/user
/user/:ID/Tab/:TAB
/user/:ID/
/*

Notice the : ID and :TAB in these routes. They present parameters: any string that does
not contain a / character. When the router matches the URL, it will replace ID with what
was actually in the URL. This means that the following URL fragments:

/project/123
/project/789

will result in a match for the route /project/: ID, but with 1p set to 123 and 789, respectively.

You can also use the wildcard character ¥ to match any URL fragment.
This can be used for example to register an error page if no matching URL was found,
or to handle all URLs that start with a certain fragment in a single route definition.
The following is the declaration of the TRouter class,
with only the most important methods:

TRouter = Class(TComponent)
Procedure DeleteRoute(alndex : Integexn);
Function RegisterRoute(ConstaPattern : String;
aEvent: TRouteEvent;
IsDefault : Boolean = False) : TRoute;
function FindHTTPRoute(const Path: String;
Params: TStrings): TRoute;
function GetRoute(const Path: String;
Params: TStrings): TRoute;
Function RouteRequest(Const aRouteURL : String;
DoPush : Boolean = False) : TRoute;
Property Routes [AIndex: Integer]: TRoute;
Property RouteCount : Integer;
Property BeforeRequest : TBeforeRouteEvent;
Property AfterRequest : TAfterRouteEvent;
end;

The purpose of these methods should be clear:
O DeleteRoute Delete given route by index.

O RegisterRoute Register a callback for a route: the aPattern is a pattern to match
with the URL. If the URL matches the route, then aEvent is called.
If isDefault is True then this route is used if no matching route can
be found for a given URL fragment.

a FindHTTPRoute Find a route definition for Path, and return parameter values in Params.
Returns the route definition. If no route is found, Nil is returned.

a GetRoute calls FindHTTPRoute, and raises an exception if no route was found.

a RouteRequest Perform the routing for a request with URL frament aRouteURL.
If DoPush is true, the new route is pushed onto the browser’s URL history.

o Routes Array access to the registered routes.

o RouteCount The number of known routes.

O BeforeRequest An event that is fired before handling a routing request.
O AfterRequest An event that is fired after handling a routing request.

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2y°3S PART 3 PAGE 16/21

How can we use this object to show our forms automatically in the application ?
A simple mechanism suggests itself: each form registers a route starting with the
form name used to create the form.

This means that our three forms must register 3 routes: /login
/projects
/users

Now we can pluck additional fruits of the factory pattern that we introduced earlier. We
can use the RegisterForm call to register a route for the form.
To allow a form to register multiple routes for itself, we create a FormRoutes method in
TBaseForm:
class function TBaseForm.FormRoutes: TStringDynArray;
begin
Result:=[FormName];
end;

method (which can return multiple routes) is then used to register the routes for the

form in the form manager’s RegisterForm method. This method starts with some sanity
checks, before adding a form registration object to a list. The FormRoutes method is then
used to register the various routes for the form:

const aName: String;

‘ function TFormManager.RegisterForm(aClass: TBaseFormClass;
aHTMLFile: String):

TRouteDynArray;
Var
aRoute,N,H : String;
aRoutes : TStringDynArray;
aReg: TFormRegistration;
Idx: Integer;
begin
// Some cleanup
N:=aName;

if N=" then N:=aClass.FormName;

H:=aHTMLFile;

if H=" then H:=aClass.FormHTMLFileName;

// Create and save form registration.

aReg:=TFormRegistration.Create(aClass,N,H);

FForms.AddObject(N,aReqg);

// Register routes

aRoutes:=aClass.FormRoutes;

SetLength(Result,Length(aRoutes));

Idx:=0;

for aRoute in aRoutes do

begin
Result[Idx]:=Router.RegisterRoute(aRoute,@DoFormRoute,False);
Inc(Idx);

end;

// Save routes in registration.

aReg.FRoutes:=Result;

end;

As a last step, the created routes are saved in the form registration. This is needed in the
DoFormRoute method, which will be called when the route is matched.

In the DoFormRoute method, we start with looking up the form registration associated
with the route. The HasRoute helper function checks if the given route is in the array of
routes for that form registration.

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢”3S PART 3 PAGE 1

procedure TFormManager.DoFormRoute(URl: String;
aRoute: TRoute;
Params: TStrings);
Var
Idx: Integer;
Reg: TFormRegistration;
begin
// Find the form registration for this route:
Reg:=Nil;
Idx:=FForms.Count-1;
While (Reg=Nil) and (Idx>=0) do
begin
Reg:=TFormRegistration(FForms.Objects[Idx]);
if Not Reg.HasRoute(aRoute) then
Reg:=Nil;
Dec(Idx);
end;
// If we found a registration, show the form
if Assigned(Reg) then
ShowForm(Reg.Name,
procedure (sender: TObject; aForm: TBaseForm)
begin
aForm.ShowRoute(URL,aRoute,Params);
end);
end;

ation is found, then we show the form using the exis
For . In the onshow callback we call a new method of our base for
, ShowRoute:

procedure TBaseForm.ShowRoute(const aURL: String; aRoute: Troute; aParams: TStrings);
begin
Writeln('Showing route for URL ',aURL,"with pattern:’,
aRoute.FullPath,' and params : ',aParams.CommaText);
end;
—

is virtual method can be overridden to let the form act on the particular route that
used to show the form. For instance, to react on parameters in the route.

ow that we have our routing in place, how to use it? This is simple, and we actually
p with less code. The 3 buttons in the index.html page to show our 3 forms can now
laced with 3 anchor elements:

<div class="box">
Login

Projects
Users
</div>

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2y°3S PART 3 PAGE 18

As you can see, the button HTML tag has been replaced with an
anchor HTML tag (a) . In the anchor tag’s href attribute, we enter the route for
the form that must be shown: #/, followed by the form name.
The click handler has also been removed: it is no longer needed.

If we now regenerate the class file associated with our index.html file, we notice that the
click handlers are gone. The navigation is now handled by the router.

The result can be seen in figure 7 on page 18. Notice how in in the address bar of the
browser, the route is now displayed within the URL's hash. As you navigate between
orms, the URL will change as you switch forms. Additionally, if you now use the back
nd forward buttons of the browser, you will actually switch forms !
ith this mechanism, you are giving the user a real browser experience.
1cidentally, note that the hyperlink elements look exactly like button elements used before:
is is one of the perks of using a CSS framework.

Multi-form demo Project X +

— C @ © | O O localhost:3000/#/users g

e

User list
Name Country
Detlef overbeek The netherlands
Mattias Gaertner Germany

Sven Barth Germany

Florian Klaempfl Germany

Michael Van Canneyt Belgium

Jonas Maebe

Belgium

Figure 7: Multi-form project using routing

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢’3S PART 3 PAGE

emonstrate the use of parameters in the URL, we change the projects ove
e to show links to a 'project details’ page for a project:

<tr>
<td>
Implement interfaces
</td>
<td>
May 2018
</td>

</tr>

HTML of the project detail page (project.html) looks like

<hl id="pagetitle"
class="title is-3">Project
?
</hl>
<div id="1blNotFound"
class="notification is-danger is-light is-hidden">
Project %dnot found !</div>
<div class="field">
<label class="label">Project Name</label>
<div class="control">
<input class="input"
id="edtProjectName"
type="text"
placeholder="Project name">

</div>
</div>

<div class="field">
<label class="label">date due</label>
<div class="control has-icons-left">
<input class="input is-success"
type="text" id="edtDueDate"
placeholder="project due date">

<i class="las la-calendar-check"></i>

</div>
</div>

<divclass="field is-grouped">
<div class="control">
<button id="btnSave"
class="button is-link">
Save
</button>
</div>
<div class="control">
<button id="btnCancel"
class="buttonis-link is-light">
Cancel
</button>
</div>
</div>

TML, we call the form class TProjectDetailFo
g methods:

Procedure ShowRoute(Const aURL : String;
aRoute : TRoute;
aParams : TStrings); override

Class function FormHTMLFileName: String; override;

Class function FormRoutes: TStringDynArray; overrid

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢”3S PART 3 PAGE 20/

Since the form class name differs from the html file name (the convention that was presented
earlier), we need to give the form factory the correct HTML file name:

class function TProjectDetailForm.FormHTMLFileName: String;
begin
Result:=’'project.html’;

end;

T
Since we wish to obtain the value of the form ID as a parameter in the URL, we
must register a fitting route for this:

class
begin

Result:=[’/project/:ID’]
end;

unction TProjectDetailForm.FormRoutes: TStringDynArray;

The result is that project ID will be passed to the ShowRoute in the ID parameter.

We can now use this parameter to load the correct project data. If a wrong ID or a false
ID is loaded an error message is displayed:

The user can type an arbitrary or outdated URI in the browser address bar,

and we must be prepared to deal with errors.
ith a simple Bulma CSS class (is-hidden), a HTML element can be shown or hidden.

howing a warning is thus simply a matter of removing the is-hidden CSS class from the
TML element that shows the warning.

The data is loaded from 2 arrays of values (ProjectNames and ProjectDates) .

procedure TProjectDetailForm.ShowRoute(const aURL: String;
aRoute: TRoute;
aParams: TStrings);

Const

NotFound = 'Project "%s" not found!;

Var
alID:NativelInt;
aError,aName,aDue : String;

begin
alD:=StrToInt64Def(aParams.Values['ID'],-1);
// Show an error if the ID is unknown.
if (aID<1l) or (aID>ProjectCount) then
begin
aError:=Format(NotFound,[aParams.Values['ID'1]1);
1blNotFound.innerText:=aError;
1blNotFound.classList.remove('is-hidden');
Exit;
end;
// Show project data
aName:=ProjectNames[aID];
aDue:=ProjectDates[alD];
hdrProjectName.InnerText:=aName;
edtProjectName.value:=aName;
edtDueDate.value:=aDue;
end;

Blaise Pascal Magazine 102 2021

HANDLING MULTIPLE FORMS OR PAGES IN PAS2¢”3S PART 3 PAGE 2

yre—
Multi-form demo Project k3 +

& C @ ® O DO localhost:3000/%/project/1

Project: Implement interfaces

Project Name

Implement interfaces

date due

‘ May 2018

Save Cancel

The last lines are
not very different from what you would do in a
regular VCL Class: only the property names are different.

result of this code can be seen in figure 8 on page 23.

E the URL which contains the project ID.

S you navigate between the various projects, you can always go back to a
previously visited project with the browser’s back button.

e

7 CONC ION
In this article, we’ve shown how to present the user with an actual browser
experience:
back and forward buttons for navigation now work. In doing so, the work needed to
show forms was significantly reduced:
Using a router and changing buttons to anchor elements in the html reduces code.
There are still small glitches: when reloading the page, you will return to the initial page,
even though the URL contains the route for the last visited page. It would also be nice if
data for the projects could be loaded from an actual database.
We will deal with these issues in a next contribution.

Blaise Pascal Magazine 102 2021 <> 87

e LIDFanyrorrm

Show article Go to issue Nr - 97

I IssueMr Author

NEH o7
B4 97
85 07
86 97
847 07
88 97
849 97
850 07

¥ show Thumbnails

lerry King

Detlef Owerbeek

Max Kleiner

David Dirkse

Detlef Owerbeek

Michael van Canneyt

Detlef Owerbeek

Detlef Cwerbeek & hattias Gaertner

@

Article PDF
Cartoons from our Technical Advisor

Decease of Peter Bijlsma, a friend and our Corrector

Python for Delphi project

Catseye project Page

Wirongfully accused of kidnapping his son: Chad Hower

Getting started with GIT/

Tr5 FMC components for Lazarus: RichEditar

Mew compaonents for Lazarus

[« > RQQOC - wmpopee =)

PageMr

2
7
3
ELES
60 I8

https://www.blaisepascalmagazine.eu/product/lib-stick/

ﬁ? ABSTRACT

v Electron is a platform to enable you to
create desktop applications of any size that can
run on Linux MacOS and Windows. Because
it is possible through Pas2JS to create Website
applications it is worth exploring other options
for creating applications for the desktop.
Electron is one other possibility. In this article I
‘Il explain what Electron is and what one can
achieve with it.

INTRODUCTION

Electron is basically a platform that enables you
to easily built a Graphical User Interface
(GUI), It combines the Node.JS (*1) with
Chromium(*2) (the open source foundation of
Google Chrome).

Electron enables you to have easy access at the
parts of your computer that the browser’s
sandbox can not access.

As an example: Web apps cant get through to the
filesystem. It does not have access or hook into
the operating system API which a desktop app
needs.

Most web applications aren’t available when
there isn’'t a reliable internet connection.
Electron is a runtime environment that allows
you to create desktop applications with
HTMLS5, CSS, and JavaScript.

It's an open source project started
by Cheng Zhao, an engineer
at GitHub. Previously called

Blaise Pascal Magazine 102 2022

ELECTRON

(formerly known as ATOM SHELL) is a free and
open-source (started by “Cheng Zhao")software
framework developed and maintained by GitHub.
It allows for the development of desktop GUI
applications using web technologies: it combines
the Chromium rendering engine and the Node.JS
runtime.

It was originally built for Atom. Electron is the
main GUI framework behind several open-source
projects including Atom,

GitHub Desktop, Light Table,

Visual Studio Code, EverNote,

ATOM is a free

and open-source

text and source code

editor for macOS, Linux,

and Windows with support for

plug-ins written in JavaScript, and

embedded Git Control.

Developed by GitHub, Atom is

a desktop application built using web

technologies. Most of the extending packages

have free software licenses and are community-built
and maintained. Atom is based on Electron (formerly
known as Atom Shell), a framework that enables
cross-platform desktop applications using Chromium
and Node.js.

Atom was initially written in CoffeeScript and Less,
but much of it has been converted to JavaScript.
Atom was released from beta, as version 1.0, on 25
June 2015. Its developers call it a "hackable text
editor for the 21st Century”, as it is fully
customizable in HTML, CSS, and JavaScript.

Electron combines the CHROMIUM CONTENT
MODULE and Node.js runtimes. Chromium and
Node are both wildly popular application
platforms in their own right, and both have been
used independently to create ambitious
applications.

Electron brings the two platforms
together to allow you to use JavaScript
to build an entirely new class of
application.

Anything you can do in the browser, you can do
with Electron.

Electron apps comprise multiple processes.
There is the “main” process and several
“renderer” processes. (See schema on page 6 of
this article). The main process runs the application
logic, and can then launch multiple renderer
processes, rendering the windows that appear on
a user's screen rendering HTML and CSS.

Both the main and renderer processes can run
with Node.JS integration if enabled.

Understanding Electron,

SIMPLE EXPLANATION:

suppose you create a form within the
Chromium Browser and use that as your
runtime environment for your Desktop
application.

So that is actually a Web browser environment
but one that can run on your desktop or even
in your Web Bowser (as long as they are
Chromium based: Edge / Chrome /FireFox
/ Safari / Opera / Dolphin etc.)

So remember it must be installed on your
desktop and has the advantage that it

will look on all OS’s the same.

That is its great trump card.

WIKIPEDIA
Node.js is an open-source, cross-platform, back-
end JavaScript runtime environment that runs on
the V8 engine and executes JavaScript code
outside a web browser.

Node.js lets developers use JavaScript to write
command line tools and for server-side script-
ing—running scripts server-side to produce
dynamic web page content before the page is sent
to the user's web browser.

Consequently, Node.js represents a "JavaScript
everywhere" paradigm, unifying web-application
development around a single programming lan-
guage, rather than different languages for server-
side and client-side scripts.

Though .js is the standard filename extension for
JavaScript code, the name "Node.js" does not refer
to a particular file in this context and is merely the
name of the product.

Node.js has an event-driven architecture capable of

asynchronous I/0.
(In computer science, asynchronous 1/O (also non-

sequential I/0) is a form of input/output processing that

permits other processing to continue before the
transmission has finished.)

Page 2/6

how to build Desktop apps using web technolgies

These design choices aim to optimize throughput
and scalability in web applications with many
input/output operations, as well as for real-time
Web applications (e.g., real-time communication
programs and browser games).

The Node.js distributed development project was
previously governed by the Node.js Foundation,
and has now merged with the JS Foundation to
form the OpendJS Foundation, which is facilitated
by the Linux Foundation's Collaborative Projects
program.

V8 is an open-source JavaScript engine
developed by the Chromium Project for Google
Chrome and Chromium web browsers.

The project’s creator is Lars Bak.

The first version of the V8 engine was released at
the same time as the first version of Chrome: 2
September 2008.

Chromium is a free and open-source web browser
project, principally developed and maintained by
Google.

This codebase provides the vast majority of code
for the Google Chrome browser, which is propri-
etary software and has some additional features.

The Chromium codebase is widely used.

Microsoft Edge, Samsung Internet, Opera, and
many other browsers are based on the code.
Moreover, significant portions of the code are used
by several app frameworks.

Google does not provide an official or stable version
of the Chromium browser. All versions released
with the Chromium name and logo are built by

other parties.

https://en.wikipedia.org/wiki/Chromium (web browser)

Figure1: Droste effect

Blaise Pascal Magazine 102 2022

@

20

Understanding Electron, Page 3/6
how to build Desktop apps using web technolgies

EXAMPLE: Electron is a simple runtime. Like the way you
You want to do something necessary and a must use Node from tP.\e command line, you can run
have: You need to view/search and edit a folder Electron appllcatlons using the Electron

where ever your documents are. Browser command-line tool.

applications are not capable of accessing the
file system without user interaction.

With Node.JS impl t all th @ Electron
i ode.]S, you can implement all the A\
features necessary, but you can’t create a -_—

Graphical User Interface, as a result your
application would be worthless.

By combining the browser environment with
Node.JS, you can use Electron to create an Support for
application where you can open and edit docs compiled modules
as well as provide a User Interface for doing so

|
So you need Node.JS together with Chromium. System

See figure 2 right top

omium Content

Filesystem
access

Figure 2: Electron combines the core web browsing component
of Chromium with the low-level system access of Node.

CHROMIUM CONTENT MODULE
Chromium is the open source version of
Google’s Chrome web browser. It has most of
the feature and same code with small differences
and the licensing.

The Google-authored portion is shared under
the 3-clause BSD license.

Other parts are subject to a variety of licenses,
including MIT, LGPL, Ms-PL,

and an MPL / GPL / LGPL tri-license, while
Node.js uses a permissive MIT license for the
main library.

The MIT license applies to all parts of the Node.
The Content Module is the core code that allows
Chromium to render web pages in independent
processes and use GPU acceleration.

The Content Module includes only the core
technologies required to render HTML, CSS, and
JavaScript.

You can find the Chromium licensing here:
https://www.chromium.org/chromium-os/licensing/

The part of the license that applies to Node.js here:
https://github.com/joyent/node/blob/

it is commonly known as the MIT license, which you can compare to here:
http://www.opensource.org/licenses/mit-license.php

This license, which is officially known as the Expat License, is here:
http://www.gnu.org/licenses/license-ist.html#Expat

a complete explanation you can find here:

https://en.wikipedia.org/wiki/MIT License

Blaise Pascal Magazine 102 2022 7o< 91
~

Understanding Electron,
how to build Desktop apps using web technolgies

WHAT IS NODE.JS?

For the first 15 years of its existence, JavaScript wasn't much used because it just applied within the
web browser.

There wasn’t a good way of support for running JavaScript on the server. There were projects, but
hardly ever used.

The Node.JS project was initially released in 2009, as an open source, cross-platform runtime for
developing server-side applications using JavaScript.

It used Google’s open source V8 engine (See page 3 of this article) to interpret JavaScript and
added API's for accessing the filesystem, creating servers, and loading code from external modules.

Over the last few years, Node has become very popular and is used for a wide range of purposes,
from writing web servers, to control (example) IOT (Internet Of Things) or building desktop
applications.

Node comes bundled with a package manager called NPM (Node Package Manager), which makes
the more than 250,000 libraries available in its registry.

‘ Mode.js x +
& =2 C {y @& nodesorgfen/

ntde

HOME ABCT DOWMLOADS Locs GET IMVOLWVED SECURITY CERTIFICATICH

MEWS ‘ lz\;fl

Node.|s®1s a JavaScript runtime built on Chrome's V8 JavaScript engine.

Download for Windows (x64)

16.14.0 LTS 17.5.0 Current

Eecommended For Most Users Latest Features

Other Downloads | Changelog | AFI Does Other Downloads | Changelog | APl Docs

Or have a look at the Long Term Support (LTS) schedule

Figure 3: Node.]Js Download

Blaise Pascal Magazine 102 2022

Understanding Electron,

Page 5/6

how to build Desktop apps using web technolgies

REASONS TO USE ELECTRON

When you create applications for a web browser,
you have to be cautious in what technologies
you choose to use and how you write your code:
You're writing code that will be executed on a
computer not owned by you.

Your users could be using the latest version of a
modern browser such as Chrome or Firefox, or
they could very well be using an outdated

Ellcatlons
Slac
Github Desktop etc

Main IPC Messageg Rendere
Process Process

| API call
http://github.com,’ @ Electrons Core
electron/electron

API call

Repository

version of Internet Explorer.

Operating System Kernel
Linux '

Figure 5: Overview of the layered architecture a very high-level
overview of Electron and applications built using Electron.

® You have little to no say in where your code

is being rendered and executed.

® You have to be ready for anything.

©® You must write code for the lowest
common denominator of features that have
the widest support across all versions of all
browsers in use today.

When you build your applications with Electron,
you're packaging a particular version of
Chromium and Node.js, so you can rely on
whatever features are available in those versions.
You don’t have to concern yourself with what
features other browsers and their versions
support.

'Traditional) Figure 4 left: In atradional Web
Web application Application, client side code can
A A NOT request data from a third
Server Application party APL.
Requests must be proxied
through a server side application

Client side code

K)}, Electron appl

ient side code

Figure 4 Bottom: In an Electron application, clients-side code
has all of the same privileges as the server sidecode and
therefore CAN make requests to a third - party API directly

Blaise Pascal Magazine 102 2022

@ 93

Understanding Electron,

Page 6/6

how to build Desktop apps using web technolgies

MAIN PROCESS

Electron has 2 parts to it:

the main process and the rendering process.

® The main process has very important
responsibilities.
It responds to application lifecycle events:
such as starting up, quitting, preparing to
quit, going to the background, coming to
the foreground, and more.

® The main process is also responsible for
communicating to native operating
system APlIs.
If you want to display a dialog box to open
or save a file, you do it from the main
process.

RENDERING

The main process can create and destroy
renderer processes using Electron’s Browser-
Window module. Renderer processes can load
web pages to display a GUI. Each process
takes advantage of Chromium’s multiprocess
architecture and runs on its own thread.
These pages can then load in additional
JavaScript files and execute code in this
process.

CRITICISM

Electron applications have been criticized for
incurring significant overhead when compared
with native applications with similar functionality.
Applications built with Electron can take up
more storage and RAM, and may run at less
speed than a similar app built with technologies
native to the operating system.

VERSIONS

In September of 2021, Electron moved to an 8
week release cycle between major versions to
match the release cycle of Chromium
Extended Stable and to comply with a new
requirement from the Microsoft Store that
requires browser-based apps to be within two
major versions of the latest release of the
browser engine.

Electron actively supports the latest three stable
major versions. from September 2021 to May
2022, four major versions were temporarily
supported due to the change in release cycles.

Blaise Pascal Magazine 102 2022

Unlike normal web pages, you have access to
almost all the Node.js APls in your renderer code.
Renderer processes are isolated from each other
and unable to access operating system integration
APIs. Electron includes the ability to facilitate
communication between processes to allow
renderer processes to communicate with the main
process in the event that they need to trigger an
Open or Save File dialogue box or access any
other OS-level integration.

Electron supports only Windows 7 and later.
For multimedia-focused applications, Electron is
typically a better choice because Electron
supports more codecs out of the box.

Electron

Electron reads the “main” entry in package.json to
determine which file to run as the main process.

Main Process

The main process
can create multiple
renderer processes. -

Renderer processes must communicate with the main process
if they need to access an OS-level API

Figure X: Electron’s multiprocess architecture

o4

DONATE FOR UKRAINE AND GET A FREE LICENSE AT:

https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/
(Just click)

COMPONENTS
DEVELOPERS

If you are from Ukrainian origin you can get a
free Subscription for Blaise Pascal Magazine,
we will also give you a

free pdf version of the Lazarus Handbook.

You need to send us your Ukrainian Name and Ukrainian email address
(that still works for you), so that it proofs you are real Ukrainian.

please send it to editor@blaisepascal.eu and you will receive your
book and subscription

v

BLAISE PASCAL&MAGAZINE g

Blaise P:SM

-~

DONATE FOR UKRAINE ANDGEI A“FREE LICENSE AT:

https://components4developersgblog/2022/02/26/donate=to-ukraine-humanitarian-aid/
(Just click)

KBMMW PROFESSIONAL AND ENTERPRISE EDITION V. 5.18.00 RELEASED!

RAD Studio XE5 to 11 Alexandria supported
Win32, Win64, Linux64, Android, IOS 32, IOS 64 and
OSX client and server support

Native high performance 100% developer defined
application server

Full support for centralized and distributed load
balancing and failover

Advanced ORM/OPF support including support of
existing databases

Advanced logging support

Advanced configuration framework

Advanced scheduling support for easy access to
multithread programming

Advanced smart service and clients for very easy
publication of functionality

High quality random functions.

High quality pronouncable password generators.

High performance LZ4 and Jpeg compression
Complete object notation framework including full
support for YAML, BSON, Messagepack, JSON and XML
Advanced object and value marshalling to and from
YAML, BSON, Messagepack, JSON and XML

High performance native TCP transport support

High performance HTTPSys transport for Windows.
CORS support in REST/HTML services.

Native PHP, Java, OCX, ANSI C, C#, Apache Flex client
support!

kbmMemTable is the fastest and most feature rich in
memory table for Embarcadero products.

Easily supports large datasets with millions of records
Easy data streaming support

Optional to use native SQL engine

Supports nested transactions and undo

Native and fast build in M/D, aggregation/grouping,
range selection features

Advanced indexing features for extreme performance

COMPONENTS
DEVELOPERS

New 118N context sensitive internationalization framework to
make your applications multilingual.

New ORM LINQ support for Delete and Update.

Comments support in YAML.

New StreamSec TLS v4 support (by StreamSec)

Many other feature improvements and fixes.

Please visit
http://www.components4developers.com

for more information about kbmMW

High speed, unified database access (35+ supported
database APIs) with connection pooling, metadata and
data caching on all tiers

Multi head access to the application server, via REST/AJAX,
native binary, Publish/Subscribe, SOAP,

XML, RTMP from web browsers, embedded devices, linked
application servers, PCs, mobile devices, Java systems
and many more clients

Complete support for hosting FastCGI based applications
(PHP/Ruby/Perl/Python typically)

Native complete AMQP 0.91 support (Advanced Message
Queuing Protocol)

Complete end 2 end secure brandable Remote Desktop with
near realtime HD video, 8 monitor support,

texture detection, compression and clipboard sharing.
Bundling kbmMemTable Professional which is the fastest
and most feature rich in memory table for Embarcadero
products.

e

EESB, SOA,MoM, EAI TOOLS FOR INTELLIGENT SOLUTIONS. kbmMW IS THE PREMIERE N-TIER PRODUCT FOR DELPHI / C++BUILDER

	1: Coverpage
	2: Content-Articles
	3: Addresses
	4: From your editor
	5: From our technical advisor
	6: LIB stick/Subscr/2Books
	7: D4Python Introduction
	8: D4Python Import
	9: D4Python VCL
	10: D4Python Hello World
	11: D4Python Conclusion
	12: D4Python Additonal Installer
	13: D4Python IDLE Shell
	14: D4Python Command Prompt
	15: D4Python Command Prompt 2
	16: D4Python Get It Package Manager
	17: D4Python Installing
	18: D4Python Index of Modules
	19: Barnsten Delphi Dag
	20: The latest Delphi version 11.1
	21: D11.1 Migration
	22: D11.1 Migration Import
	23: D11.1 Installing
	24: Delphi 11.1 The IDE
	25: Delphi 11.1 after install
	26: Delphi 11.1 Dark Theme
	27: Delphi 11.1 Code Ins/Comp-Debug
	28: Delphi 11.1 RTL/UI/Databases
	29: Delphi 11.1Integration/Target.
	30: Delphi 11.1 High DPI
	31: Delphi 11.1 VCL Styles at design
	32: Delphi 11.1 Android
	33: Delphi 11.1 macOS M1
	34: SuperPack

	35: Daily Snaphot Lazarus
	36: DSLazarus Preliminaries
	37: DSLazarus Path Var
	38: DSLazarus Download with Git
	39: DSLazarus Building
	40: DSLazarus Configuring
	41: DSLazarus Conclusion
	42: Droste Effect Prgram
	43: Droste Effect D7 Preview
	44: Droste Effect Preview D11.1
	45: Hardcover & Subscription
	46: Typescript Introduction
	47: Typescript DTS2PAS
	48: Typescript Output
	49: Typescript Help
	50: Typescript Settings
	51: Typescript Settings 2
	52: Typescript Web-Based Service
	53: Typescript Integrat. in Lazarus
	54: Typescript Selections to make
	55: Conclusion
	56: Sewn
Pocket
	57: PAS2JS Lib Introduction
	58: PAS2JS Lib Import & Writing
	59: PAS2JS Lib Creat.Jscript Modules
	60: PAS2JS Lib Creat. Jscr. Mod 2
	61: PAS2JS Lib creat. JS Modules3
	62: PAS2JS Lib Exmple
	63: PAS2JS Lib Export classes
	64: PAS2JS Lib Export Classes 2
	65: PAS2JS Lib Conclusion
	66: Barnsten Delphi
	67: PAS2JS Introduction
	68: PAS2JS Generating Frm Decl.
	69: PAS2JS LogIn Frm
	70: PAS2JS HTML2FormTool
	71: PAS2JS LoginOverride
	72: PAS2JS definition from html
	73: PAS2JS Html to form
	74: PAS2JS Navigating through forms
	75: PAS2JS Methods
	76: PAS2JS Index.html
	77: PAS2JS Using A factory Pattern
	78: PAS2JS Register Class
	79: PAS2JS RegisterFormMethod
	80: PAS2JS Routing
	81: PAS2JS Route methods
	82: PAS2JS Registerform Call
	83: PAS2JS ShowRoute
	84: PAS2JS UserList
	85: PAS2JS Route Params
	86: PAS2JS Show Route
	87: PAS2JS Conclusio
	88: LIBStick on USB

	89: Electron Introduction
	90: Electron Simple Explanation
	91: Electron Example
	92: Electron Node JS
	93: Electron Reasons to use
	94: Electron Main Process
	95: Free License/Blaise
	96: Components4

	Delphi11:
	1:

	Libstick USB:
	LiB+Two Books:
	LH pocket:
	LH Hardcover:
	Delphi Dag:
	Offer Delphi:
	SuperPack:
	kbmMW:
	Editor:
	Cartoons:
	Delphi VCL 4 Python:
	Python Install:
	Snapshot Lazarus:
	Droste effect:
	PAS2JS Typescript:
	Library Support in PAS2JS:
	Electron:
	PAS2JS Forms:
	Multple Forms:

