BLAISE PASCALeoMAGAZINE 91

L= Multi Platform / Object Pascal / Internet / JavaScript / WebAssemny / Pas2l]s / Databases
A tyles / Pro7resswe Web Apps

Andr0|d & ISS / Mac / Windows & Linux

Ve e
ﬂq‘:?‘:ﬁill,a

is- a falg t60|bo><"!for Delphl énd FreePascal/ By Ma ,1",.«
. News from the futu
Rollable Phones and Screens !
Lazarus, creating Atom and Visual Studio Code Pluglns, .5,/
A new series / By Michael van Cann:eyt
BitMap enlargement by interpolation / By David Dirksé -
Republished: Cyclic Redundancy, Checklng
The Crispr Pag£$

I it About viruses.and Chrls’

BLAISE PASCALOMAGAZINE 91

Multi platform /Object Pascal / Internet / JavaScript / WebAssemny / Pas2]s / Databases
tyles / Progressive Web Apps
9 Windows & Linux

Andr0|d / I&S / Mac

o - W e

ARTICLES

From your Editor
~ Readers Write
rtﬂcﬁdzerry Klng
'N%xﬂ‘ox Fundamentals 5 Code Library
.. 18'a big toolbox for Delphi and FreePascal.
o einer
E"-‘ News/frglm the future
Ll Rollable Phones and Screens
%“" Lazarus, creating Atom and
Visual Studio Code Plugins
By Michael van Canneyt
. BitMap enlargement by interpolation
o\l sBy David Dirkse
,& J’Eepubllshed Cyclic Redundancy Checking
/

~The Crispr Pages
\Code Snippets 5 Path & Compile Date
% Code Smppets 6 / DB Edit Mask 40 for Delphi

bl

h{; >
i"\?; DVERT!SERS
F

?,

d Thenew LIB Stick 5 X ok
| Lazarus Handbook 29 e e #,
r Blaise Pascal Subscription 36/37/43/61 - _ : ;u.,;
..~ Barnsten 62 /63 . T LA L
a?ff&’" Components4Developers 71/72 g -
R S o R ik
M e Sl AN FE - - <
i }%E?’@':?ﬁgr}' LS A f it b % I A . o iy = fiﬁ
- r w = A4 TR = E ;.."_:,H_"_.. - X! 2 - : F ? _.,"r ||§5:: J. T \ |I P _;_\‘._. L f -
P-f_:.._q.g E/f’ﬂ‘ 3 %c‘:ﬂ =15 g.;; ﬂgxlnl)' ﬂﬁ;ix "F &l o jé’ﬁ/ g . ', S M\(

=2

gnd published in 1970; as a small, efficient language intended to encourage good programming pract|ces using .
structured programming and data structuring. A derivative known as Object Pascal designed for object-oriented /| |
programiming was developed in 1985. The language name was chosen to honour the Mathematician, Inventor Qf the

2 " first calculator: Blaise Pascal (see top right).

Publlsher PRO PASCAL FOUNDATION in collaboration © Stichting Ondersteuning Programmeertaal Pascal NetherJands’-"-_‘.- i
‘ / =

Contributors

Stephen Ball
http://delphiaball.co.uk
@DelphiABall

Dmitry Boyarintsev
dmitry.living @ gmail.com

David Dirkse
www.davdata.nl
E-mail: David @ davdata.nl

Holger Flick
holger @ flixments.com

PrimoZ Gabrijeléi¢
www.primoz @ gabrijelcic.org

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

Vsevolod Leonov
vsevolod. leonov@mail. ru

Boian Mitov
mitov @ mitov.com

Detlef Overbeek - Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Wim Van Ingen Schenau -Editor
wisone @ xs4all.nl

Bob Swart
www.eBob42.com
Bob @ eBob42.com

Anton Vogelaar
ajv @ vogelaar-electronics.com

Editor - in - chief

Michaél Van Canneyt,
michael @ freepascal.org

Benno Evers
b.evers
@ everscustomtechnology.nl

Mattias Gartner
nc-gaertnma@netcologne.de

John Kuiper
john_kuiper @ kpnmail.nl

Paul Nauta PLM Solution Architect
CyberNautics
paul.nauta @ cybernautics.nl

Howard Page Clark
hdpc @ talktalk.net

Peter van der Sman
sman @ prisman.nl

B.J. Rao
contact @ intricad.com

Robert Welland
support @ objectpascal.org

Detlef D. Overbeek, Netherlands Tel.: Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Editors

Peter Bijlsma, W. (Wim) van Ingen Schenau, Rik Smit

Correctors
Howard Page-Clark, Peter Bijlsma

Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavour to ensure that what is published in the magazine is correct, we cannot accept responsibility for any errors or omissions.

If you notice something which may be incorrect, please contact the Editor and we will publish a correction where relevant.

Peter Bijlsma -Editor
peter @ blaisepascal.eu

Marco Cantu
www.marcocantu.com
marco.cantu @ gmail.com

Bruno Fierens
www . tmssoftware.com
bruno.fierens Q@ tmssoftware.com

Peter Johnson
http://delphidabbler.com
delphidabbler @ gmail.com

Wagner R. Landgraf
wagner @ tmssoftware.com

Andrea Magni www.andreamagni.eu
andrea.magni @ gmail.com
www.andreamagni.eu/wp

Kim Madsen
www . component4developers.com

Jeremy North
jeremy.north @ gmail.com

Heiko Rompel
info @ rompelsoft.de

Rik Smit

rik @ blaisepascal.eu

Daniele Teti
www.danieleteti.it
d.teti @ bittime.it

Siegfried Zuhr
siegfried @ zuhr.nl

Subscriptions (2019 prices) Internat. Internat. -"v*'m S .)

excl. VAT incl. 9% VAT Shipment Py Q N A
Gl LRl € 155,96 | € 250 € 80,00 R 4
£60 pages 55,] & “ o
Electronic Download Issue D s

€ 64,20 €70

60_pages - Member and donator of WIKIPEDIA
:lggt;:g;:sue inside Holland (Netherlands) €240,00| € 70,00 Member of the Royal Dutch Library

Subscriptions can be taken out online at www.blaisepascal.eu or by written order, or by sending an email to office@blaisepascal.eu
Subscriptions can start at any date. All issues published in the calendar year of the subscription will be sent as well.

Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.

Subscriptions can be paid by sending the payment to:

ABN AMRO Bank Account no. 44 19 60 863 or by credit card or Paypal

Name: Pro Pascal Foundation-Foundation for Supporting the Pascal Programming Language (Stichting Ondersteuning Programeertaal Pascal)
IBAN: NL82 ABNA 0441960863 BIC ABNANL2A VAT no.: 81 42 54 147 (Stichting Programmeertaal Pascal)

Subscription department

Edelstenenbaan 21 / 3402 XA IJsselstein, The Netherlands

Mobile: + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

Copyright notice
All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless otherwise noted and may not be copied, distributed
or republished without written permission. Authors agree that code associated with their articles will be made available to subscribers after publication by placing it
on the website of the PGG for download, and that articles and code will be placed on distributable data storage media. Use of program listings by subscribers for
research and study purposes is allowed, but not for commercial purposes. Commercial use of program listings and code is prohibited without the written permission

of the author.

Blaise Pascal Magazine 91 2021

From youw tAdon
Happy New Year!

And it certainly looks like it...

We probably will be freed of Corona and there
are coming some very good developments
from Science, for developers there is the new
rolable screen which we will soon see released
and Smart Phones with enlarging size.

| predicted the Pencil-Smart Phone some
years ago and here are now the first steps
(page 106).

We will probably be forced to develop more
and more for the web, desktop will become a
minor issue. Because of this we now have
great news about Pas2]S, WebCore and
Lazarus for Atom or Visual Studio Code.

In this issue we have several articles about this
all and offer a number of apps that you can
build or run: on the web as well on the
desktop. The basic components you need are
already available.

For Lazarus | can tell you we are developing a
special form (Martin Friebe from the Lazarus
team does that) which is capable of WYSIWYG
(what you see is what you get) so you can
create on your desktop applications that have
already the final looks and feel of the web.

He is building an Object Inspector for this
form which is one with a big difference:

your normal Object Inspector aims at one
component but this one is made for the web
and you need to be able to apply it to all of the
objects on the form.

I hope we will be able to show this during
spring for the first time.

Blaise Pascal Magazine 91 2021

s

Speaking about that, | want to start organizing
a first meeting again. As soon we see a
possibility for this we’ll alert you!

At the end of this coming year we hop to
publish our hundredth issue and we’ll throw a
party about that.

Now there still is very good news for our
future:

a Dutch company was capable of creating
Hydrogen as a powder (page8). That solves a
lot of problems.

Just think of it... They even plan for batteries
for notebooks that are exchangeable or to be
refuelled. No acidic batteries any more -no
more pollution, no more waist.

It will take some time but well get there...

Lets start to build the apps of the future!

To begin with this issue...

ADVERTISEMENT

BLAISE PASCAL MAGAZINE
I

€ 75

ex vat / including shipment

Robert Evans
Happy New Year!
Thank you for yet another very interesting edition of Blaise Pascal Magazine.

I read your article on FastReport VCL 6.9 and noted your comment about needing to start Delphi via
"Run as Administrator”. 1 have been using FastReport for over ten years and can confirm that the issue
that you encountered is actually much older than just version 6.9.

The underlying problem is that the default install folder suggested by the FastReport installer is under
“C:\Program Files (x86)". In modern versions of Windows (i.e. Vista and successors) such a
location is protected by Windows UAC and so cannot be written to by any program that does not have
elevated privilege. Unless the project Output Directory path is manually overridden by the user, this
restriction prevents the FastReport demos from being recompiled. From time to time it can also raise a
problem while creating one's own programs - i.e. whenever a project Build causes a recompile of
FastReport's own .bpl files.

However the solution is quite simple: just manually uninstall FastReport via the Start Menu and then re-
run the installer but this time choose to override the suggested installation folder to select a more
suitable location. I use a folder below “*C:\Users\Public\Public Documents\FastReport”,
but the actual location is not critical as long as it is writeable when needed.

Kind regards,

Robert Evans, Director
Lichfield Technology Limited

Answer: Denis Zubov, from FastReport told me that they are going to change this for future

Wyatt Wong @

You may consider to enhance the login with two-factor authentication by making use of Google
Authenticator app

Best Regards,
Wyatt Wong

Answer: that is surely something we might implement in the coming year

Diego José Munoz Carbajo @

Hello, I don't know where contact respect your article 'compiled date'.
Just me: the editor: editor@blaisepascal.eu

Is not easy (and 'modern') simply to use the 'new' unit IOUtils, so the line must be:
TFile.GetLastWriteTime (application.exename)

Thx, Good job

Diego José Munoz Carbajo
Programador. Freelance.
Ing. técnico informatica gestién. EUIT. Universidad Politécnica de Madrid.

Answer: It depends. the GetLastWriteTime iS not the same as the compiletime. I haven’t found
anything like compiletime or compiledate in that unit. This is FileAge.
Compiledate:=DateTimeToStr (FileDateToDateTime (FileAge (ExtractFileName (Application.
ExeName)))) ;

Blaise Pascal Magazine 91 2021 @ 6

From our Technical advisor: Cartoons from Jerry King

VQ@_\\{\ "

“We'll have to run more tests, but we think
hes tried memorizing so many passwords
his brain locked up.”

Blaise Pascal Magazine 91 2021 @ 7

Hydrogen as a powder: the energy problems are solved : H2 Fuel
https://h2-fuel.nl/portfolio-item/automotive-sector/?lang=en

Introduction of H2ZFUEL

H2Fuel is a patented technology for the production,
storage and release of hydrogen. For its production, no
electrolysis is required. The hydrogen is stored under
normal atmospheric conditions in a powder. Release
takes place without additional energy, using ultrapure
water. Not only is one hundred per cent of the
hydrogen stored in the powder released but, as a
bonus, the same amount of hydrogen is released from
the water, as well.

In dry powder form, the hydrogen can be stored for an
unlimited period, is in energy terms the maximum
attainable result, has no safety risks and, throughout
the production process from production through
consumption, features no harmful emissions at all.
Once the hydrogen has been issued, the residual
substances can be returned to the powder state with
hydrogen stored in them: this makes H2Fuel the
world’s first circular fuel. H2Fuel can be deployed in all
sectors of society and the economy and, as a result,
forms by far the preferable alternative to both fossil
fuels and other sustainable alternatives.

Detail:

The powder referred to above is sodium borohydride
(NaBH4). Each molecule of sodium borohydride
contains 4 hydrogen atoms (4H). Two molecules of
water (H20O) also contain four hydrogen atoms (2H2).
Ultrapure water is water from which all interfering
substances have been filtered out.

Some of the required water comes from the fuel cell
and is filtered.

All of the basic substances and filtration installations
needed are commercially available.

One cubic metre of powder contains 9 MWh of energy.

Unpacking process

To make it pumpable, sodium borohydride, partially
diluted with ultrapure water, is introduced into in a
mixing chamber. Very lightly acidified ultrapure water is
also introduced. Instead of acidification, a catalyst can

also be utilised, depending on the requirements of use.

When these ingredients meet, a natural exothermic
reaction takes place, such that four hydrogen atoms
split off from the sodium borohydride (NaBH4), and
hydrogen gas (4H) and a sodium boron compound
(NaB) remain.

In this reaction, so much energy is released that the
water splits into hydrogen gas (4H per 2 molecules)
and oxygen (20 per 2 molecules). The oxygen thus
released then bonds with the sodium boron
compound, yielding sodium metaborate (NaBO2) and
hydrogen gas (4H). Thus, overall, four hydrogen atoms
(4H) are released per molecule of sodium borohydride
and 4 hydrogen atoms (4H) are released per 2
molecules of water, yielding a total of 8 hydrogen
atoms (8H) and a reaction heat of 30M] that is cooled
to 90°C.

NaBH4 + 2H20 - NaBO2 + H20 + 8H + 90°C of
heat.

The hydrogen released has now become hydrogen gas
and, with the help of a fuel cell for generating
electricity, can be used as a direct energy source; in
addition to the use of the heat from the reaction, the
hydrogen can be converted into heat using a catalyst.

Packing process

The residual substances, consisting of sodium
metaborate (borax) and water, are removed from the
mixing chamber, after which a portion of the water is
evaporated. The oxygen that is bonded to the sodium
boron compound is removed and; in turn, hydrogen
(4H) is again affixed to it, again yielding sodium
borohydride (NaBH4), and the process repeats.

The hydrogen required for this is obtained by having
the unpacking process take place two times
simultaneously: the internal process and the external
process. Both processes require sustainable electrical
energy. Further, the unpacking process results in a yield
of 8H.

The internal process yields 8H and in turn splits it into
2x 4H, i.e., 4H for the formation of the sodium
borohydride (NaBH4) needed for the repetition of its
own process and 4H for the creation of sodium
borohydride (NaBH4) in the external process destined
for market consumption. There, the 4H which has been
bonded to the sodium boron compound through the
splitting of the water is again converted into 8H
(unpacking process).

“Love comes unseen; we only see it go.”
- Henry Austin Dobson

INTRODUCTION
The Fundamentals 5 Code Library is a big
toolbox for Delphi and FreePascal.

What | appreciate most in this library are the
main utilities for network and internet.

These utilities (Utils) it provides, involve
math, statistic, unicode routines and data
structures for classes similarly to how users
would find them in a big framework.

In this way, testing-routines help ensure your
tests and give you confidence in your code.

Our Test Directory includes detailed
information, guides and references for many
of our tests.

This includes test and result codes,
specimen collection requirements, specimen
transport considerations, and methodology.
Concerning a documentation of the
Fundamentals library, the most is detailed
direct in code with a revision history and
supported compilers.

There are also tools like DiPasDoc which we
can use to generate APl documentation from
comments in sources.

Those are free and generate HTML as well as
CHM. An online documentary has been built

in the meantime but not finished:
http://fundamentals5.kouraklis.com/

David |. Butler is also the author of the Zlib
version of PASZLIB which is based on the zlib
1.1.2, a general purpose data compression
library. The 'zlib' compression library provides
in-memory compression and decompression
functions, including integrity checks of the
uncompressed data. This version of the
library supports only one compression
method (deflation) but other algorithms will
be added later and will have the same stream
interface.

Blaise Pascal Magazine 91 2021

5 XbeX

Pagel/7

Similarly to for example the Indy or Jedi library,
we can specify the class name, test name
number of samples (measurements) to take
and number of operations (iterations) the code
will be executed.

Most of the operations are not overload but
has a strong name like that:

function GetEnvironmentVariableA(

const Name: AnsiString): AnsiString;
function GetEnvironmentVariableU(

const Name: UnicodeString): UnicodeString;
function GetEnvironmentVariable(

const Name: String): String;
{SIFDEF Uselnline}inline;{$ENDIF}

What's nice is when you pass an empty name
or some invalid thing as the actual parameter
of samples, most of the names or buffers will
be initialized and checked or filled out with a
proper default name of their own.

So the Fundamentals Library includes:

String, DateTime and dynamic array routines

Unicode routines

Hash (e.g. SHA256, SHA512, SHAl, SHA256, MD5)

Integer (e.g. Wordl28, Word256, Intl28, Int256

Huge Word, Huge Integer

Decimal (Decimal32, Decimal64, Decimall28,

HugeDecimal and signed decimals)

Random number generators

Ciphers (symmetric: AES, DES, RC2, RC4;
asymmetric: RSA, Diffie-Hellman)

Data structures (array and dictionary classes)

Mathematics (Rational number, complex number,
vector, matrix, statistics)

JSON parser

Google protocol buffer parser, utilities and

Pascal code generator

Socket library (cross platform - Windows and

Linux) TLS Client, TLS Server

TCP Client, TCP Server, HTTP Client,

HTTP Server, HTML Parser and XML Parser.

&

https://github.com/fundamentalslib/
fundamentals5/

https://github.com/maxkleiner/
fundamentals5

Assertions check for

programming errors,
NOT user errors!

Library

I did open another fork on
github to document my adapted
scripting units. Another advantage
is the use of test-procedure with
assertions. It implements the Assert
procedure to document and enforce the
assumptions you must make when
writing code. Assert is not a real
procedure. The compiler handles Assert
specially and compiles the filename and line
number of the assertion to help you locate the
problem should the assertion fail.

The syntax is like:

procedure Assert(Test: Boolean);
procedure Assert(Test: Boolean; const Message: string);

nentals 5

|
If you write a simple script program and
distribute it to each computer, you can have
the users start the tests on their own by
running the script with a list of asserts.

Page 2/7 95-XD@X

Assert(CopyFrom('a’, 0) = 'a’, 'CopyFrom');
Assert(CopyFrom('a', -1) ='a', 'CopyFrom");
Assert(CopyFrom(", 1) =", 'CopyFrom');

Assert(CopyFrom(", -2) =", 'CopyFrom");
Assert(CopyFrom('1234567890', 8) = '890', 'CopyFrom");
Assert(CopyFrom('1234567890', 11) = ", 'CopyFrom");
Assert(CopyFrom('1234567890', 0) = '1234567890', 'CopyFrom');
Assert(CopyFrom('1234567890', -2) = '1234567890', 'CopyFrom');

Assert(not StrMatch(",", 1), 'StrMatch");
Assert(not StrMatch(", 'a’, 1), 'StrMatch');
Assert(not StrMatch('a', ", 1), 'StrMatch');
Assert(not StrMatch('a’, 'A', 1), 'StrMatch");
Assert(StrMatch('A', 'A', 1), 'StrMatch');
Assert(not StrMatch('abcdef’, 'xx', 1), 'StrMatch");
Assert(StrMatch('xbcdef', 'x', 1), 'StrMatch');
Assert(StrMatch('abcdxxxxx', 'xxxxx', 5), 'StrMatch");
Assert(StrMatch('abcdef', 'abcdef’, 1), 'StrMatch');
Assert(StrMatch('abcde’, 'abcd’, 1), 'StrMatch’);
Assert(StrMatch('abcde', 'abc', 1), 'StrMatch');
Assert(StrMatch('abcde', 'ab’, 1), 'StrMatch');
Assert(StrMatch('abcde’, 'a’, 1), 'StrMatch');
Assert(StrMatches('abced', 'abcd’, 1)=true, 'StrMatches');

Lets take the above single assert with

Function StrMatches(const Substr, S: AnsiString; const Index: Int): Boolean;

As you can see the strings matches if equal otherwise we get an Exception:

Assert(StrMatches('abcd’, 'abcde', 1)=true, 'StrMatches'); Exception: StrMatches

i makbosd BN

Pl

maibaxd Scriptitudic 310_public_privats

¥y & 0 Q &

cryptoyyEtami_jkT frl

- T O

2 b o

Tiron

= = PRI L Y

B s

B a1 (0 RAT Mwea

E O o 11 dan 128

Page 3/7 H95XB@X
If the test condition fails the

SysUtils unit sets this variable to 10/01/2018 19:31:54 V:4.6.2.10

a procedure that raises the [max] problem occurred in initializing MCI.
[at: 3275216pgf; mem:1247492]
14/01/2018 17:15:18 v:4.7.2.30

[max] MAXBOX8 Out Of Range.

By the way don’t comment an assert [at: 2607048pgf; mem:1082444]

like this: 14/01/2018 17:15:21 v:4.7.2.40

[max] MAXBOX8 Out Of Range.

[at: 2605716pgf; mem:1080012]
16/01/2018 09:18:00 V:4.7.5.20

[max] MAXBOX8 List index out of bounds
(456) . [at: 2913700pgf; mem:1157700]

EAssertionFailed exception.

//Assert(StrMatchLeft('ABC1D', 'aBcl1’, False), 'StrMatchLeft);
//Assert(StrMatchLeft('aBc1D', '‘aBcl', True), 'StrMatchLeft));

You also can negate an assert as long as it

delivers a boolean (logic) condition:
4

{ Test cases

S~ S~ S~

Assert(not StrMatchLeft('AB1D', 'ABcl’, False), 'StrMatchLeft'); {
Assert(not StrMatchLeft('aBC1D', 'aBcl', True), 'StrMatchLeft'); {$HU)EFIHH9UCU
{$IFDEF LOG}
{$IFDEF TEST}
Then you want to write more assert system // {$ASSERTIONS ON}

information to a log file for analyzing problems
during installation, debugging, tests and de-
installation or app distribution like that:

n hindemertasil

-

B manti iokal

Pull requests. lssues Markeiplace Baplore

© fundamontakd

Fundamentals Library

Unfoiow

Higlhiights

Blaise Pascal Magazine 91 2021 @ 11

Next step is to bundle asserts in a
Test Procedure with sections like that:
procedure TestBitsflc;

begin
Assert(SetBit32($100F, 5) = $102F, 'SetBit");
Assert(ClearBit32($102F, 5) = $100F, 'ClearBit");
Assert(ToggleBit32($102F, 5) = $100F, '"ToggleBit');
Assert(ToggleBit32($100F, 5) = $102F, '"ToggleBit');
Assert(IsBitSet32($102F, 5), 'IsBitSet");
Assert(not IsBitSet32($100F, 5), 'IsBitSet');
Assert(IsHighBitSet32($80000000), 'IsHighBitSet');
Assert(not IsHighBitSet32($00000001), 'IsHighBitSet');
Assert(not IsHighBitSet32($7FFFFFFF), 'IsHighBitSet');
Assert(SetBitScanForward32(0) = -1, 'SetBitScanForward");
Assert(SetBitScanForward32($1020) =5, 'SetBitScanForward');

Assert(SetBitScanReverse32($1020) =12, 'SetBitScanForward');
Assert(SetBitScanForward321($1020, 6) =12, 'SetBitScanForward');
Assert(SetBitScanReverse321($1020,11) =5, 'SetBitScanForward');
Assert(ClearBitScanForward32($FFFFFFFF) = -1, 'ClearBitScanForward');
Assert(ClearBitScanForward32($1020) =0, 'ClearBitScanForward');
Assert(ClearBitScanReverse32($1020) = 31, 'ClearBitScanForward');
Assert(ClearBitScanForward321($1020, 5) = 6, 'ClearBitScanForward');
Assert(ClearBitScanReverse321($1020,12) = 11, 'ClearBitScanForward");

Assert(ReverseBits32($12345678) = $1E6A2C48, 'ReverseBits');

Assert(ReverseBits32($1) = $80000000, 'ReverseBits');
Assert(ReverseBits32($80000000) = $1, 'ReverseBits');
Assert(SwapEndian32($12345678) = $78563412, 'SwapEndian');
Assert(RotateLeftBits32(0,1) =0, 'RotatelLeftBits32');
Assert(RotateLeftBits32(1,0) =1, 'RotateLeftBits32');
Assert(RotatelLeftBits32(1,1) =2, 'RotateleftBits32');

Assert(RotateLeftBits32($80000000, 1) = 1, 'RotateLeftBits32');
Assert(RotateLeftBits32($80000001, 1) = 3, 'RotatelLeftBits32");

Assert(RotatelLeftBits32(1, 2) =4, 'RotateLeftBits32');
Assert(RotateLeftBits32(1, 31) = $80000000, 'RotateLeftBits32');
Assert(RotateLeftBits32(5, 2) = 20, 'RotateLeftBits32');
Assert(RotateRightBits32(0,1) =0, 'RotateRightBits32');
Assert(RotateRightBits32(1,0) =1, 'RotateRightBits32');
Assert(RotateRightBits32(1, 1) = $80000000, 'RotateRightBits32");
Assert(RotateRightBits32(2,1) =1, 'RotateRightBits32'");
Assert(RotateRightBits32(4,2) =1, 'RotateRightBits32');
Assert(LowBitMask32(10) = $3FF, 'LowBitMask");
Assert(HighBitMask32(28) = $£0000000, 'HighBitMask');
Assert(RangeBitMask32(2, 6) = $§7C, 'RangeBitMask");

Assert(SetBitRange32($101, 2, 6) = $17D, 'SetBitRange');
Assert(ClearBitRange32($17D, 2, 6) = $101, 'ClearBitRange');
Assert(ToggleBitRange32($17D, 2, 6) = $101, 'ToggleBitRange");
Assert(IsBitRangeSet32($17D, 2, 6), 'IsBitRangeSet');
Assert(not IsBitRangeSet32($101, 2, 6), 'IsBitRangeSet');
Assert(not IsBitRangeClear32($17D, 2, 6), 'IsBitRangeClear');

Assert(IsBitRangeClear32($101, 2, 6), 'IsBitRangeClear");
Assert(IsBitRangeClear32($101, 2, 7), 'IsBitRangeClear");
end;
{SENDIF}
{SENDIF}

Blaise Pascal Magazine 91 2021 @

Page 4/7 799237%@7\’

12

Is 5
ry

A tester is then able to run a
bunch of tests in Fundamentals,

e.g:

SetBitmaskTable;
TestBitsflc;

In the Fundamentals Lib we do have a 15
CLF_Fundamentals Testroutines Package:

01 TestMathClass;

02 TestStatisticClass;
03 TestBitClass;

04 TestCharset;

05 TestTimerClass

06 TestRationalClass

07 TestComplexClass

08 TestMatrixClass;

09 TestStringBuilderClass
10 TestASCII;

11 TestASCIIRoutines;
12 TestPatternmatcher;
13 TestUnicodeChar;

14 flcTest_HashGeneral;
15 flcTest_StdTypes;

procedure TestStdTypes;

begin
{$IFDEF LongWordIs32Bits}
{SIFDEF LongIntIs32Bits}
{$IFDEF LongWordIs64Bits}
{$IFDEF LongIntIs64Bits}
{$IFDEF NativelntIs32Bits}
{$IFDEF Nativelntls64Bits}
{$IFDEF NativeUlntIs32Bits}
{$IFDEF NativeUlntIs64Bits}

end;

Assert(SizeOf(LongWord)
Assert(SizeOf(LongInt)
Assert(SizeOf(LongWord)
Assert(SizeOf(LongInt)
Assert(SizeOf(Nativelnt)
Assert(SizeOf(Nativelnt)
Assert(SizeOf(NativeUInt)
Assert(SizeOf(NativeUInt)

Another way is to prevent call errors as a
mistaken precondition of false assumption in
a procedure you designed. This pre- and
postcondition can handle a lot of errors.
An example should make this clear.
A Tstack object has a method called Pop to
remove the topmost data object from the stack.
If the stack is empty, | count calling Pop
as a programming mistake: you really should
check for the stack being empty in your program
prior to calling Pop. Of course Pop could have
an if statement within it that did this check for
you, but in the *MAJORITY?* of cases the stack
won't be empty when Pop is called and in the
MAJORITY of cases when you use Pop, you
will have some kind of loop in your program
which is continually checking whether

Blaise Pascal Magazine 91 2021

&

Page 5/7 95-XB@X

the stack is empty or not anyway. In my mind
having a check for an empty stack within pop is
safe but slow.

So, instead, Pop has a call to an Assert
procedure at the start (activated by the DEBUG
compiler define) that checks to see whether the
stack is empty. Here is the code for Pop:

function TStack.Pop: pointer;
var
Node : PNode;
begin
{$IFDEF DEBUG}
Assert(not IsEmpty, ascEmptyPop);
{$ENDIF}
Node := Head~.Link;
Head~.Link := Node~.Link;
Pop := Node~.Data;
acDisposeNode(Node);
end;

As you see, if DEBUG is set the Assert procedure
checks whether the stack is empty first, if not it
executes the code that pops the data object off
the stack.
If the stack is empty an EEZAssertionError
exception is raised (the constant
ascEmptyPop is a string
code for a string-table

= 4); {$ENDIF} resource).

= 4); {$ENDIF} If DEBUG is not set the

= 8); {$ENDIF} code runs at full speed.

= 8); {$ENDIF}

- g; ggxgg So log the steps and

- 4); {$ENDIF} compare test procedures
= 8); {$ENDIF} before installation:

The location of the update
can be alocal, UNC or
network path to compare it.
If you need Admin Rights you can try this:

ExecuteShell('emd','/c runas
"/user:Administrator" '+
ExePath+ 'maXbox4.exe')

or
C:> net user Administrator /active:yes

After you have the option activated hereby of
finishing and writing the script, the next and final
step is select "Go Compile" in maXbox.

What this does is create a complete,
ready-to-run Setup program based on your
script.

By default, this is created in a directory named
Exepath under the directory or UNC path
containing the script or what destination you
need.

13

function GetInstallScript(const S API, pData:
string): string;
var ts: TStrings;
begin
with TIdHTTP.create(self) dobegin
try
ts:=TStringList.Create
ts.Add('install="+HTTPEncode(pData));
result:= Post(S_API,ts);
finally
ts.Free;
Free;
end;
end
end;

The most important step comes with unit tests
with setup and teardown.

Generic "Assert This" Assertion Procedure
means that most generic assertion program
simply says "assert this" and passes a Boolean
expression.

It is used by all the other assertion routines,
which construct a Boolean expression from
their specific values and logic.

Unit testing is a way of testing the smallest
item of code referred to as a unit that can be
logically isolated in a system.

There are different unit (modules) test
frameworks for Delphi and Free Pascal, which
can cause duplicate work for those who target
both compilers (for example, library and
framework developers).

Default unit test framework for Free Pascal is
FPCUnit, it has almost the same design as
DUnit but different in minor details.

A unit can be almost anything you want it to be

— a specific piece of functionality, a program,
or a particular method within the application:

Blaise Pascal Magazine 91 2021

Page 6/7 7?9?37%@7\’

type
THugeCardinal TestCase = TTestCase;
var
Fbigl234: THugeCardinal;
Fbig2313: THugeCardinal;
Fbig3547: THugeCardinal;
// TVerifyResult
Templ, Temp2, Temp3, Temp4: THugeCardinal;
Temp2000_1: THugeCardinal;
Temp2000_2: THugeCardinal;
T3, F100: THugeCardinal;
TmpStream: TMemoryStream;

procedure THugeCardinal TestCaseSetUp; //override;

procedure THugeCardinal TestCaseTearDown; //override;

//published
//procedure Test_CreateZero;
procedure Test CreateRandom;
procedure Test CreateSmall;
procedure Test Clone;
procedure Test Assign;
procedure Test Zeroise;
procedure Test CompareSmall;
procedure Test Compare;
procedure Test AssignSmall;
procedure Test BitLength;
procedure Test MaxBits;
procedure Test Add;
procedure Test Increment;
procedure Test Subtract;
procedure Test MulPower2;
procedure Test MulSmall;
procedure Test Multiply;
procedure Test Modulo;
procedure Test AddMod;
procedure Test MultiplyMod;
procedure Test 1s0dd;
procedure Test CreateFromStreamlIn;
procedure Test CloneSized;
procedure Test Resize;
procedure Test AssignFromStreamlIn;
procedure Test Swap;
procedure Test ExtactSmall;
procedure Test StreamOut;
procedure Test PowerMod;
procedure Test SmallExponent PowerMod;

procedure InitUnit HugeCardinalTestCases;
begin

// TestFramework.RegisterTest(THugeCardinal_TestCase.Suite)

THugeCardinal TestCaseSetUp;
end;

procedure DoneUnit HugeCardinalTestCases;
begin

THugeCardinal TestCaseTearDown

end;

&

14

Page 7/7 £95-XB@X

CONCLUSION:
The proper way to use Assert in the Fundamentals Lib is to specify conditions that must be true in

order for your code to work correctly.
Assert (StrMatches ('abed', 'abcde', 1)=true, 'StrMatches');

All programmers make assumptions about internal state of an object or function, the value or validity
of a subroutine’s arguments, or the value returned from a function. A good way to think about
assertions is that they check for programmer errors, not user errors!

My 7 Steps for maintainable code:
* Maintain separation of concerns (avoid unnecessary dependencies)

* Fully qualified unit names to be used: Winapi.Windows not Windows

* Code format to be consistent with LIB source

* Do not put application-specific implementations in general code libraries
* Carefully consider modification to common code - the way to proceed

* No hints (instant code review fail) and No warnings

* Keep code small — avoid long methods and should be broken down

Ref:

http://www.softwareschule.ch/download/maxbox_starter36.pdf
https://github.com/fundamentalslib/fundamentals5/
http://www.softwareschule.ch/examples/unittests. txt

script: 919_ulLockBox_HugeCardinalTestCases.pas

Doc:
http://fundamentals5.kouraklis.com/
https://maxbox4.wordpress.com

Blaise Pascal Magazine 91 2021 @ 15

News from the future /

6.7" AMOL? Rollable |

E A
About 5 years ago I talked about future In addition to the rollable phone, there was
development . One of the items was a announced a new 17-inch printed OLED
rollable screen from an item like a pencil. scrolling display that can be unfurled and

features a "100% color gamut. The new
screen technology, from TCL CSOT, can be
widely applied on flexible TVs, curved and
foldable displays as well as transparent
commercial display screens.

https://www.cnet.com/news/tcl-
rollable-phone-concept-unveiled-at-
ces-2021-and-1lg-rollable/

—_——

Blaise Pascal Magazine 91 2021 <> 16

LAZARUS: CREATING ATOM AND
VS CODE PLUGINS IN PASCAL

By Michael van Canneyt

(g—z

ABSTRACT

The Atom and VisualStudio Code editors are
among the most popular programmer editors.
These editor are extensible for anyone that can
create Javascript. Object Pascal programmers
can also create Javascript, so logically they
can also create VS Code and Atom
extensions.

In this article we show how.

starter 4 _____ iﬂl

Figure 1: Logo of Electron

. .. Electron (formerly known as Atom Shell)
‘!,:* 4 is an open-source software framework
Wi developed and maintained by GitHub.
It allows for the development of desktop GUI

PAGE 1/12

1 INTRODUCTION

Web applications are cross-platform. Any
platform that has a browser can run a web
application.

Less known is that you can run web applications
on a desktop:

Electron is an environment that uses the
browser and Node.js to allow you to create
desktop applications that are written in

Javascript, and which run in a browser - sort of.
It uses the chromium engine to render HTML -
the HTML is the GUI (Graphical User Interface)
of the application.

The application logic is written in Javascript.

With the appearance of Electron, two powerful
programming editors were created that use
Electron: Atom and VS Code.

Since they are built with Electron, they are
cross-platform.

*-4 Visual Studio Code is a free source-code

a

~22* editor made by Microsoft for Windows,

WIKIPEDIA

icati i Linux and macOS. Features
applications using web LESS KNOWN IS THAT include support for debugging,

technologies: it combines
the Chromium rendering
engine and the Node.js
runtime. Electron is the
main GUI framework behind
several open-source projects including Atom,
GitHub Desktop, Light Table, Visual Studio
Code, Evernote, and WordPress Desktop.

... Atomis a free and open-source text and
‘?,: ‘.1 source code editor for macOS, Linux,
wed and Microsoft Windows with support
for plug-ins written in JavaScript, and
embedded Git Control, developed by GitHub.
Atom is a desktop application built using
web technologies. Most of the extending
packages have free software licenses and
are community-built and maintained.

Atom is based on Electron (formerly known
as Atom Shell), a framework that enables
cross-platform desktop applications using
Chromium and Node.js. It is written in
CoffeeScript and Less.

Atom was released from beta, as version
1.0, on 25 June 2015. Its developers call it a
"hackable text editor for the 21st Century".
It is fully customizable in HTML, CSS, and
JavaScript.

Blaise Pascal Magazine 91 2021

@

YOU CAN RUN WEB syntax highlighting, intelligent
APPLICATIONS ON A
DESKTOP:

code completion, snippets, code
refactoring, and embedded Git.
Users can change the theme, keyboard
shortcuts, preferences, and install extensions
that add additional functionality.
Microsoft has released Visual Studio Code's
source code on the VSCode repository of
GitHub, under the permissive MIT License,
while the compiled releases are freeware.

Her you can download the Atom program:
https://atom.io/

Here you can download VS Code programm
https://code.visualstudio.com/download

With the appearance of Electron, two powerful
programming editors were created that use

Electron: Atom and VS Code.

Since they are built with Electron, they are
cross-platform. And because Electron uses a
Javascript engine (the same as Node.js), it is
possible to loadand execute arbitrary Javascript
code in the editor. This Electron ability is used to
allow people to extend the editor: you can
extend the editor in whatever way you see fit.
The only requirement is that the extension is
written in Javascript.

17

e Edn Selecthon Weew G0 Aol Tedrmenal

<) Winlcome X

¥ Show welcome page on startup

Figure 2: Visual Studio Code Editor

Naturally, there are numerous plugins for both
editors: in Atom they are called Packages,

in VS Code, they are called Extensions. Both
editors have plugins to facilitate programming
in Object Pascal.

But can you also write pascal to extend
these editors ?

Fortunately, now you can.

Pas2]S and the TMS Web Compile convert
Object Pascal to Javascript.

Javascript is a simple text file, and it should be
possible to include the output of the Pas2]S or
TMS Web Compiler in the editor in a format it
accepts.

Note that the Lazarus IDE support requires
the trunk version of the Pas2]S compiler:

it uses a -ja option to append a small piece
of Javascript to the output. If you use a
released version of the compiler, you can
append this little piece of code manually.

Blaise Pascal Magazine 91 2021

Welcome - Visual Studio Code

Customize

Toals and [anguages

Settings and keybindings

Color theme

Eeam

Find and run all commands
patlly

Interface averview

(1]
(1) Help improve VS Code by aflowing Microsoft to coflect usage data

Read our and lsarm how 1o

2 EDITOR API

The Atom and VS Code editors are themselves
written in Javascript. Because they are
well-designed, they make an API available to
any Javascript programmer that wishes to
extend the editor. How can we make this API
available to the pascal programmer ? In the
exact same manner as the Browser APl was
made available to the Pascal programmer: by
writing external class definitions that
‘translate’ the Javascript APIs of the editors for
the Object Pascal compiler.

This task has been accomplished: the APIs of
both editors have been translated to Pascal:
the units that contain these definitions have
been created and made available in the

subversion repository. The units with the editor

APlIs are called libatom and libvscode.

x

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 3/12

The APIs made available to you by these editors

are huge. They contain hundreds of

classes. They match the browser APIs for size,

so needless to say that an in-depth study of
these APIs is outside the scope of this article.
Although they offer the same kind of
functionalities, the APIs of both editors are
wildly different: code designed to run in 1
editor will not run in the other. Conceivably, a
kind of unifying APl can be made on top of
these APIS, so as to allow a programmer to
create a plugin that works for both editors.

3 PLUGIN ARCHITECTURE

Both editors have more or less the same
architecture for a plugin: a plugin is similar
to a library: it is a javascript file that must
expose a number of functions, plus a
manifest file describing the plugin. The
manifest file is a JSON file such as it is
found in many Node.js packages:
package. json, which must have some
entries for the Editor to be able to load
your plugin: the location of the Javascript
file (a module) with the plugin code.

In the case of VS Code, the javascript

code must export two procedures:
O® activate

This function is called when the plugin is
loaded: In this function, you must install
the necessary commands, hooks and
keyboard shortcuts. For this purpose,

the editor passes a context object as the
sole argument to the procedure. The
context contains an instance of the global

editor object.
® deactivate

This function is called when the plugin is

unloaded. g

The module concept of javascript translates
almost directly to Libraries.

Support for libraries is currently being
implemented, but is not yet in the current
release.

Because the Pas2]S compiler (2.0) does

not yet support compiling libraries, it is easiest

to use a little Javascript wrapper that will load
the code generated by Pas2js. This little

Javascript wrapper will start the pas2js rtl, and

will call a function defined in the main program.

For Atom, this wrapper looks like this:

'use babel';

import { CompositeDisposable } from
import { pas, rtl } from './pas2jsdemopackage.js';
export default ({

'atom';

activate (state) {

rtl.run();
this.subscriptions = new CompositeDisposable () ;
this.atomEnv = {
atomGlobal : atom,
subscriptions : this.subscriptions,
initialState : state
}
this.atomHandler = {
onDeactivate : function (a) {},
onSerialize : function (a,o0)

}

pas.program.InitAtom(this.atomEnv, this.atomHandler);

b

deactivate () {

if

(this.atomHandler.onDeactivate) {

this.atomHandler.onDeactivate (this.atomEnv)

}

this.subscriptions.dispose();

b

serialize () {

var obj =

if

}

{}:

(this.atomHandler.onSerialize) {
this.

atomHandler.onSerialize (this.atomEnv, obj)

return obj;

In the case of Atom, the javascript code must
export the above two functions (although they
have different arguments), and can export two

additional procedures:
® initialize
This function is called exactly once before

activating the package.
O serialize

This function is called when the package is
being unloaded, so it can preserve state. The
saved state is passed to the package activate
function when the editor loads it.

Blaise Pascal Magazine 91 2021

import

You don’t need to be a Javascript specialist to
understand that this code exports the three

functions mentioned above. What is important

for the pascal programmer, are three lines of
code.

The first important line imports the symbols
that can be found in any pas2js generated
program:

{ pas, rtl }

from './pas2jsdemopackage.js’;

@

19

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 4/12

The pas object contains the code from all the
units and the main program. The rtl object
contains the pascal run-time code.

The second important line of code initializes the

pascal runtime:
rtl.run();

This is the same code that can be found in a
HTML page <script> tag to start a pascal-
generated program.

The last piece of code transfers control to the
InitAtom function in the pascal main program:

pas.program.InitAtom(this.atomEnv,this.atomHandler);

This last line is a design choice, a convention to
handle the transfer of code to pascal;

it is only necessary for the time being, because
Pas2]S does not yet support libraries.

When Pas2]S will support libraries, the above
wrapper will of course no longer be necessary.

Note that a set of callbacks is passed to the
InitAtom call. This is done so only one function
needs to be exposed: when the InitAtom
function returns, the handlers in the
atomHandler object will be set and can be
used to transfer control to the pascal code in
the other two exposed functions.

The VS Code wrapper is entirely similar, except
the name of the Pascal initialization function:

const vscode = require('vscode');

const pascalRuntime = require('./pas2jsdemoextension.js');

var callbacks = {
onDeactivate: function (a) { }
}
function activate (context) {
pascalRuntime.rtl.run();
var vscodeEnv = {
vscodeGlobal: wvscode,
extensionContext: context

}

pascalRuntime.pas.program.InitVSCode (vscodeEnv,callbacks);

}
function deactivate () {
1if (callbacks.onDeactivate) {
callbacks.onDeactivate();

}

module.exports = {
activate,
deactivate

4 OBJECT PASCAL APPLICATION

In the above, we’ve seen the Javascript code
that will be used to kickstart the pascal code
for our plugin.

To make it easier for you to create an Object
Pascal program that can be used as a VS
Code or Atom plugin, a unit was created as
part of the Pas2]S package, which contains an
'Application’ object.

The application object is much like the Delphi
TApplication class, as it descends from
TCustomApplication - a standard class in
the Free Pascal runtime, which serves as the
ancestor for all kinds of application classes -
native or browser-based:

console applications, GUI applications (in
Lazarus) and Node.js or Browser based
applications in Pas2]S.

Because the VS Code and Atom APIs are
different, the application objects for both
environments

are of course also different. So the Pas2]S
distribution now has two units called
atomapp and vscodeapp.

They each define an application object for use
in the Atom and VS Code editor: Each

object has a property that contains an instance
of the global VSCode and Atom editor
environment: these objects are
made available by the editors:
we’ll see how to use this later on.

Blaise Pascal Magazine 91 2021 @

20

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 5/12

TAtomApplication = class(TCustomApplication)

Protected
procedure DoActivate(aState: TJSObject); virtual;
procedure DoDeactivate(); virtual;
procedure DoSerialize(aState: TJSObject); virtual;

Public
procedure SaveAtomEnvironment(akEnv : TAtomEnvironment;

o sun - TAiCaélBack§£ Té—\.tom]?ack}:fgeCallBacks); object’s DoActivate method.

property Subscriptions: omCompositeDisposable; . . .
Property Atom : TAtom; The VS Code application object

end; looks very similar:

This will also call the application

This is a simple application ob]ect (although TVSCodeApplication = class(TCustomApplication)
: Protected
some methods have been left out for clarity). procedure DoActivate; virtual;
It exposes two Javascript objects: e R e
SubScriptions and Atom, which will procedure SaveVSCodeEnvironment(akEnv :TVSCodeEnvironment;
contain the Atom global editor object that
exposes the complete Atom API for you,

aCallBacks : TVSCodeExtensionCallBacks);
and a subscriptions object.

Property VSCode : TVSCode;
— Property ExtensionContext : TVSExtensionContext;
The subscriptions object is an Atom object that

owns all resources you will allocate during

the lifetime of your plugin. When the plugin is

freed, the subscription will free all objects
it owns.

Likewise, a VS Code extension program must
contain a descendent of this class, and it
must instantiate it in the InitvsCode function
that is called by the Javascript wrapper.
Procedure InitVSCode(aVSCode : TVSCodeEnvironment;
. aCallBacks : TVSCodeExtensionCallBacks);
To create your Atom plugin, the package begin
program code must define a descendent of If Application=Nil then

this class, and override the three protected Application:=TMyvSCodeExtension.Create(Nil);
Application.SaveVSCodeEnvironment(aVSCode,aCallBacks);

virtual methods e

TMyAtomApplication = Class(TAtomApplication)
Protected
procedure DoActivate(aState : TISObject); override; app]ication class will be called by this process.
procedure DoDeactivate; override; In the D Acti £ thod t pla
procedure DoSerialize(aState: TJSObject); override; ocActivate method, you must place
end; all code that will hook into the editor API:

add commands, keyboard shortcuts etc.

5 LAZARUS INTEGRATION

The above code is the start of a VS Code or
Atom plugin:

It is possible to create an Atom or VS Code

Again, the DoActivate method of the

These methods obviously correspond to the 3
exported functions of the Javascript wrapper
and will be called when the plugin is loaded and
unloaded.

The Javascript wrapper code calls a function

InitAtom (this method name is case sensitive).

In this function, you can instantiate the atom

application class, and call

SaveAtomEnvironment to save the atom object

and set the callbacks needed by the wrapper:
Procedure InitAtom(aAtom: TAtomEnvironment;

aCallBacks : TAtomPackageCallBacks);
begin
If Application=Nil then
Application:=TMyAtomApplication.Create(Nil);

Application.SaveAtomEnvironment(aAtom,aCallBacks);
end;

Blaise Pascal Magazine 91 2021

@

plugin using Atom or VS Code themselves to
edit the pascal code, and use the above as a
starting point: in that case you must manually
add the wrapper code, package. json
program file etc. to your project.

But at the moment of writing, the Lazarus code
editor is still much more suitable for writing
Object Pascal than VS Code or Atom:

The Lazarus code tools provide much more
possibilities than either of these general-
purpose editors do.

That is why the Lazarus Pas2]s support has
been extended with two project types to
create an Atom or VS Code plugin.

21

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 6/12

These wizards will create a skeleton project for
you, which can be compiled using Pas2]S and
which is ready to be installed in the Atom or VS
Code editor. We’ll demonstrate the use of
these wizards in the following sections.

6 A SAMPLE ATOM PACKAGE

As a Pascal and SQL programmer, the author of
this article is used not to have to care about
the case of keywords and identifiers.

However, not everyone shares this view.

In Delphi and Lazarus, the code formatter can
be used to remedy this sloppiness:
the IDE code formatter will happily correct
casing for you.
Unfortunately, this disregard for casing extends
to project documentation, SQL statements,
resulting in documentation with for example
SQL keywords written in a wide variety of
casings.

Create a new projedt
Project Descngbion

Abom package
SHnple Program A pasd

Program pacxage

Figure 3: New project type: Atom Package

The author writes documentation primarily
using Markdown, in Atom.

So, since we now can write plugins in Pascal,
a good first attempt at a plugin is a plugin to
fix casing of some SQL keywords:

we uppercase a selection of SQL keywords,
thus having a more unified look for all SQL.

Before starting to code this, it is a good idea
to look at the APIs made available to you in

the Atom flight manual:
https://flight-manual.atom.io/api/

vl.54.0/AtomEnvironment/

Blaise Pascal Magazine 91 2021

A

P& program ranrning &5 ATDom

The Atom flight manual also contains a good
anatomy of an Atom package, it describes all
files that Atom expects to find. To get started,
we invoke the Lazarus wizard to create an Atom
plugin, as shown in figure figure 3 on page 22.
When selected, a small dialog appears to set
some options, as shown in figure 4 on page 22:
The various items that can be entered here serve
to generate a skeleton project:

° Directory

Every Atom plugin lives in its own directory.
Here you specify the directory for the new
plugin.

e Description

A textual description of your package, it goes in
the manifest file (package. json).

® Package Name

A (unique) name for your package, it goes in the
manifest file.

e C(Class Name

The Pascal class name for the application class.
e Link in Atom package dir

When you check this flag, the IDE will create (on
unix and MacOS) a link in the Atom package
directory to the directory where you create your
project. When you next start Atom, it will then
load your plugin.

e Commands

The commands that your package will provide
to the editor. For each command

you must specify a unique name, and the name
of a pascal function that will be called when the
command is invoked. The command names are
entered in the created menu.json file but also in
the pascal code, to register the callback for the
command. An empty function will be generated
for each function you specify here.

®* License

The license for your package, it goes in the
manifest file.

e Keywords Some keywords (space
separated) for your package, it goes in the
manifest file.

® Activation Commands

The commands that will cause your package to
be loaded by the editor. The scope is a valid
Atom scope identifier such as atom-workspace.
You can leave this list empty.

22

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 7/12

Maw Alom Package

Project Inspactor - fix-identifiers [Dafault]

W . o
tions Help

Figure 5: The new project

The most interesting is of course the program
code. The class declaration is much as we
expected:

TAtomFixIdentifiersApplication = Class(TAtomApplication)

Figure 4: New project type: Atom Package

Protected

procedure DoActivate(aState : TJSObject); override;

procedure DoDeactivate; override;

procedure DoSerialize(aState: TJSObject); override;

Public
Procedure FixIdentifiers;

Once you confirm your choices, the IDE will

create a project with several files (see figure end:

5 right top):

¢ fix identifiers.lpr
The program with generated code:

procedure TAtomFixIdentifiersApplication.DoActivate(

The interesting function is of course DoActivate,
this is where we start the ball rolling. The new
project wizard has already filled it with code:

it can be compiled.
menu. json

Atom menu entries: the menu entries

here will appear in Atom under the
'Packages’ menu.

aState: TISObject);
Var cmds: TJSObject;
begin
inherited DoActivate(aState);
cmds:=TJSObject.New;
cmds['fix-identifiers:activate'l:=@FixIdentifiers;

® package.json
The package manifest file. end;
® keymaps.json
The keymaps offered by your package:
It is necessary to edit the generated file,
and assign a unique key combinations to

each command.
® package.less

CSS for your package if your code needs it.
This will be loaded into the editor.

® packageglue. js
This file contains the Atom package wrapper
Javascript code shown above.
You may edit this to your liking. If you
change the name (or output file) of the
Pascal project, you must manually change
the name of the imported project file here.

Blaise Pascal Magazine 91 2021

subscriptions.add(Atom.Commands.Add('atom-workspace’, cmds));

@

The Atom.Commands object controls all the
commands of the Atom editor. It has a
method Add which needs a scope, and a
Javascript object which has a set of properties:
each property has the name of a command,
and the property value is the function that
must be called when the command is
activated. In the code above, the command
name is fix-identifiers:activate and the
function is FixIdentifiers.

The result of the Add command is an Atom
disposable: We add it to the Subscriptions
so that when the package is unloaded, the
disposable is freed.

23

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 8/12

An empty FixIdentifiers procedure has
been generated by the wizard, we just need
to fill it with code. To do what we want,

we need to find a reference to the currently
activeeditor, and the text buffer that it is
actually editing. When we have the buffer,
when can simply tell Atom to do a series of
search and replaces for a set of words that we
wish to correct the case for: The buffer API
has a method for this.

The following is a possible implementation,
with a limited list of keywords to replace:

Once the buffer is found, we loop through our
list of identifiers we wish to uppercase, and
call DoUuppercase, passing it the buffer and the
keyword we wish to uppercase.

The TAtomTextBuffer object has search (and
replace) methods: Scan, BackwardsScan
and replace which allow us to do what we
want.

Unfortunately, the replace method does not
allow to use placeholders in the replacement
text, so we opt for the BackwardsScan
method. Using the backwards scan instead of

Procedure TAtomFixIdentifiersApplication.FixIdentifiers;
Const
ToUpperCase : Array of string
= ('bigint','smallint’,'int','varchar’,
‘char','not null default','not null");

SErrNoEditor = 'Cannot fix identifiers. No editor is active!';
SErrNoBuffer = 'Cannot fix identifiers. No buffer available!’;
Var

Ed :TAtomTextEditor;
Buf : TAtomTextBuffer;

the forward scan, this avoids the danger
that the search algorithm gets stuck in an
infinite loop, because the replacement text
will also match the search expression.

The routine starts with creating a regular
expression that will only match whole-word
forms of the keyword, and a lowercase and
uppercase version of the search term.

S :String; Procedure TAtomFixIdentifiersApplication.DoUppercase(
P : Integer; aBuf : TAtomTextBuffer;
begin aWord: String);
Ed:=Atom.WorkSpace.getActiveTextEditor; Var]
if not Assigned(Ed) then S,ARegex,alower,aUpper : String;
begin P: Integer;
Atom.notifications.addWarning(SErrNoEditor); begin
Exit; aRegex:="(~|\W*)'+aWord+'(\W|$)';
end; aLower:=LowerCase(aWord);
Buf:=Ed.getBuffer; aUpper:=UpperCase(aWord);
if not Assigned(Buf) then aBuf.BackwardsScan(TJSRegexp.New(aRegex,'ig"),
begin procedure(aMatch : TAtomBufferScanMatch)
Atom.notifications.addWarning(SErrNoBuffer); begin
Exit; s:=aMatch.matchText;

end;
For S in ToUpperCase do
DoUpperCase(Buf,S);
end;

end;

P:=Pos(alower,LowerCase(S));
S:=Copy(S,1,P-1)+aUpper

+Copy(S,P+Length(aWord),Length(S)-P);
aMatch.replace(S);

end);

We first get a reference to the active text
editor: The WorkSpace object of the Atom
editor manages the editors, and the
getActiveTextEditor method of this object
returns the currently active editor. This can of
course be empty, and we display a nice
notification if this is the case.

Once we have the editor, we get the underlying
text buffer with getBuffer: because

multiple editors can be editing the same buffer
at the same time, the underlying buffer is a
separate object of the editor. Normally the
buffer cannot be empty, but for safety’s sake
we check for this and display a message if no
buffer is found.

Blaise Pascal Magazine 91 2021 @

Then it invokes the BackwardsScan option
with a regular expression object (defined in
the JS unit) and a callback: the callback is
invoked for each matched item.

The callback receives an object that describes
the match, and that contains a replace
method to actually replace the found term in
the text buffer: we must use it to replace the
search term with the uppercase keyword,
taking care that we match any non-letters
before and after the keyword.

That’s it.

24

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 9/12

lawyar,md — ~/source/CQues fDocs/dezgftechnical _analysis — Abom L

ik

Fin Identifiers Activate

Find And e place: Find beat

Find And Replace: Feplace Mlext

Flatfarmio ide Terminss kext

Figure 6: Our command in the command palette

Our plugin is ready. All that is left to do is assign
a key combination to our command in the
keymaps.json file:
{
"atom-workspace": {

"ctrl-alt-shift-f": "fix-identifiers:activate" X . X .
} Figure 7: The VS Code Extension options dialog

} Haw VS Code extensian -

Birector
We compile the lazarus project, and restart
Atom. When we press ctrl-shift-P to invoke
the command palette, we start typing the
command name, we can see our command as Class Mame | TFadentifiersapplacati
in figure 6 on this page.

You can easily verify that the command actually
changes the casing of the SQL keywords.

If you wish to debug the package, you must
start the Atom editor with the '—dev’
commandline option. When you do so, then
you can show the Chromium 'Developer tools’
using the 'View - Developer - Toggle Developer
tools’ menu: this will present you with the
sources of your plugin - in Pascal - and you can i 1 sl
debug the Atom package. R e
To distribute your package, all you need to do

is create a .zip file from the directory with

the code, or push it onto a github repository.

Blaise Pascal Magazine 91 2021 @ 25

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 10/12

7 A SAMPLE VS CODE PACKAGE

The functionality that was made for the Atom
editor can of course also be implemented for
VS Code. To do so, we can start the VS Code
Extension in the Lazarus IDE’s 'Project-New
Project’ dialog. figure 7 on page 24

The various items that can be entered for VS
Code are - not surprisingly - very similar to
the one in the Atom package dialog:

® Directory
Every VS Code extension lives in its own
directory. Here you specify the directory
for the new extension.
® Description
A textual description of your package,
it goes in the manifest file (package.json).
® Package Name
A (unique) name for your package,
it goes in the manifest file.
® Class Name
The Pascal class name for the application
class.
® Publisher
If you want to publish your package in the
online VS Code extension repository,
here you must enter your developer name.
® Commands
The commands that your package will
provide to the editor. For each command
you must specify a unique name, and the
name of a pascal function that will be called
when the command is invoked. Again,
an empty function will be generated
for each function you specify here.
® License
The license for your package,
it goes in the manifest file.
® Keywords
Some keywords (space separated) for your
package, it goes in the manifest file.
¢ Contribution Commands
The commands that will cause your package
to be loaded by the editor. The scope is a
valid Atom scope identifier such as atom-
workspace.
This list goes in the manifest file. VS Code
editor will use this list to present your
commands in the command palette.

For the sample code, we use the same names
and settings as in the Atom package.

Blaise Pascal Magazine 91 2021

When you click OK, the IDE will make a set of
files that make up the extension (see figure
figure 8 on page 25):

fix identifiers.lpr
The program with generated code:

it can be compiled.
.vscode/tasks.json

This file is used by VS Code to build your
package: It contains the Pas2]S command-
line needed to build your package;

it is possible to edit and compile your code
in VS Code.

.vscode/launch. json

This file is used by VS Code to run and debug
your package: It contains the necessary
command-line options needed to start

VS Code with your extension loaded.
package. json

The package manifest file.
js/packageglue. js

This file contains the VS Code extension
Javascript wrapper code shown

above. As in the case of the Atom package:
If you decide to change the name

(or output file) of the Pascal project,

you must not forget to change the name of
the imported project file here.

Project inspector - Fis-identifiers [Defaulk]

26

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 11/12

Again, the IDE has generated a project file that
is ready to be compiled, you just need to
create some code in the correct callbacks.

TFixIdentifiersApplication = Class(TVSCodeApplication)

Protected
procedure DoActivate; override;
procedure DoDeactivate; override;
Public

function FixIdentifiers(args: TJSValueDynArray): JSValue;

end;

The Document property of a TVSTextEditor

class is an in instance of TVSTextDocument

which contains the actual document that the
user is editing. This class does not offer
methods to directly manipulate the text:

every edit must be done by a
TVSTextEditorEdit

instance: the TVvSTextEditor class has an
edit method which creates such an edit and

Note that the generated FixIdentifiers
function has some arguments and returns a
value. The DoActivate function contains the
code to register our command:

procedure TFixIdentifiersApplication.DoActivate;
Var

disp:TVSDisposable;
begin

inherited DoActivate;

disp:=VSCode.commands.registerCommand('fix-identifiers:activate’,

@FixIdentifiers);

TJSArray(ExtensionContext.subscriptions).push(disp);

end;

calls an event handler with the created
instance (called editBuilder in the code
below).
To make things easier, we will retrieve the whole
text of the document (there is a
method called getText for this),
replace all identifiers in this text,

and then use the
TVSTextEditorEdit’s

replace method to set the new text
of the document. The replace
method replaces a given range’s text
with a new supplied text.

This code looks very similar to the DoActivate
code of the Atom package. The result of

the registerCommand command is a VS Code
disposable class: The ExtensionContext
was passed by VS Code to the VS Code
extension. It contains a Subscription array
which you can push elements on: We push the
disposable result of the registerCommand

to the Subscriptions array.

The FixIdentifiers method has been
generated by the Lazarus IDE wizard, and we
must fill it with code to implement our plugin.

The replacing of the text needs a Range (class
TVSRange): this is a small object that

contains two positions: the start and end
position of a range of text. Since we will be
replacing the whole text of the document, we
create a range that starts at row O column O, and
which is 1 line too long: the validateRange
method of the TVSTextDocument clips the
range so it is valid, and we use that to correct
the Range.

Putting all this together leads to the following
code:

function TFixIdentifiersApplication.FixIdentifiers(

args: TJSValueDynArray): JSValue;

The API of VS Code is quite big, it is

documented here:

https://code.visualstudio.com/api/ begin

Const SErrNoEditor ='Cannot replace identifiers:noeditor’;
Var Ed: TVSTextEditor; aText : String; R: TVSRange;

references/vscode-api

Unfortunately, the VS Code editor does not
offer a search and Replace API such as it exists
in Atom. We must implement the search and
replace ourselves.

To change the contents of a document, you
must first obtain a reference to the document.
We do this in a similar manner as in the Atom
plugin: the window.activeTextEditor

returns an active text editor: an object of class
TVSTextEditor.

Blaise Pascal Magazine 91 2021

Result:=null;

Ed:=VSCode.window.activeTextEditor;

if not Assigned(Ed) then

begin
VSCode.window.showInformationMessage(SErrNoEditor);
exit;

end;

aText:=Ed.document.getText();

aText:=DoUppercaseSQL(DoUpperCaseSQL(aText));

R:=TVSRange.New(0,0,Ed.document.lineCount,0);

R:=Ed.document.validateRange(R);

Ed.edit(procedure (editBuilder: TVSTextEditorEdit)

begin
editBuilder.replace(R,aText);

end

)i

end;

@

27

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 12/12

The DoUppercasesQL does the actual search
and replace on the text. It is a simple loop
which uses the standard Javascript
String.replace to do the search and replace.

Function TFixIdentifiersApplication.DoUpperCaseSQL(aText : String): String

Const

ToUpperCase : Array of string = ('bigint'’'smallint’,'int','varchar’,
‘char’,'not null default','not null")

Var S,aRegex,aRepl : String;
begin
Result:=aText
For S in ToUpperCase do
begin
aRegex:="(A|\W*)"+S+'(\W|$)";
aRepl:='$1'+UpperCase(S)+'$2";

The packager may complain
about a missing repository,
but if all went well you will
get a message that your file
was created:

home:~/github/vscodefixidentifiers> vsce package
DONE Packaged:
/home/michael/vscodedemo/

fix-identifiers-0.0.1.vsix (17 files, 365.06KB)

Result:=TJSString(Result).replace(TJSRegexp.New(aRegex,'ig'),aRepl);

end;
end;

This is maybe not the most efficient algorithm,
but it will do nicely for demonstration purposes.
Compiling the program and debugging it in VS

Code we can see that the project actually works:

If you want to distribute your package, you need
to build it. In order to do so you need to install
the vsce (Visual Studio Code Extensions) npm
package:

npm install -g vsce
This will install a vsce command on your system,

which you can then use to create a .vsix file:
vsce package

[Exiznsion Development Host] - @ create Lable Company | * Untitied-1

Go Bun Jerminal Help

WULL DEFmULT *'

NOT WUEL DEFAULT '

LT **,
087 MULL DEFAULT *',

i
UL,

Figure 7: Our command in the command palette

Blaise Pascal Magazine 91 2021

8 CONCLUSION

VS Code and Atom plugins are normally created
in Javascript. Thanks to Pas2]S and

TMS Web core, Pascal programmers can now

program plugins for these two popular engines
in Pascal. The method shown here will become
more simple in the future: when library support
is finished, then the glue code will no longer be
necessary.

Visual Studio Code L W

+ -Shift "+

g

Shift- = ale = |

L2, Cod 24

LF Pluin Test &

Spaces: 4 UTFB

28

ADVERTISEMENT

LAZARUS HANDBOOK 1 =
= [AZARUS HANDBOOK 2

[_&
o

&
[5

Subscription
Combi (4)

Subscription + Lazarus Handbook

Ex Vat 9%
Including shipment !

BITMAP ENLARGEMENT BY INTERPOLATION

By David Dirkse
stagrer SRR

INTRODUCTION

The Delphi TBitmap class has a two
dimensional array of bytes,words or cardinals
called the canvas which holds an image.

An individual byte,word,cardinal of this canvas
is called pixel.

On many occasions images need to be resized.

This may be done by copying the bitmap to a
new one of different size,

using a suitable algorithm to calculate the pixel
values of the new bitmap.

One method is to take the individual pixels
from the destination bitmap,

project them over the source pixels and
calculate the average color of the source pixels
covered. | call this the "projection method".

This method works fine in case of image
reduction.

For images enlarged by a factor 2 or 3, the
result is not smooth. In this article | describe a
better algorithm for these cases:

24 14 B o

@ Tested with: Delphi 7

Figure 3: Interpolation method

Please use a magnifying glass to see the
differences more clearly.

TBitmap class
In this project, pixels are cardinals only
(unsigned 32 bit integers).
This is the internal layout of a 32 bit pixel:

e transfer the source pixels =l
directly to their new position in
the destination bitmap

® use interpolation to calculate the remaining
-in between- pixels of the destination
bitmap.

I call this the "interpolation method".

See the next pictures showing
the different resizing algorithms
A 7 for a threefold magnification:

Figurel: Original

Figure 2: Projection method

Blaise Pascal Magazine 91 2021

There are 8 bits per color, color intensity
ranges from 0 to 255.
Bits 24. .31 are not used.

Next picture shows the coordinate positions of
the pixels.
The scanline[y] property supplies the pointer
to the first pixel of row y.

[0.,0] [5.0]
5 P
scanline[0] \
- Bl

scanlinef1] i P

scaniine[4]

Iur‘” o e [514I
+4 +4 44 +4 44

Figure 4: Copordinate positions

BITMAP ENLARGEMENT BY INTERPOLATI

Pixels on the canvas of bitmap map are
addressed by: map.canvas.pixels|[x,y]

This is a slow process, only suitable for a few
individual pixels.

Many times faster (50*) is to address pixels by a
pointer to their memory location.

To facilitate pointer calculations | store these
pointers as dwords.

Next a bitmap named map is created with 100
rows and 200 columns:

type PDW = ~dword;

;r.ar map : TBitmap;
p0 : dword; // pointer to [0,0]
pstep : dword; // pointer distance between rows

begin
map := TBitmap.create;
with map do
begin
width :=200;
height :=100;
pixelformat := pf32bit;
end;
p0 := dword(map.scanline[0]);
pstep :=p0 - dword(map.scanline[l]);

Now the expression

colorl :=map.canvas.pixels[12,75];
can be replaced by

colorl := PWD(pO - 75*pstep + (12 shi 2))»~; //-—--2

/ /1

Note:
In cases -1- and -2-
before the values of colorl are different.

In case -1- the red field occupies bits 0. . 7,
blue 16..23.

This is the Windows color format for 32 bit
and 24 bit pixels.

Regarding a 100*200 pixel bitmap as a one-
dimensional array[0..19999] of dword,
the first dword [0] is at pixel position
[0,199], the left bottom.

Dword [1] is at pixel position [1,199] which
is 4 bytes higher.

Going from [0,199] to [0,198]
requires addition of 4*200 =
pointer.

Pointers are byte addresses.

Expression (12 shl 2) is a fast way to
multiply 12 by 4.

For a next row, a pointer has to be subtracted
by value pstep = 4*column count

800 toa

Blaise Pascal Magazine 91 2021

Note:

Regarding a bitmap as a
one dimensional array A,

the pointertoa[0] is
bitmap.scanline[bitmap.height-1].

Multiplication by 2
A 5*5 bitmap is magnified to 10*10.

0 1 i 3 4
b 5] T 8 a
10 11 12 13 14
15 16 17 18 18
Z0 21 22 23 24

Figure 5: Coordinate positions

0 A i 2 3 4 A
B c B c
L3] T 8]

10 " 12 13 14

5 16 " 18 19

o | A 21 22 23 24

B C

-

Figure 6: The pixels that are directly copied are
indicated by a number.

Next the -in between- pixels A,B,C have to be
calculated.

The bottom row and also the right column
need separate action.

BITMAP ENLARGEMENT BY INTERP

procedure X2copy

type TAIP = arry[l..8] of dword;

var cl,c2,c3,c4 : dword; //colors of source map
AIP: TAIP; //interpolation pixels
pd0 : dword; //destination row O pointer
pdl,pd2 : dword; //destination row pointers
pdstep : dword; //destination row difference

ps0 : dword; //source row O pointer
psstep : dword; // source row difference
X,y : word; // source pixel addressing
py.pyl : dword; // scratch pointers
i ! ! Pdﬂ .E I
P Y ; : :
X @ c2 pd1 A lce
c3 | c4 pd2 B c
H i i a3 | P cd
*spurce destination

Figure 6: Pixels are processed starting

left top to right bottom.

Variables x,y address the source pixel c1 {c
stands for color}.

C1 is copied directly to the destination
bitmap.

To calculate the in-between pixels A,B,C the
procedure interpolate24(AlP,c1,c2,c3,c4);
is called.

A is AIP[1]
B is AIP[2]
C is AIP[3]

Interpolate24...{2x magnification, 4 variables}
calls

procedure unpackColor(var r,g,b : byte; col : dword);

begin
b :=colandS$ff;
col := col shr 8;
g :=col and $ff;
col := col shr 8;
r :=col and $ff;
end;

Then r,g,b values are calculated for each A,B,C
color.

A = (Cl+C2)/2 for r,g,b
B = (C1+C3)/2 for r,g,b
C + (Cl1+C2+C3+C4+3)/4 for r,g,b

Finally r,g,b colors are packed in A1P[1],
AIP[2}..etc by a call to

procedure PackColor(var col : dword; r,g,b : byte);
begin

col :=((r shl 16) or (g shl 8) or b);
end;

Please refer to the source code for details.

RIGHT COLUMN

2 | @~
a |
—-
|
=

Figure 7: Coordinate positions

Pixel c1 at [x,y] is copied to the destination
bitmap.

Pixel & is equal to c1.

Pixels B and c are the average of c1 and c2
which is calculated by

procedure interpolate22(var AIP : TAIP; cl,c2 : dword);
//return AIP[1]
var r,g,b,rl,gl,bl,r2,g2,b2 : byte;
begin
UnpackColor(rl,gl,bl,cl);
UnpackColor(r2,g2,b2,c2);
r:=(rl+r2)shrl;
g:=(gl +g2)shrl;
b:= (bl +b2)shrl;
packcolor(AIP[1],r,g,b);
end;

which extracts the 8 bit r,g,b values from
dword col.

cl has r1l,gl,bl values for red, green, blue.
c2 has r2,g2,b2 values...etc.

Blaise Pascal Magazine 91 2021

BITMAP ENLARGEMENT BY INTERPOLA

The process is similar to the x2
magnification however more calculation is
required.

First the 3x3 pixelfields in the destination

bitmap are processed.
Interpolation is more complicated.

BOTTOM ROW
Ej‘ 2 pat —A(c1)| A | ez
paiz—={ B | C

I calculate pixels A,B,C,D,E,EG,H as

weighted average of C1,C2,C3,C4.

Figure 8: Bottom row positions

c1 is copied from the source bitmap.

B equals c1.

A and C are the avarage of c1,c2 calculated
similar to the right column pixels.

Multiplication by 3
Below is pictured a 3x4 bitmap and its
magnification by 3.

If a color (C1,C2..) has distance d to a pixel
(A,B,C...) its weight factor w = 1/d.

The Pythagoras lemma is used to calculate
the distances.

A (1.C1 + 0.5C2)/(1+40.5) = 0.66C1 + 0.33C2
B (0.5C2 + 1.C1)/(140.5) = 0.33C1 + 0.66C2
D=0.36C1 + 0.23C2 + 0.23C3 + 0.18C4
P

lease look at the next picture: (Figure 10)

] i 2

3 4 5 I] A|B
& 7 B C D |E
g 10 1 F G H

Figure 9: Magnification by 3

Blaise Pascal Magazine 91 2021

7T

BITMAP ENLARGEMENT BY INTERP

Gl

€2

f;lT =4 T41 W = 0707 distance D lo C1

d?= 441 W, = 0.447

d.'i. = 441 T 0.447

*.:I4 = f 444 _“'4. 0354

D.?U?C1 +0.4 5C2+ﬂ'.l 5034»0'.351 c

D=

S w=185

m D-SECI + D.ZJGE + DEECJ + .1BE.

1.85

Figure 10: Shows the Formula
g ’ SHOWING RESULTS
Of course the calculation for D is repeated 3 mapl (loaded from disk), is displayed in
times: for red, green and blue. paintbox1. Paintbox1 has a fixed size of
400*400 pixels.
RIGHT COLUMN map?2 is the result of expansion and this bitmap
is displayed in paintbox2. This paintbox is
c1 800*800 pixels in size. To show all pixels in
.......... S— case map2 is larger, horizontal and vertical
c2 * "31__[} scrollbars are added on formi.
A The scrollbar max property has to be adjusted
— = .
.......... for the size of map2.
B The following code takes care
=
2 vard:smalllnt;
= i;egin
d:=map2.width - paintbox2.Width;
ifd <0 thend:=0;
Hscrollbar.max :=d;
Hscrollbar.position :=0;
d :=map2.Height - paintbox2.Height;
Figure 11: Right column ifd <0 thend:=0;
C1, C2 and interpolation colors A,B are copied VscrollbarMax :=d;
also to the far right destination column e

BOTTOM ROW

end;

-

c1

c2

Cij A |B |C2

Figure 12: Bottom Row

The C1 and C2 values are copied directly.
A, B are interpolation colors. C1, C2, A, B are
copied to the bottom row of the destination map.

Blaise Pascal Magazine 91 2021 @

BITMAP ENLARGEMENT BY INTERPOLA

A scrollbar onChange event calculates the

rectangle to be copied from map2 to
paintbox2:

procedure TForml.VscrollbarChange(Sender: TObject);
//V,H scrollbar changes
//repaint paintbox2
var BW,BH : word;//paintbox width, height
rs,rd : Trect; //source,destination rect
begin
BW := paintbox2.Width;
BH := paintbox2.Height;
with rs do
begin
left :=Hscrollbar.position;
top := Vscrollbar.position;
right := left + BW;
bottom := top + BH;
end;
with rddo
begin
left :=0;
top :=0;
right := BW;
bottom := BH;
end;
paintbox2.Canvas.CopyRect(rd,map2.Canvas,rs);
end;

map2

vert. scroll position
pa intbox

hor.screll
position

Figure 16: Interpolation method

The image represents the escutcheon of the
Dutch county of Zeeland.

A translation of the Latin text
To conclude | show another example of a 3 “Luctor Et Emergo” is :

times magnified image using both the "] struggle but I'll survive".
projection and the interpolation method:

Figure 13: Bottom Row

Figure 14: Original

Blaise Pascal Magazine 91 2021 @

ADVERTISEMENT

Sewn POCKET (2)
60 euro

ex Vat including shipment inc. PDF

LAZARUS HANDBOOK POCKET edition is
also sewn, (see next page) to make sure you will
not lose pages after a while. It is printed on 100

percent guaranteed FSC certified Paper &
INCLUDED: DS
bookmark - creditcard - usb stick

which contains the personalized pdf FSC 9 3 4 a es
file of the book and the extra program files. So p §

you have your electronic as wel the printed book °
in two books

For ordering go to:
https://www.blaisepascalmagazine.eu/product-category/books/

Blaise Pascal Magazine 91 2021 @ 36

ADVERTISEMENT

ibWo
fH/AV.
A~ &

| 7 XO050WY SO0 <o

1 JOOSOWH SIY) »

<

\

T YODSONY SPOY2Y) <

Including the PDF

The extra protection cover

The books

HardCover (3)

934 Pages

75 euro ex Vat
including shipment
including. PDF

in two books

https://www.blaisepascalmagazine.eu/product :

ategory/books/

37

Blaise Pascal Magazine 91 2021

Cyclic Redundancy Checking /

By David Dirkse
A

glitches in the same article of issue 90 we have
republished it in this issue (91) extra.

INTRODUCTION
Cyclic Redundancy Checking (CRC) is a way to
insure the integrity of data. During transmission
data may be disturbed by atmospheric interference
bad contacts or other hardware failures. Also
damaged magnetic media cause corrupted data.
Data also may be manipulated by interested
parties. The basic idea of CRC checking is to attach
a unique number to the data.

This number is generated in the following way:
Regard the data (message M) as one big binary
number.

Choose a number k (called the key) and divide
M by k, the remainder is r.

The quotient @ is discarded. The remainder

r is called the checksum and this number is

attached to the message,
M=0Q.k + r .

@Tested with: Delphi 7

CAPABILITIES
In case of a message length of 32 bits and a
checksum of 16 bits, there are
2~32/2~16 = 65536 messages that share the
same checksum.

This looks bad at first glance but consider a
randomly damaged message M: it only goes
undetected if 1 out of 65536 checksums is
generated.

With a n bit checksum the chances for a
random error staying undetected is 1/2%n .

(Message = quotient times key + remainder

Look at the next picture for the case of data
transmission:

recievar

DECIMAL EXPLANATION

To understand CRC checking, take the example
of normal decimal arithmetic and a key (k)
of 10.

Then message 192743 generates a checksum
of 3 regardless of the other digits.

Any error except for the last digit 3 goes
undetected.

Reason is that 40, 700, 2000, 90000,
100000 are multiples of the key k.

Customized text

sender

Figure 1: the case of data transmission:

At the sender side, bits of message M send
are also shifted into register r while kis
subtracted from r . After message M, the
checksum «r is transmitted.

At the receiver side also the checksum is
generated.

When M bits are transmitted error free, the
generated checksum at the receiver side
equals the checksum send by the sender.

Blaise Pascal Magazine 90 2020

Now consider a key of
11. 19274310 = 1218alll {a = 10}

This message will generate a checksum of 1.

Next an error is imposed on M, which becomes
19574310 = 12407911 and now checksum 9
is generated. The error is detected.
Let our key k be 125.

Cyclic Redundancy Checking

8 * 125 = 1000 so, errors in digits 3,4, ...etc Inx or , 0 isthe unity element of operation:
will go undetected because they impose errors 140 =1, 041 =1.

on M that are a multiple of 1000. 1 isitsowninverse:1 + 1 = 0.

Here we reach an important conclusion: The associative law holds:

an error E superimposed on message M goes (atb) + c = a + (btc)

undetected if E is a multiple of k. The commutative law holds : a+b = b+a
Working decimal, 10n may not be a multip]e The distributive law holds: a (b+c) = ab + ac
ofk for n=1,2,3,... see the next example as proof where a=1001,
This is the case when the number system base b=1100 and c=0111

and the key have no common factors.
y The left column shows a (b+c), the right

column ab + ac.

With a key of k bits, producing checksums of . . .
So we have a valid arithmetic system.

n = k-1 bits long, any single error burst within

i i vl 5o Glatieatiel, Here is another reassuring example:
the calculation a * b / b = a for

PUBLIC OR SECRET KEY? e=OIOLLL 2l =l TaldEil

In the case of data transfers a public key,

known by everyone, is fine. | 101101 tb:

Another situation occurs when CRC checking 010111 (a)

is used as a signature to protect data against
unauthorized modification.

101101
In this case the checksum is generated with a |
secret key, only known by the application LRI
Y, only y PP : 10110100 xor
1100 1100 D111 e L
0111 1001 1001 ”
+ X —_— {by 101101, 1000010011
1011 1100 o111 101101
1001 1100010 0111000 T
% + * 00110000
1011 1101100 _-111111 | 101101
1011000 1111112 I A S G |
————— S —————
e 0111011
1010011 =s——= 1010011 101101
Figure 2: CRC cheking
0101101
SIMPLIFIED ARITHMETIC 101101
Before, | mentioned that the checksum is S N |
generated by division. Zero remainder 0ooooo

Division implies borrows.

Borrows (and carries) may be avoided by
defining addition (subtraction) as exclusive or Figure 3: a valid arithmetic system.
(xor) operations. This simplifies hardware
without reducing effectiveness.

Binary xor operations are

0+0 = 0; O+1=1; 1+0=1; 1+1=0;

No carries, no borrows, they are simply
ignored. There is no difference between
addition and subtraction. xor is also called:
“logical difference”.

Blaise Pascal Magazine 90 2020 @

Cyclic Redundancy Checking

Bbmarycobubior Al
S | [oec] bex o] o |
DavData ﬂ - | = _I speed

X

[] | | I:

a7
| naBaRnARARRRRARARARANANNO0A8a02300800000000808aaY

H.I-I—I—I—l—l—l—l—l—t—H—l—l—l—l—'I—l——i—l—l—i—l—f—lID|0]l|l |1l1|1;1 |1|1|1 IDIUIQ|U|Q|OID[G|G|O|D%UIG| ﬁ

[Busy | wion | [X> K| [dvade | [muttly | [subtract|[acd | <<|[| >

xfoloJofo]o[ofo]ofofe]o[o]o]o]o]o[o[o]o]ofoo]ofoo} @

t
P
Figure 4: a simple calculator
Note: we are not interested in the quotient. A BIT CALCULATOR
To explore and learn binary arithmetic with
CHOOSING A KEY suppressed carries and borrows I have
Akey of 1 0000 00002 will generate programmed a simple calculator. Below is a
checksums that equal the 8 least significant reduced image.
bits of M because any message of the form Calculations may be performed with or
xxx 0000 0000 is a multiple of the key. without carries.
Any other key is good.
The choice of a key depends on the type of The speed is adjustable from 1 to 25
errors expected. Many keys are designed to operations per second.
detect double bit errors that are far apart. It uses 3 registers:
In that case errors like 100000000000000001 A : 48 bits.
may not be a multiple of the key. B : 24 bits, may be shifted left to represent
To choose a key may start with factorizing value B*¥2n where n is the shift count.
expected errors to make sure they are not a X : 25 bits.
multiple of the key. This arithmetic, of course,
must be performed using the above Operations are:)

. .) Add: A=2A+B. Customized text
rules Ignoring carries and borrows. Overflow sets if the sum exceeds 2748 -1 4:|
POPULAR KEYS . Subtract: A = A - B
Apopular 16 bitkey is Underflow is set when A becomes negative.
1 0001 0000 0010 0001 which is known as Multiply: A = A + B.X
the X25 standard. (clear A before operation)

Another 16 bit key is Divide: X = A/ B

1 1000 0000 0000 0101 called the CRC-16 A holds remainder after division.

protocol, used in modems.

The Ethernet standard uses the 32 bit key: Numbers (0,1) may be entered directly into
1 0000 0100 1100 0001 0001 1101 1011 O111. the register or entered in decimal or

hexadecimal format in an edit box.
Register values may be displayed in decimal or
hexadecimal format in this edit box.

The keys are designed to detect double bit
errors that are many bits apart.

Choosing a certain key is based on the
assumption that some errors are more likely to
occur than others.

Blaise Pascal Magazine 90 2020 @

Cyclic Redundancy Checking

Image below lists the controls and registers:

= Pl E:
BavDrata e 16 6 help | u
4 .ﬁﬂ'l =~ﬁ 2 Syead £ <
9 X X 10
[i] 1 =N

¢ 11

Afojo]ofofole]o]oolofolo]o]o]ojololo]o]oy lofo]o]e]o|ojololo]o]o]olo|o]o]e]o]elofo]o]o]o]o|ofo] e

B4+ttt efo o[ofaloofoo I'.'Il?l{i;ﬂ[G]D!D[ﬁ]ﬂlﬂ[ﬂiﬂlﬂ]ﬂlniﬂl @

. Carry suppression button.

. Clear buttons for A,B,X registers.

. B register left - right shift handles.

. Operation buttons

. Finish operation in progress, bypassing

. Operation busy indicator.
. Edit component for decimal or

delays.

hexadecimal display of numbers.

1. Aregister.

2. B register.

3. Cregister.

4. Buttons to transfer register to edit box.
5. Buttons to transfer edit box to registers.
6. Speed control

7. On-Line help

8. Close exerciser and exit.

9. Overflow / underflow indicators.

THE DELPHI (7) PROJECT

Unit 1 handles button events and di
indicators.

Unit 2 consists of a class called TEdit64
which is a descendant of Tobject. B

TEdit64 has a box property pointing to a
paintbox for display of register values.

The TEdit64 class does not perform

.............................

offsel

arithmetic operations, but only displays =
and edits data, shifts the B register and
manipulates a cursor.

Data is held in property digits,

an array|[..] of byte.

Byte layout is:

1xxx xxxx Tright pointing arrow displayed at
top of bit to indicate a borrow

x1lxx xxxx left pointing arrow displayed at
top of bit to indicate a carry

xx10 xxxx bit displayed in red color (not
black). Not used.

xxx1 xxxx bit displayed bold. (not used)
xxxx nnnn humber 0. .15 .

Only 0,1 used here.

Some properties of TEdit64:

Blaise Pascal Magazine 90 2020

Figure 6: Some properties of TEdit64:

Size, boxsize and offset are counted in binary
digits.

Pitch is the pixelcount per digit.

Binvalue: read (write) register value as 64 bit
integer.

Box: associated paintbox for display of register.

¥

boxsize

Cyclic Redundancy Checking

Unit 3 handles arithmetic operations.
Operations are performed bit-wise.

xor check lor suppressed carry division

See examples below:

Alld |0

A rotationbutton component

/!

X Jf'l)f' 1] 1 X

(simulation of a rotary button as

found in laboratory equipment) B 1

] i /]

allows for adjustable speed.

0 : continue v B

The button is set for values 0. .20.

The delay is obtained from a microseconds
timer component.

Value 0 causes 1Hz operation speed,

20 causes 25Hz.

Each step must cause the same relative speed

increment so 25 = step20.
Step = e0.05.1n(25) = e0.16009.

So, delaytime = le6 / exp(n*0.1609)

https://www.blaisepascalmagazine.eu/your-downloads/

Z: wrror

—
Figure 7: Examples
Please refer to the source code for details.
The rotation button component was described
some years ago in Blaise Pascal Magazine.
Forthemicroseconds timer and the array
button component (used to select operations) see my
book: “Computer Math and Games in Pascal”.
The buttons and extra examples are available via
download from your registered subscription address:

where n is the rotation-button position.

This unit has the following procedures:
procedure ADDstep(n : byte) ;

Adds bit n of B to corresponding bit of a.
procedure carrystep(n : byte);

is called to propagate a carry through a.
procedure AddBtoA;

calls ADDstep and carrystep to make full
additiona = A + B.

A similar case is subtraction with
procedures subtractstep(n:byte),

borrowstep (n:byte) being called by
procedure subtractBfrom A.

Multiplication is done by calling AddBtoa
repeatedly if the corresponding X bitis 1.
Division calls subtractBfrom A repeatedly,
setting an X bit if subtraction is done.

For each position (offset) of B a checkiis
needed because subtraction may not be
possible.

Different checks are used for the case of
carries and carry suppression.

function AminBOK: boolean; returns true
if subtraction with carries is possible.

Note: in computer hardware the subtraction is
actually made and negative results are
restored. However, non restore divide
algorithms also exist.

function AxorBOK: byte; checks for carry
suppressed division and returns

- 0 : continue shifting B register right

- 1 : xor B to A and shift B right

- 2 : error

Blaise Pascal Magazine 90 2020

TR W e
UCEEt =

<

ADVERTISEMENT

IJsselstein Netherlands

| BLAISE PASCAL MAGAZINE | st orisiomiees BLAISE PASCAL MAGAZINE |

editor@blaisepascalmagazine.eu
https://www.blaisepascalmagazine.eu

Wﬁ“ﬁp‘fﬂ' iand Laz2rLs

e “\m..-i ‘-‘“,.-.-“#".n- %
R e R HH T .lr

SUPER
OFFER (5)
€ 150 ex Vat

var
begin

BLAISE PASCAL MAGAZINE (@

www.blai

COMPUTER (GRAPHICS)
& GAMES IN
PASCAL

LEARN TO PROGRAM
USING LAZARUS

1. One year Subscription 4. Book Learn To Program using Lazarus PDF
2. The newest LIB Stick including 19 lessons and projects

- including Credit Card USB stick 5. Book Computer Graphics Math & Games
3. Lazarus Handbook - Personalized book + PDF including £50 projects

-PDF including Code
43

THE CRISPR PAGES PAGE 1/2

Since | am interested in crispr technology, | am
always on the look out for explanations: some
articles are very interesting and will provide a lot of
better understanding of these very special items
and Danny Wind of the Delphi Company showed
me this one.

Fantastic. Just go there and read it.

Here is given a very good written explanation of
things one needs to understand before even being
able to follow the article — and it reads like a
detective.

Only a small part of the article is published here
because all information is on his website and of
course much more.

JUST A SHORT INTRODUCTION:
Welcome! In this post, we'll be taking a
character-by-character look at the source
code of the BioNTech/Pfizer SARS-CoV-2
mRNA vaccine.

This is a good question, so let’s start off with a
small part of the very source code of the
BioNTech/Pfizer vaccine, also known as
BNT162b2, also known as Tozinameran also
known as Comirnaty.

Inter mational Nonpropriclary Names Programme

sequence / Séquence / Secuencia

GAGAAWASALC WARWAYMCURY CUGGWCOCCCA CAGADYCAGA GAGAACCCGC
CACCAWGWWC GUGYWCOPGE WECWGCWGECT YCYGHWGEWCD AGCCAGYWGEYE
YGAACCYGAC CACCAGAACA CAGCWGCCWC CAGCCYACAC CAACAGCWIW
ACCAGAGGELE WEWACWACCC COACAAGGYWE WWCAGAWCCA GUGWGCYWECA

CWCWACCCAG
ACGCCAYCCA
GY¥GCYGCCCY
CAVCARCAGA
GCCYGCPEAY
WCCAGYCY

GACCYGWCC
CEYGYCOGED
YCAACGACGE
GGCWEGLARCY
CEYGAACAAC
GCAACGACCC

YECCWINCHWY CAGCAACGYGE ACCWGLYWCC

e

A Codex DNA BioXp 3200 DNA printer

Out of such a machine come tiny amounts of
DNA, ending up as RNA in the vaccine vial.
RNA is the volatile ‘working memory’ version
of DNA. DNA is like the flash drive storage of
biology. DNA is very durable, internally
redundant and very reliable. But much like
computers do not execute code directly from a
flash drive, before something
happens, code gets copied to a
faster, more versatile yet far
more fragile system.

For computers, this is RAM,

or biology it is RNA.

The resemblance is striking.
Unlike flash memory, RAM
degrades very quickly unless
lovingly tended to.

ACCAMNGGCA CCAAGAGAY CGACAACCCC -
GOPGYACYSY GCCAGCACCG AGAAGWCCAA 350

WCGGCACCAC
GCCACCARCE
CYMICCVGGGE

First 500 characters of the BNT162b2 mRNA.
Source: World Health Organization

The BNT162b2 mRNA vaccine has this digital
code at its heart. It is 4284 characters long, so
it would fit in a bunch of tweets. At the very
beginning of the vaccine production process,
someone uploaded this code to a DNA printer
(yes), which then converted the bytes on disk
to actual DNA molecules.

Blaise Pascal Magazine 91 2021

ACWGGACAGC AAGACCCAGA 488

WEGWCAWCAA AGUGWGCGAG 450
GWCYACWACC ACAAGAACAA 560 THE BRIEFEST BIT OF

BACKGROUND
DNA is a digital code. Unlike computers, which
use O and 1, life uses A, C, G and U/T (the
‘nucleotides’, ‘nucleosides’ or ‘bases’).
In computers we store the O and 1 as the
presence or absence of a charge, or as a
current, as a magnetic transition, or as a
voltage, or as a modulation of a signal, or as a
change in reflectivity. Or in short, the O and 1
are not some kind of abstract concept.

THE CRISPR PAGES PAGE 2/2 : o8

They live as electrons and in many other
physical embodiments.

In nature, A, C, G and U/T are molecules,
stored as chains in DNA (or RNA).

In computers, we group 8 bits into a byte, and
the byte is the typical unit of data being
processed.

Nature groups 3 nucleotides into a codon, and
this codon is the typical unit of processing. A
codon contains 6 bits of information (2 bits
per DNA character, 3 characters = 6 bits. This
means 2[] = 64 different codon values).
Pretty digital so far. When in doubt, head to
the WHO document with the digital code to
see for yourself.

So if your interested: here is his website article:
https://berthub.eu/articles/posts/
reverse-engineering-source-code-of-
the-biontech-pfizer-vaccine/

SO WHAT DOES THAT CODE DO?

The idea of a vaccine is to teach our immune
system how to fight a pathogen, without us
actually getting ill. Historically this has been
done by injecting a weakened or incapacitated
(attenuated) virus, plus an ‘adjuvant’ to scare
our immune system into action. This was a
decidedly analogue technique involving
billions of eggs (or insects). It also required a
lot of luck and loads of time. Sometimes a
different (unrelated) virus was also used.

An mRNA vaccine achieves the same thing
(‘educate our immune system’) but in a laser
like way. And | mean this in both senses - very
narrow but also very powerful.

So here is how it works. The injection contains
volatile genetic material that describes the
famous SARS-CoV-2 ‘Spike’ protein. Through
clever chemical means, the vaccine manages
to get this genetic material into some of our
cells.

These then dutifully start producing SARS-
CoV-2 Spike proteins in large enough
quantities that our immune system springs
into action. Confronted with Spike proteins,
and (importantly) tell-tale signs that cells have Further reading/viewing

been taken over, our immune system develops In 2017 Ben Hubert held a two hour presentation on DNA, which
a powerful response against multiple aspects you can view here. https: //berthub.eu/dna/

ofthe Spike protein AND the production s e—
Process. for programmers’ since 2001. You might also enjoy this

And this is what gets us to the 95% efficient introduction to our amazing immune system:

vaccine. https://berthub.eu/articles/posts/
immune-system/

Finally, this listing of his blog posts:
https://berthub.eu/articles/

has quite some DNA, SARS-CoV-2 and COVID related material.

Image from https://www.webmd.com/lung/coronavirus

Blaise Pascal Magazine 91 2021 <> 45

te Page 1/1

5— expert G

This is the Lazarus example: | dropped some
code that will always show the correct compile-
date and path of your application. In contrast to
Delphi we need now to create code that is ready
for Windows, Linux and Mac

The code is downloadable of course.

unit UnitMain;
{$mode objfpc}{$H+}
interface

uses
Classes, SysUtils, Forms, Controls, DateUtils, Graphics, Dialogs, StdCtrls,
ExtCtrls;

YP | ' COMPRE DATE: 10-1-2001 22:3836 Path F\SPPBlaiseBlame UK 01_200MA. O X

{ TForm1 }

TForml = class(TForm)
Buttonl: TButton;
Labell: TLabel; COMPILE DATE: 10-1-2021 23:34:36
Label?2: TLabel;
Panell: TPanel; PATH
procedure ButtonlClick(Sender: TObject); F:ASPP\Blaise\Blaise UK_91_2020\Authors\CompiledDate’,
procedure FormCreate(Sender: TObject);

private

public
Var Compiledate : String; aDate : TDateTime;
end;

var
Forml: TForml;

implementation

($R *.Ifm}

{ TForm1 }

procedure TForml.ButtonlClick(Sender: TObject);
begin

labell.caption:
label2.caption:

'COMPILE DATE:' +'"' +Compiledate;
'PATH' + ' '+ ExtractFilePath(Application.ExeName) ; // Path

end;

procedure TForml.FormCreate(Sender: TObject);
begin
// You cant use the same solution as in Delphi because
// we have to serve more oOperating Systems
if FileAge(Application.ExeName,adate)
then CompileDate:=DateTimeToStr(aDate)
else CompileDate:='?";

Caption := 'COMPILE DATE:' + ' ' +Compiledate +' '
+' Path '+ ExtractFilePath(Application.ExeName); // Path

end;

46

CODE SN

starter expert b"

_______ - GOALS FOR THE PROJECT:
This is the promised Delphi version, it has some o Explai.n the settings for the MaskEdit
special aspects which I will show you and that are ® Creation of the Database
very determinative: The MaskEdit component has © Work around to insert or append

So to create almost the same aspects | tried to
find a easy way to still get that done. © Explaining the settings for the MaskEdit

The MaskEdit Help is very good at making
Introduction: the process clear:
The “MaskEdit” is a very nice component to use Choose Edit Mask in the Object Inspector
but needs some special knowledge. and then click on the ellipsis button:
In this Delphi example some of the possibilities A new window pops up
are explained, the code is available from your Input Mazk Editar

personal subscription download address: Yot Mk
https://www.blaisepascalmagazine.eu/| | T T=Rm
your-downloads/

and you need to login first.

Character Tor Panks: =
[#] Save Liter sl Charscters

You can build the project easily, its number of
components is limited, and you can of course first
try out the example. As | mentioned there are
some special aspects on this subject. I never
realized that there are no standard DBMaskEdit
components. So the easy way for the loading and e With that component selected, click the
saving in a DataBase must be solved in a work ellipsis button in the Value column for the
around. Or maybe some special component from EditMask property.

third party vendors. But for these easy kind of ® Double-click the Value column for the
projects we don’t want that - unless they are free. EditMask property.

If you click on F1 you get these help instructions

The Project
Here is the form of the project:
FmaskEditForm

Dis play Preferences

Input Mask editor

= Go b b0 Property Editors Indes
______________ L T Input Mask ecditer to define am ed® box that linets the sser 1o a specific
lormat and ocepds only vahd charachers For exampie, in & data enniry feid for
. tedephone mambars, you might dafing an edit box that accepts anly numssnc. nput
. : If & usar then tnes to entor @ lotter in this edi box, youwr application will not accept
n

Lise the Input Mask sdior to edit the Vel Mask TCustombdaskEds Edithlask
prapey of the MaskEdit companent

Condenis
T Dpening Tie Inpul Mazi e
2 Inpud mask
3 Characks Tor Blanks
4 Save Liberal Characiers
& Te=t impul
& Hampla Masks
3 B ¥ Masks bufion
oS m: 8 See AsD

- =

Blaise Pascal Mag,

CODE

Define your own mask:
This is a bit more complex and intricate.

You can use a special character to specify the
mask; for a listing of those characters, see the
TEditMask datatype. (See figure 2 page before)
The mask consists of three fields separated by
semicolons. The three fields are:

So this creates each time the database and fills
it with fields and data.
The event should be onCreate of the form

©® Work around to insert or append
We need to be able to extract as well to insert
dat from the database (grid). To be able to

® The mask itself; you can use predefined insert | thought it might be the easiest way to
masks or create your own. use the MaskEdit because we then do not have
® The character that determines whether or to use extra components, but there is a
not the literal characters of the mask are restriction: the onclick is triggerd directly, so
saved as part of the data. | used the onDoubleclick event. OnChange

©® The character used to represent a blank in
the mask.

| used only standard settings: there is an option procedure TFMaskEdit.MaskEdit1DblClick(Sender: TObject);
e O A e TSt begin // Must be doubleclick otherwise it will be triggerd to early

FormatSettings.DateSeparator := '/'; // sets the value in the database and shows it in the grid

has the same problem. Here is an example:

With CDS do
do not use FormatSettings it overules and begin
causes errors. Append;
FieldByName('ADate').AsDateTime :=
® Creation of the Database StrToDate(MaskEditl.EditText);
I chose to use a Client data set, because for ot

demo’s they are wonderfully simple: her is the o
code: (if you want to save the Client
database you need to use one of the earlier O Explain the click event of the GridCell
projects) | got almoast frustrated when I tried to
, , imnlamantaohis j thought it was a simple
procedure TFMaskEdit.FormCreate(Sender: TObject); . .
begin Nothing hapne nothing worked
ctivate a simple gridcel.

// Use the ShortDateFormat settings only
// ShowMessage('ddddd = '+ formatdatetime('ddddd', now));
// Format example : ShowMessage('d/m/yyyy = '+ formatdatetzme(’d/ m/yyyy’, now));

// FormatSettings.DateSeparator :='/"; s the way TDBGrid is coded,
// do not use FormatSettings it overules and causes errors . .
lataset is synchronized to the
;’it{‘ CDS do >d/clicked grid row. Generally
;g;:‘dDefs.Clear; siest to get values from the
f the dataset, but you asked,

FieldDefs.Add('ADate', ftDate); changing the current record's

FieldDefs.Add('AStr', ftString, 50);

H 1
FieldDefs Add(AInt, ftLargeint); ylatmg the cell's text because
CreateDataSet; ight you every inch of the way.
//add some data
Open;
App'igd; Dt 15092003 e robust way of getting the cell
FieldByName(' ").AsString :='12-09-2003; .
Lo apylanc(Abate) Asstring des Remy Lebeau's suggestion

ield instead of SelectedField, is
Append;
FieldByName('AInt').AsInteger := 1;
Post;

Append;
FieldByName('ADate').AsString :="'12-12-2090";
FieldByName('Alnt').AsInteger := 30;
Post;
DBGridl.Columns[0].Width := 150; // this sets the date colum width
//which is otherwise to small for the long date
end ;

end;

Blaise Pasca

CcO

O Explain the click event of the
GridCell

procedure TFMaskEdit.DBGridlColEnter(Sender: TObject);
begin
// Starts the field value whre you cliked on immediately
MaskEdit2.EditText := cds.FieldByName('Aint').Asstring;

I got almost frustrated when I tried
to implement what I thought was a
simple peace of code.

Nothing happened, nothing worked
as | wanted to activate a simple
gridcell. I found a solution that
solves this problem on the internet
and explains it as follows:

end;

var s : string;

begin

It works because the way
TDBGrid is coded, the associated
dataset is synchronized to the end;

procedure TFMaskEdit.DBGridlCellClick(Column: TColumn);
AField: TField;

// Starts the column field value

// if you do not use them together you will mis the first instance of Cell Click
AField :=column.field; // Fill the field

S:=AField.AsString;

MaskEdit2.EditText := S; // Set into Maskedit
// it must be MaskEdit2.EditText, not MaskEdit2.EditMask!

// Fil the Var

currently selected/ clicked
grid row.

Generally speaking, it's easiest to get values

from the current record of the dataset.

Try to avoid changing the current record's
values by manipulating the cell's text
because the DBGrid will fight you every inch
of the way.

Note that a more robust way of getting the cell
text, which includes Remy Lebeau's
(http://www.lebeausoftware.orgq)
suggestion is to use Column.Field instead of
SelectedField, see code right top:

| chose to use DBGridlcolEnter for initializing
the event, and the bBGridlcellclick to fill te
the MaskEdit: it must be
MaskEdit2.EditText, not
MaskEdit2.EditMask!

So now you can click on the gridcell and see the
changes....

| () MaskEdit - O ®
Dt Field - Mask: 19%/25/00;1;
12-12-20 [Showt onglatect
| | |we) 2123.6268 |
ADate AStr Alnt ”
12-5-2003
3 {oa) 21236269

ODE SNIPPETS Part 7

expert

C

In this series we want to show and create
little nice code creations that can be helpful
and very easy to replicate.

INTRODUCTION:

As | promised: here is the version for Lazarus.
This one can be used on Windows / Linux and
Mac OS (Big Sur).

Mattias Gaertner whom fell in to the bucket of
Pascal-Elixir (I am jealous of this) has of course
helped me with Mac OS.

I had learned by one of our readers that if you
want to write an app for several Oss you best
start with Mac. Usually after that Linux and
Windows will be easy

This app is created with the latest version of
Lazarus 2.0.10/ FPC 3.2.0.

I have tested it under all OS’s.

It’s a very simple project as you can see by the
code. | added some extra’s to show the actual
number if you change the size and or
placement on the desktop.

We build in a procedure to make sure that the
Application-window-sizes are guarded.

(See the code at the red arrow on the next page.)

I had to do this because | found out - I am
normally on a very large 4k screen - under “Big
Sur” the application flipped and was out of
sight. That is because my “Big Sure” screen is
only 13 inches.

Actually there are only two important events:
Form Create and Form Close.

The

TMemInifile.Create (extractfilepath
(application.exename)
+'PositionIni.ini') ;

means that if the file does not exist it will be
created and the position of the form as well its
size will be read.

In the Form Close it works the other way
around, the settings will be rewritten into the
inifile.

At that point the inifile must be freed:
PositionIni.Free; In case you are using
several forms you should free in the

Recall App Settings

MsisFarm

Page

To demonstrate, | made a small text which you can
activate by clicking the button. It will show the text
and if you click on the text you will see a
showmessage that lets you see the numbers of the
position and the size of the app.

After that there is a read out inserted into the Hint.
If you move over with your mouse it will show up.
If you change the position and/or size you will after
clicking on the text again be able to see the
changes. You can see that on the next page... as an
extra | have some information over Mac and the
Bundles. Read it: for Mac it is important...

‘owi can cramge The wiii® and the and the
pantioen o B dgrp. N you chck o fhe
lmbl v wa b wme

i e af e mifile,

Figure 1: Push the button , Windows 10 example

You can change the width and
the and the
position of this app. If you

Too 348 Left 451 Width 542 Hight 247

Figure 2: The Hint appears, Ubuntu Linux example

r

. N\
& FMainForm

Click me

‘You can change the width and the
and the

position of this app. if you click on
thie label you wiill see

the numberss of the Inifile.

] Top 497 Laft 1620 Width 316 Hight 197

FormDestroy of the main form.

Blaise Pascal Magazine 91 2021

@

Figure 3: Osx Mac, “Big Sur”

unit fPositionAppMainForm;

{$mode objfpc}{$H+}
interface

uses
Classes, SysUtils, Forms, Controls, Graphics, Dialogs, StdCtrls, Inifiles,
LazLogger{For testing Purpose} ;

var
FMainForm: TFMainForm;

implementation

{$R *.1fm}

function TFMainForm.GetCfgFilename: string;

{$IFDEF darwin}

var
p: Sizelnt;

{$ENDIF}

begin
Result:=ExtractFilePath(Application.ExeName);
{SIFDEF darwin}
p:=pos('.app/Contents/Mac0OS/",Result);
if p>0 then

Result:=ExtractFilePath(LeftStr(Result,p-1));

{$ENDIF}
Result:=Result+'PositionIni.ini';

end;

{ TFMainForm }
procedure TFMainForm.FormCreate(Sender: TObject);
Var r: TRect;
begin
// Positionlni := TMemlnifile.Create(extractfilepath(application.exename) +'PositionIni.ini));
// this is the standard windows solution <4

// These lines below show the construction you need
// if you want to use it on Mac, Linux and Windows
PositionIni := TMemInifile.Create(GetCfgFilename); <«

PositionTop := PositionIni.ReadInteger('SETTINGS', 'Top', PositionTop);
PositionLeft :=PositionIni.ReadInteger('SETTINGS', 'Left',PositionLeft);

AppWidth := PositionIni.ReadInteger('SETTINGS', 'Width', AppWidth) ;
AppHeight := PositionIni.ReadInteger('SETTINGS', 'Height', AppHeight) ;

// To test the eventual wrong numbers this is a way to ensure <
// that it will only start with the maximum width and higth
r:=Screen.WorkAreaRect;
if (PositionLeft<r.Left) or (PositionTop<r.Top)
or (PositionLeft+AppWidth>r.Right)
or (PositionTop+AppHeight>r.Bottom) then
begin
// the actual test itself:
// outside of screen, using default
//ShowMessage(AAA1 '+dbgs(PositionLeft)+' +dbgs(r)); <« == === === == 2= 2 e 2= =======
end else
FMainForm.SetBounds(PositionLeft,PositionTop,AppWidth,AppHeight);
//ShowMessage('AAA2 '+dbgs(PositionLeft)+' '+dbgs(r)+' Cur="+dbgs(BoundsRect));

// to set the form at theright placee <€ = ===== === == =@ == =22 =2==2= ===
FMainForm.Top :=PositionTop;

FMainForm.Left :=PositionLeft;

FMainForm.Width := AppWidth;

FMainForm.Height := AppHeight;

end;

procedure TFMainForm.FormClose(Sender: TObject; var CloseAction: TCloseAction);
begin

PositionTop :=FMainForm.Top;

PositionLeft := FMainForm.Left;

AppWidth := FMainForm.Width;
AppHeight := FMainForm.Height;

PositionIni.WriteInteger('SETTINGS', 'Top', PositionTop);
PositionIni.WriteInteger('SETTINGS', 'Left', PositionLeft);

PositionIni.WriteInteger('SETTINGS', 'Width', AppWidth);
PositionIni.WriteInteger('SETTINGS', 'Height', AppHeight);

PositionIni.UpdateFile;
PositionIni.Free ;
end;

procedure TFMainForm.ButtonlClick(Sender: TObject);
begin

// popup the label

Labell.Visible := True;
end;

procedure TFMainForm.FormDestroy(Sender: TObject);
begin

// Positionlni.free; //Only if there are several forms
end;

procedure TFMainForm.LabellClick(Sender: TObject);
Var PT,P1,AW,AH : String;
Hintstring: String;

begin // create the Hintstring and the showmessage

PositionTop := FMainForm.Top;
PositionLeft := FMainForm.Left;

AppWidth := FMainForm.Width;
AppHeight := FMainForm.Height;

PositionIni.WriteInteger('SETTINGS', 'Top', PositionTop);
PositionIni.WriteInteger('SETTINGS', 'Left', PositionLeft);

PositionIni.WriteInteger('SETTINGS', 'Width', AppWidth);
PositionIni.WriteInteger('SETTINGS', 'Height', AppHeight);

PositionIni.UpdateFile;
PositionTop := PositionIni.ReadInteger('SETTINGS', 'Top', PositionTop);
PositionLeft := PositionIni.ReadInteger('SETTINGS', 'Left',PositionLeft);

AppWidth := PositionIni.ReadInteger('SETTINGS', 'Width', AppWidth) ;
AppHeight := PositionIni.ReadInteger('SETTINGS', 'Height', AppHeight) ;

PT := IntTostr(PositionTop);
PL := IntTostr(PositionLeft);
AW := IntTostr(AppWidth);

AH := IntTostr(AppHeight);

Hintstring:='"Top'+''+ PT+ "'+ 'Left'+' '+ PL+ "'+ 'Width'+"''+ AW + ' '+'Hight' + ' ' + AH;
Labell.Hint:= Hintstring;
showmessage(Hintstring);

end;

Figure 2: Dragging and resizing
Top 487 Left 1520 Width 318 Hight 187

Top 598 Left 1901 Width 617 Hight 528

Figure 3: Now the hint appears

procedure TFMainForm.LabellClick(Sender: TObject);
Var PT,P1,AWAH : String; Hintstrin%: String;

begin

PositionTop := FMainForm.Top;
PositionLeft:= FMainForm.Left;

AppWidth :=FMainForm.Width;

AppHeight :=FMainForm.Height;

PositionIni.WriteInteger('SETTINGS', 'Top', PositionTop);
PositionIni.WriteInteger('SETTINGS', 'Left', PositionLeft);
PositionIni.WriteInteger('SETTINGS', 'Width', AppWidth);
PositionIni.WriteInteger('SETTINGS', 'Height', AppHeight);

PositionIni.UpdateFile;
PositionTop :=PositionIni.ReadInteger('SETTINGS', 'Top', PositionTop) ;
PositionLeft := PositionIni.ReadInteger('SETTINGS' 'Left',PositionLeft);

AppWidth :=PositionIni.ReadInteger('SETTINGS', 'Width', AppWidth) ;
AppHeight :=PositionIni.ReadInteger('SETTINGS', 'Height', AppHeight);
PT:= IntTostr(PositionTop);

PL:= IntTostr(PositionLeft);

AW := IntTostr(AppWidth);

AH:= IntTostr(AppHeight);

Hintstring:='"Top'+"''+ PT+"''+'Left'+''+ PL + "'+ 'Width'+"''+ AW + ' "+'Hight' + ' ' + AH;
Labell.Hint:= Hintstring;
showmessage(Hintstring); «

end;

Free Pascal

Lazarus

Project

Write' Once 2<}
Compile Anywhere '
_md |

INTRODUCTION

COMPILER

Pas2js is an open source Pascal to
JavaScript transpiler.

It parses Object Pascal and emits JavaScript.
The JavaScript is currently of level
ECMAScript 5 and should run in any browser
or in Node.js (target "nodejs"). It is available
in 3 forms:

® as a library

® as a command-line program

® as a webserver

It transpiles from actual Pascal source,

it has no intermediate . ppu files.

That means all sources must always be

available.

Through external class definitions, the

compiler can use JavaScript classes:

o All classes available in the JavaScript
runtime, and in the browser are available
through import units (comparable to the
windows or unix units for the native
compiler).

For Node.js, basic support for the nodejs
runtime environment is available.
An import unit for jQuery is available

(libjquery)

This project is NOT related to a similar named
project on github.

Blaise Pascal Magazine 91 20.

= '\II'___.-

k. level programming language.

-&.'4 A source-to-source translator, source-to-source
~\’1. %4 compiler (S2S compiler), transcompiler,

wiiimA or transpiler is a type of translator that takes
the source code of a program written in a programming
language as its input and produces an equivalent
source code in the same or a different programming
language.

A transpiler converts between programming
languages that operate at approximately the same level
of abstraction, while a traditional compiler translates
from a higher level programming language to a lower

For example, a transpiler may perform a translation of
a program from Pascal to JavaScript,

while a traditional compiler translates from a language
like C to Assembler or Java to bytecode.

Bytecode, also termed portable code or p-code, is a
form of instruction set designed for efficient execution
by a software interpreter.

Unlike human-readable source code, bytecodes
are compact numeric codes, constants, and
references (normally numeric addresses) that encode
the result of compiler parsing and performing semantic
analysis of things like type, scope, and nesting depths
of program objects.

The name bytecode stems from instruction sets
that have one-byte opcodes (is the portion of a
machine language instruction that specifies the
operation to be performed.) followed by optional
parameters.

RTL

For the generated code to work, a small
JavaScript file is needed: rt1.js. It defines
an object rtl. This object will start the Object
Pascal code if you include a call to rt1. run ()
in the HTML page.

<script

type="application/javascript"> ~
rtl.run()

</script>

~ https://wiki.freepascal.org/pas2js

pas2js can automatically include this file in the
generated output, like this:

pas2js -Jc -Jirtl.js -Tbrowser n
hello.pas L

For nodejs, the compiler will insert the call to
rtl.run () automatically at the end of the
generated Javascript file. g

There is a basic Object Pascal RTL, several

| units from the FPC Packages are also available

For extra information you can go to:

The most recent version you can get from our
own download addresses:
https://www.blaisepascalmagazine.eu/
pas2js-version2/ where you find:
pas2js-windows-2.0.0.zip
pas2js-macos-2.0.0.zip
pas2js-1linux-2.0.0.zip

or you can find it on this webaddress where all
and older versions are available:
ftp://ftpmaster. freepascal.org/fpc/
contrib/pas2is

The releases contain binaries for Windows (32
and 64bit), Linux (64 bit) and macOS.

Installation procedure:
1. Download pas2js
Every version has a directory with the
version number.
A list of changes can be found on the
changelog page Pas2]S Version Changes
.Unpack it in folder of your choice.
The example top right uses
C:\lazarus\pas2js\.
The release contains three folders:
® bin
- contains the compiler as executable
(pas2js Or pas2js.exe) and library and
some utilities.
demo
- lots of examples
packages
- the Pascal units of the RTL and other packages.
3. You can create a simple config to let the

compiler find the RTL and packages.
Edit bin/pas2js.cfg:

Minimal config file for pas2js compiler

-d is the same as #DEFINE
-u is the same as #UNDEF

| 3= 3= 3 3 3 3 3

=

Write always a nice logo ;)

Display Hints, Warnings and Notes
-vwnh

If you don't want so much verbosity use
#-vw

Allow C-operators
-Sc

-Fu$CfgDir\..\packages*
-Fu$CfgDir\..\compiler\utils\pas2js\dist

#IFDEF nodejs
-Jirtl.js
#ENDIF

end.

» ThisPC » Lecal Disk (C:) » lazarus » paslis »

P
A .
Mame

bin
demio

packages

SVN

svn co
https://svn.freepascal.org/svn/
projects/pas2js/trunk pas2js

You need FPC 3.0.4 or better to compile it.

Change to the directory and build it with:

make clean all

This creates
bin/$ (TargetCPU) -$ (TargetOS) /pas2js

(Windows: pas2js.exe).

For example on Linux 64bit it creates
bin/x86_64-linux/pas2js,

while under Windows 64bit it creates
bin\x86_64-win\pas2js.exe.

And create a text file pas2js.cfg in the folder
where pas2js.exe is:

Write always a nice logo ;)
-1

Display Warnings, Notes and Hints
-vwnh

If you don't want so much verbosity
use

#-vw

-Fu$CfgDir/../../packages/*
-Fu$CfgDir/../../compiler/utils/pas2j
s/dist/

#IFDEF nodejs
-Jirtl.js
#ENDIF

Put all generated JavaScript into
one file

-Jc

end.

HOW TO USE PAS2]S

The command-line arguments are kept mostly
the same as the FPC command-line
arguments. Error messages are also in the
same format.

The compiler needs access to all sources, and
so you need to specify the path to the sources
of all used units.

As for the FPC compiler, a configuration file is
supported, which has the same syntax as the
FPC config file. Note that the snapshots and
svn version already contains a default
pas2js.cfg with unit search paths (-Fu) for the
rtl and fcl. See here how for details about the
pas2js.cfg.

Basically, the command is the same as any
FPC command line. The only thing that is
different is the target: -Tbrowser or -Tnodeejs

Here is the complete list of command line
arguments.

FOR THE BROWSER
Consider the classical:
programhello;

begin

Writeln('Hello, world!");
end.

o

Yes, writeln is supported.
Here is how to compile it:

pas2js -Jc -Jirtl.js -Tbrowser hello.pas

When compiled succesfully, the code can be
run in the browser by opening a html file in
the browser with the following content:

<html>
<head>
<meta charset="utf-8"/>
<script type="application/javascript"
src="hello.js"></script>
</head>
<body>
<script type="application/javascript">
rtl.run() ;
</script>
</body>
</html>

The files that are needed are:

hello.html

hello.js

Whether hello.html is opened by double-
clicking it in the explorer or put on a server and
opened with an URL, is not relevant for the
functioning.

The output is visible in the browser's web
developer console. By including the
browserconsole unit, it will be visible in the
browser page:

programhello;
uses browserconsole;
begin

Writeln('Hello, world!");
end.

FOR NODE]JS

pas2js -Tnodejs hello.pas i

When compiled succesfully, the code can be run
in node using the following command.
nodejs hello.js |

Note: on macOS it is "node hello.js"

What is node js used for? Node. js is primarily
used for non-blocking, event-driven servers,
due to its single-threaded nature. It's used for
traditional web sites and back-end API
services, but was designed with real-time,
push-based architectures in mind.

Node.js is an open-source, cross-platform,

; back-end JavaScript runtime environment that
wirimA executes JavaScript code outside a web browser.
Node.js lets developers use JavaScript to write
command line tools and for server-side
scripting—running scripts server-side to produce
dynamic web page content before the page is sent to the
user's web browser. Consequently, Node.js represents a
"JavaScript everywhere" paradigm, unifying web-
application development around a single programming
language, rather than different languages for server-
side and client-side scripts.

Though .js is the standard filename extension for
JavaScript code, the name "Node.js" doesn't refer to a
particular file in this context and is merely the name of
the product. Node.js has an event-driven architecture
capable of asynchronous I/ O. These design choices aim
to optimize throughput and scalability in web
applications with many input/output operations, as
well as for real-time Web applications (e.g., real-time
communication programs and browser games).

The Node.js distributed development project was
previously governed by the Node.js Foundation, and
has now merged with the JS Foundation to form the
OpendS Foundation, which is facilitated by the Linux
Foundation's Collaborative Projects program.

p %

LAZARUS INTEGRATION OF PAS2]S Create simple JS objects with the new function
Lazarus understands the concept of external Some |S-framework functions expect a JS object
classes as used by pas2js, so code completion as parameter. Here is how to do that in Pascal
will work. Since Lazarus 1.9 the IDE can use using the new function from unit JS:
pas2js.exe as anormal compiler. // JavaScript:
DoIt({name:"Fred", id:3, size:4.3});
The integration is described on the Lazarus // Pascal; e s .
. 8o & q q . DoIt(new(['name’,'Fred’, 'id",3, 'size",4.31));
website: lazarus -pas2js integration. It is still You can nest it o create sub objeots:
under construction, but deep integration with

lazarus is planned. // JavaScript:

DoIt({name:"Fred", size:{width:3,height:2}});
// Pascal;
Importing Javascript classes DoIt(new(['name’,'Fred', 'size’,new(['width',3, 'height',21)1));

To import a javascript class. one writes a You can use TJSArray. of to create JS arrays on the fly]
normal class definition that mimics the // JavaSeript:
Javascript class. It is possible to use DoIt({numbers:[1,2,3]});
: : // Pascal;
properties. M.any exa‘n?ples can .be found in the DoTt(ew(EnUMbErs, TISA T rays of(L,2.3)1));
JS, web, nodejs and libjquery units.

TJSFunction = class external name 'Function'(TJSObject)
private
Flength: NativeInt external name 'length’;
Fprototyp: TISFunction external name 'prototyp';
public
name: String;
property prototyp: TdSFunction read Fprototyp;
property length: NativeInt read Flength;
function apply(thisArg: TJSObject; const ArgArray: TIJSValueDynArray): JSValue; varargs;
function bind(thisArg: TJSObject): JSValue; varargs;
function call(thisArg: TJSObject): JSValue; varargs;

end;

This declares the TJSFunction object: in
Javascript, functions are objects.

The "external name 'Function™ means that you
declare a Javascript class where the Javascript
name of the class is 'Function'.

The (TJSObject) means it descends from
TJSODbject also an external class. There does
not need to be an ancestor type.

Fields are declared just as in Pascal.

To declare read-only fields, a trick can be
used: declare the field using an external name
“thename" modifier, and declare a read-only
property with the same name.

(see the length declaration)

Varargs can be used to indicate that a function
accepts any number of arguments.

JSValue can be used to indicate an unknown

type.
It is more or less equivalent to a Variant.

RESOURCE STRINGS

The pas2js transpiler can generate a JSON file
(extension .jrs) with all the resource strings in
your program.

This is a quite simple file. A JSON object exists
for every unit, with each JSON property a
resource string.

"trs2" : {
"ResUsed" : "This resourcestring is used’,
"ResUnUsed" : "This resourcestring is not used’,
"ImplResUsed" :
"This implementation resourcestring is used"

}

"trsl":{
"MyString" : "The very nice string we will need to

translate”

}

can be loaded using the rstranslate unit, part of
the rtl. There are demo programs which
demonstrate the use of this feature.

The generating of this file is controlled by the -Jr
option. It can take 3 possible arguments:

- ® none This is the default, no file is generated.

~ ® unit one file per compiled unit will be
generated. This file will contain all resource
strings of the unit.

® programone file is generated for the main
file. This fill will contain all used resource
strings for the main file and all the units it
uses.

. If you compile a program, then the program

option will generate a file with all the used

resource strings in your program.

The above example was generated using the
command:

pas2js -Jrprogram trsl.pp -B

Note that the format is different from the
format used by FPC:

Identifiers in the file are case sensitive: the

' names must be typed as they appear in the
source file. The strings are grouped per unit,
this allows to load them faster.

The hash and bytes parts are missing, they
make little sense in a Javascript context.

Exceptions

Exceptions are translated to actual Javascript
exceptions. The rtl. js has several
mechanisms to deal with uncaught
exceptions. The basic mechanism is setting
the showUncaughtExceptions to true before
calling rtl.run () inyour html file.

<script

type="application/javascript">
rtl.showUncaughtExceptions=true;
rtl.run();

</script>

This file can be translated, and the translation filg

The browser will then use a window.alert ()
to show uncaught exceptions.

More explanations can be found in
pas2js_exceptions

¥

DEBUGGING
The generated Javascript source code is of
course visible and debuggable in the browser.

Moreover, the transpiler can generate a source
map, which means that you will be able to see
and debug the Pascal code in the browser.
(Not everything will work, but many things
do. This depends on the browser too.)

A source map can be generated using the
command-line parameter:

-Jm

The easiest is to include the Pascal sources in
the source map:

-Jminclude

By default all source filenames are relative to
.js.map. You can tell the compiler to store all
file names relative to a specific local base
directory:

-Jmbasedir=DirName

And you can store an URL in the map, so the
browser will use URL/above-relative-file-name
to get the source:

-Jmsourceroot=URL

Porting from FPC/Delphi
See here for tips and traps porting code from
FPC and Delphi.

Delphi cannot parse some of the constructs
that exist in pas2js (namely: external classes).
You can create stub declarations suitable for
the Delphi parser with the stub creator.

EXAMPLES:

® Time Tracking Application:
https://www.devstructor.com/demos/pas2js-time/source.zip

Drawing and animation on canvas:
http://ragnemalm.se/images/santa/santa.html

(sources: http://ragnemalm.se/images/santa/)

WebGL:
https://github.com/genericptr/Pas2JS-WebGL#pas2js-webgl

Allegro Web Game:
https://lainz.github.io/AllegroPas2JS-Demo-Game/index.html

(sources: https://github.com/lainz/AllegroPas2JS-Demo-Game)
https://github.com/genericptr/Pas2JS-WebGL#pas2js-webg

In the next issue we will explain
the Lazarus pas2]S Integration

D Tire Trickny X

€« r 20 B dessirecioroom/demon’ipesd bme
Timne Tracking

Mew Bookng was added

[edeste il Diata

Activi Baaking: Sa5

Your Bookings

o e

O Y 8 cewirucion ey e -t

TIITIE" Tracking

¥our Booking was cased
Dalate All Data

Your Bookings

¥ Start Stop
20270114 TRI%I9 02710714 113941

2021-01-14 113803 20371-01-14 11:3%23

Figure 1+2: Time Tracking Application:

x|

Tagremptm e fmages wamay saneahimi

http://ragnemalm.se/images/santa/santa.html
@ himpewvws gt s hiipe M e B rimipresesy githobaoyHhtips] 4+

&« - @ ¥ A Motseoow | himipreviesgirthubin/Thitps s githutusscnntentoomige = G % & Hotwecure | htmipresies,

https://github.com/genericptr/Pas2JS-WebGL#pas2js-webgl

-

https://lainz.github.io/AllegroPas2JS-Demo-Game/index.html

ADVERTISEMENT

TaveSaript /1 by P
i A

Free webcore for the Mac / By Mattias Gaertner:

MMXcode for Delphi / By Detlef Overbeek

Free Simple projects with Lazarus and Delph
c

B L A I s E P A S C A L M A G A z I N E c redundancy codes / By David Dirkse

ALL ISSUES IN ONE FILE

BLAISE PASCAL MAGAZINE

procadura procadurs

Bagin - - Segin
e TN of " of Pasc for
end nd

e . editor@blaisepascalmagazine.eu

o e https://www.blaisepascalmagazine.eu

1 year Subscription+

the new LibStick (6)
(on USB Card - 90 Issues)

€ 100

ex vat / inc. shipment

&) barn 3TN

Promotions

Delphi & C++Builder are the best development tools on the market to design and develop modern, cross-platform
native apps and services. It's easier than ever to create stunning, high performing apps for Windows, macQOS, iOS,
Android and Linux Server (Linux Server is supported in Delphi Enterprise or higher), using the same native code base.
Share visually designed Uls across multiple platforms that make use of native controls and platform behaviors, and
leverage powerful and modern languages with enhancements that help you code faster.

SUPER DEALS AT BARNSTEN UNTIL January 31, 2021 *

Get 15% on RAD Studio, Delphi and C++Builder products
This can be bought directly in the webshop
PLUS

GET a FREE Web Pack of your choice when you buy a new license for Delphi/RAD Studio/C++Builder Enterprise or
Architect. Choose between IntraWeb, TMS Web Core, or uniGUI and build amazing native applications. You will receive
a link to redeem the Web Pack of your choice with the delivery of your license.

* These offers are not valid on Academic licenses and/or existing contracts

Delphi 1.4 Sydney Deelpehi 10.4 Sydney Dreiphi 10u% Sydrey
Brofessional Enterprise Architect

oo

Co+Bullder 10.4 Sydney CosBullder 10.4 Sydney CrrBullder 104 Sydney
Professional Enterprise Architect

Fom Wl T o’ n” W u =C ol T s y

oo oo

www.barnsten.com / info@barnsten.com
France: Téléphone +33 (0)9 72 19 28 87
Benelux: Telefoon +31 (0)2 35 42 22 27

&) barn 3TN

RAD Studio 10.4 Sydney RAD Studio 104 Sydney RAD Studic 10.4 Sydney
Prafessional Entarprias Architect

o

RAD Studio™ is the fastest way to design and develop modern, cross-platform native apps and services. It's easier
than ever to create stunning, high performing apps for Windows, macOS, iOS, Android and Linux Server (Linux Server
is supported in Delphi Enterprise or higher), using the same native code base. Share visually designed UIs across
multiple platforms that make use of native controls and platform behaviors, and leverage powerful and modern
languages with enhancements that help you code faster. Developers pick RAD Studio™ because it delivers 5x the
speed for development and deployment across multiple desktop and mobile platforms.

Which promotion suits you the best?

Start today with the most powerful framework for Windows and native application development for Windows, macOS,
Android, iOS and Linux.

You can choose for a license including 36 months subscription. You will get access to all new versions and technical
support for three years.

You can choose option 2 if you want to bring your Delphi apps to the Web. You will receive your Delphi license incl. 1
year subscription and a free Web Component tool of your choice.

Chat with us or call if you have questions or need a personal advise.

Direct access to Windows 10 Store support

With the latest Embarcadero 10.3.3 Rio software you can transform existing and new Windows Desktop applications.
The applications are suitable for the Microsoft Windows 10 Store, using the Desktop Bridge technology, also known as
Centennial Bridge. In addition you will have to opportunity to sell to the entire world via the store.

www.barnsten.com / info@barnsten.com
France: Téléphone +33 (0)9 72 19 28 87
Benelux: Telefoon +31 (0)2 35 42 22 27

Compile Tool for kbmMemTable

and kbmMW By Detlef Overbeek

Introduction:

| tried the newest extra from Kim Madsen: The
compiletool.

It is a tool that you will get together with two
programs: kbmMemTable and kbmMW .

The name is a bit misleading:

It actually is an installer that makes things that
were rather complex before very easy.

In this overview I'll show where it is placed
after installing the program of the MemTable
or the Suite.

I am very pleased with this, not only because
Component4Developers is an advertiser but
because it makes it almost 100% easy to use
it.

To convince you, these pages that show
almost without text what to do and where you
can find the installer of ”The Compile Tool”.

3 Setup - KbmblemTable Profecsional Editicn

Lcrmur Agreement
Plese resd the folosng mpe ant nformaton before ontrung.

Plasies rindd the Tolowng Liceres iou must aocept The e of B
mgreemen befere corbinang with e instelabon.

fitwsbien T able | bvsbemTahie Pro | dveS0L

FETErE T T T T TR T T

4 high pevformarcs in-semor y doltase! with 50U support.

L B L1 3 "y P s

(11 accapt the agresree
(W) e ot Scrapt e agreement

Figure 1: The setup for the memtable starts
¥ Setup - kbmbternTable Professsonal Editicn

Selbect Start Menu Fobder
Winere shouid Setup place the program's shoriouts?

T

l Selup wil reahe e program's shoriouls in e following Start Merw Folder,

To conirue, chek Mt [f you wold e 1o select & dfferent foder, dhol Bromse.
iz i | | Erowse...

_<oec [Met>]| corcd

Figure 2: Program folder

Blaise Pascal Magazine 91 2021

Setiap - WbmMernTabie Prof essionsd Editon

St [estination Location
ihare ghoie idswbern Table Professonasd Edton be rstaled?
Setup wil rrtal v Tabie Frofesnons Edton nia e folowing folder

T o, chok Pt [F you waould ke 1o select & dFferent foldes, dick Browse.
[| | erowse...

Atieast 5,4 M8 of bee del space b regured,

s s] | oot

Figure 3: Folder selection

Srebect (Weabimaion | ocation
iwhere should dvbiemT able Professoral Edben be rstaled?

Setup vl incil kbmiesTabie Frofessons Edion min B folomses foider .
Folder Exints
&

0 T fobder

Crgnmbieml s

il exlils. Youlkd you bie 16 nddal to that Tolder arpwiy™

=]

&t et 9,4 MB of free dek space i requred,

o i
Figure 4: If you had a previous installation make sure it is
all removed and there is nothing of the installation is left

".Hup-m‘hbhhdumlé-ﬂm =

»
ErestaBineg
Fleae man while Snp nalals desbemT able Professonal Edbon on o e

Figure 5: The running installment

.. COMPONENTS
DEVELOPERS

Compile Tool for kbmMemTable
and kbmMW

E S#tup - Kbrmbem Tabde Profetnonal Ednicen

CTMELERS completing the kbmMemTable
Professional Edition Setup Wizard - = x _I I Haw o =

Setup hus frushed s taling beriensTable Professionsl Edibion Sghut Mowe

N e coespter . The spplcaton may be lmrched by
sslerng he iretalied dhortouty

'
¥ 7 Emsy sooess -
Copy Dislele Fename e Fropers
o= o= o Faldes -

OirgnaL e Meve
Oick: Fnish o exit Setup

v Local Disk {Ci) » kismbklemiabie » Scurce » CompilaTool

ﬂ CompileTool dps 1 "

(3 CompileTool dpaaj 28-5- 2000 Diedpplsi Prejes

m uCompileTooiFeatufedl. fla] 13-4~ 2000 19 D
Cnmpnnef_';'. ﬁ uCompilsTooldam.dfm 525 Dl Fonor

e

Figure 6: The installation is complete

= | Ci\idenbdern Table

Shans View

X

(| S e (M IS O 1 00

Chptoard Cvgans

» Thes PC » Locsl Dek (D) ¢ kbmblemTabde

st Caunck sccess : - Figure 9: It starts then Delphi

Srans Dema
BB Dedtop Documentstion
,’. Do lzads Exterall ienie

Soufe 2-1-2 2 praj
1 Documents % . e
S T M BFE-EEGRE~-SF~5~

= Picteie

instadlatvon it

sy #5 Projecilieoup?
e Lol Dk 1) kbmibfemn TablePro_TBEN) Sefup rip

: E i] CompileTonl =ee

s Local Dik (F) o i :n;h:.:‘ l;l;:iﬂu_iﬂun Eur % Buikd Car HE"“F“'
L MERRST bt 1 13 Tl

£ siane o - i = Tergei Pl i

; D uCampil Clearm

LH LszsrustandBe: # SRR = = ' B uilompis
ﬁ i R0 e 8 J-1-4 A =

COR #] uCampily

+ [uompis Aun

[uloolspa Run Without Debugging

Local Disk {3 # READKAE 1

Fram Hee

Figure 7: In the source-dir you will find the
Compiletool project Busild Sanpm 1= L

B = Cihicombdem Tabieh Sownce’ Compie ool Evald Laksi Cits Do

Share Firw

Figure 10: Compile the project (Right Column)

Ouck scoes
Scanc ..ilg CompileTool.dpi
BB Desktop (3 CompileToal dprmj
s | uCumPkTunJulurﬂ.&
Fo uCompdatonian dim
- I

& Downlosds

i Dacuments

Figure 8: Select the project and double-click

Blaise Pascal Magazine 91 2021 .. COMPONENTS

DEVELOPERS

Compile Tool for kbmMemTable

and kbmMW

Infoirmation x
B e-S-0m FE% B & %
i Mo
(G | C\bemMem lable' Seurce\ Comeil\Cemnle Toel dprog s
[st s k' | W“wm

o | _ RIS Ne | Newoms | [veston |

L
Figure 14: If you had compiled the program
] while Delphi was still running you can get this warning

e ey Y oull oy e Te———

4w ¥ o D @ iy [——

R T e e e L bt

| ew el ol ¥
| e AT e

oy e | Project
[]
—————

Figure 11: The form that will be compiled

and generates the program. it et Sores Comple sl e

[) Wemnge & Y]
Cumvan Ling 10 Totsl Lises 23738
Figure 12: Compiling the Project
(® eeMemtable Compile Tool v.1.106 - (w] X
Festure support Instsllin IDEs

Embar eadero RTL ' RAD Studo 10.4 —
iSrvienTabie Core
rMemT sble 5L mpport | Restarted afer recompling the CompleToal -

Figure 13: Restarted after recompilin' "

{ ¥

Updale S comple toal by sutorraboaly recompleg it [% @ regured il |

kbyriere Tatke . nc has been modfed srce last Ime T compie ol was corpied. Upxdate compie ool
Valdate regurerents for Be projects. Corpale Toal nay nat keow abaul 8l Yrdpaty

requr ement packages, why (t 5 posstie th manualy update then here. "ggm
Recgeate ibrenTable croject fles bom saaich . . .
Receate bvmMenTable project fies from soalch, comple and rotall ¢ possbile [Generate, " ““

Lo A e e

Blaise Pascal Magazine 91 2021 .. COMPONENTS
i DEVELOPERS

Compile Tool for kbmMemTable

and kbmMW
@ toitemtsbic Compie Yoot 1.1 o
Festire sipport lressl n IDEs
I o ' RAD Studo 10.4 Fats
(ibremTable Core B
erMem T able S0 momort Dieiphs runitime oraject fle iveMemilunD L0
' Deph cesgrame project fie kbmMenDesD 104
Figure 15:|Press this buttori to generate Dekle ey firre s "“m =
compile and install inside Delphi. Compén; ":E“ el ;h kharblerdiesl
After this you only need to add the address Corgden; O drrkien - unﬂl porterhlL
to the browsing path of Delphi. Trataling C: gt e \Eosce pordderly
| This is explained on page XX of the magazine Complaton o o u.i I"'“ portterie
or page xxxxxx of the article seeried sucteeded

Lipcale T conple toal by aulorratcady recompaleg il [T 8 reaured if
kfrriers Tatke inc has been nodfed ance last e fe ompie ol =

Validate requremants for the prajects. CompleTosl may not krow sbeut o

Receats orMenTable oroject fles #om saaich

Atceate kmMen Tabde propedt fies fom w0 alc, Comple and ratal @ possiie

| (® ibmMemtable Compile Tool v.1.1.08

| Festure supoort Irstsl in IDEs -
| Ertwar cadera AT v RAD Studo 10,4 -
| el alde Cove
| ke T shie SO, mupport Aestarted afer recomping the Compse Tool
E Figure 16: Succes
|
! L Verbose
Update %m comyple ol by autoratosly recorgeie L [e reared of
ke Table, nc has been nodfed srce last e T comple ool was mompled Updlsim rompile ool
Vaidate regurenerts for Be projects. Corpele Tosl may netl ow aboul ol T dnaty
requw erment packages, why it s posshie to manualy update ther here. [Yuldete reqsements
Rpgeals rtviemTable cropect fies & o s afch G ohe '

R eate kbvriders Tabde pr opect fies from so alch, comgeie aned sl f possdde

by Cin

Blaise Pascal Magazine 91 2021 COMPONENTS
b DEVELOPERS

o Library

Default Folders

Compiling and Running Selected Platform

& t Toolb
R A =B \Windows 32-bit

Environment Yariables

File Azzociation Library path

Project Upgrading S(BDSLIBM\S(Platform)\release S(BDSUSERDIR)\Irmports;5(BDS)\ mports; S(E

LiveBindings
Package output directory

S(BOSCOMMOMNDIR)\Bpl

Saving and Desktop
Getlt Package Manager

User Interface DCP output directory

Languane $(BDSCOMMONDIR)\Dcp
Toxicity Metrics
Delphi Browsing path
Library S(BOSMOCKNServers; S(BDSNSOURCENWCL S(BOSNSOURCENWCL\AppAnaly

L ithrare - Tranzlated

G Directones

Ordered list of Library paths
CihUsers\ edito\Docurments\trmssoftware) TMS WEB Core RSXE13\Component Library Source

Wers
TS C:\Program Files (x86)\FastReport 6 VCL Enterprise\LIBD27
T ChkbmMemTable\Source

DEF ChkbmMWA\Source

Trar

%) 1a]

Greyed iterns denote invalid path.
ek

S{BDSLIENS(Platform)\release

G Cirectones

Crrdered list of Browsing paths:
S(BDS)\source\DUnitx
S(BDS)\source\dataems
3(BDS)\source\rtlnet
S(BDS)\source\FlatBox2D
C:\Program Files (x86)\FastReport 6 VCL Enterprise\LIBD27

Greyed items denote invalid path.
ChkbmMWhSource\CompileTool

Blaise Pascal Magazine 91 2021 68

SCOMMOMNDIEDep: S(BDSNinclude;: T Usersheditoh Documentsitmssoftware, TMS WEB Core RSXE13: 5N

5 S(BOS) source it common: S(BDSH SOURCENRTLLSYS: SIBDS) sourcehrthowin: S(BDS)source\ ToolsAP:S(B

X
T
Figure 17: The path you need is difficult to find : | | W
Go to Tools = Options = Search under Language = Delphi = Library B
L]
.] i e !
B |
Replace Add Delete Delete Invalid Paths
O Cancel Help
| I
x
|
S
Replace Add Delete Delete Invalid Baths
0K | Cancel Help .- COMPONENTS

DEVELOPERS

Compile Tool for kbmMemTable

and kbmMW By Detlef Overbeek

Palette
ov O

IS Web fLiuery
TMS Web 3D

_ sl
cam G e g0

kbmMemTable

TeeChart Std

Detlef

Analytics

kbmMW Server

kbmMW Clients
il TRbmMWSimpleClient
[nl TkbmMWinventonyClient
]Tg.' TkbmMWP coledinventoryClhent
D TebmMWPooledSimpleClient
!,‘;’. TebmMWClientConnechionPool
B I TkbmMWClientQuery
-;"f' TebmMWClientStoredProc
T TebmMWClientBriefCaseBinaryStreamFormat
E-],; TebmMWClient TransactionResobser
[l TRbmMWFiteClient
[l TkbmMWPooledFileClient
[TebmMWUpdateClient
E TkbmMWPooledUpdateClient
kbmMW General

kbrmMW Ciphers

kbrmMW Hashes

kbmbW Server Transports
kbmMW Client Transports
kbmMW Dataset Streamformats
kbmMW S0OL Rewriter

kbmMW MetaData

kbW MT

kbW MD

kbmMW Cross Adapter

kbmMW SOLite

kbW FireDAC

Blaise Pascal Magazine 91 2021

-

FastReport 6.0

FRE toals
FastScript
FastReport 6.0 Internet transports
FastReport 6.0 Client/Server
FastReport 6.0 exports
kbmiemTable
F% TkbmMemTable
Tﬁ,} TkbmBinaryStreamFormat
TEF TebmC5V5treamFormat
F3 TkbrmMemSQL
TeeChart 5td
Detlef
Analytics
kbmMW Server
kbmMW Clients
kbmMW General
kbW Ciphers
kbmMW Hashes
kbm MW Server Transports
kbmMW Client Transports
kbW Dataset Streamformats
kbmMW 501 Rewriter
kbmMW MetaData
kbW BT
kbW MD
kbmMW Cross Adapter
kbm MW 50Lite
kbW FireDALC

Here you see all the components that where
installed with the help of the compile tool.

How easy can it be?

The old way of installing - a bit more

complex - is still possible

COMPONENTS
DEVELOPERS

Are Bumblebees picky?
e : j ¥

When it comes to feeding on pollen, honeybees
and bumblebees are generalists. They like a
buffet of choices — except when it comes to
pollen from flowers of the genus Cucurbita,
including squash and pumpkin, which they avoid.

The Cornell study: “Pollen Defenses Negatively
Impact Foraging and Fitness in a Generalist
Bee,” published Feb. 20 in the journal Nature
Scientific Reports, found that squash and
pumpkin pollen have physical, nutritional and
chemical defense qualities that are harmful to
bumblebees. When bumblebees are fed cucurbit
pollen, it causes all kinds of problems, Adults
have damaged and distorted digestive tracts and
colonies fed cucurbit pollen failed to rear any
offspring.

Bumblebees do visit pumpkin and squash flowers
for the nectar, and though they don’t collect the
pollen, some might inadvertently get on their
legs.They were actually seen in the field using
their legs to groom it off their bodies and then
wipe it on a leaf. Not only are they not collecting
it, they actually hate it. The [cucurbit] system is
really interesting because we have specialists and
generalist bees feeding on the same resource.
The results suggest that deterring bumblebees
from collecting and eating pollen may provide an
evolutionary benefit to cucurbit plants.

Bees that are really effective at collecting and
eating certain types of pollen may be actually
functioning more like herbivores and pollen
thieves than actual pollinators. At the same time,
bees that visit plants for nectar but don'’t collect
pollen may be good pollinators, as stray pollen on
their bodies may end up pollinating the next
flower.

Blaise Pascal Magazine 91 2021

_:: COMPONENTS
< DEVELOPERS

What this tells us is that some plant pollen may be
chemically or mechanically protected from
generalist bees which, oddly enough, can benefit
the plants in terms of pollination. In the study,
Brochu and colleagues created diets that
represented different defenses to test which
cucurbit pollen characteristics deterred
bumblebees.

One diet of wildflower pollen collected by
honeybees served as a control. A second consisted
of unadulterated cucurbit pollen, which is
nutritionally poor food for bumblebees, has large
and spiny grains, and contains natural chemicals.
In a third treatment, the team extracted the
chemicals from the cucurbit pollen and added
them to the control diet of nutritionally rich
wildflower pollen.

Microcolonies of five bees were each fed a
separate treatment. The bees fed the wildflower
pollen thrived, as expected. Under a natural
cucurbit diet, the cumulative effect of the pollen’s
physical defenses, poor nutritional content and
chemicals led to bees ejecting their offspring from
their brood cells and killing them. Bumblebees do
this when stressed, possibly because they can’t
take care of the larvae, Brochu said.

With the crushed pollen diet, where the pollen’s
physical defenses were removed, eggs and larvae
failed to mature. Over the course of the 50 days of
the experiment, in both the crushed and natural
cucurbit treatment, no offspring made it to
adulthood.

In the crushed treatment, the adults also died at a
higher rate, possibly due to a release of additional
toxic chemicals. And with the chemical wildflower
treatment, larvae made it to adulthood most of the
time and the bees ate more, possibly to
compensate for something in the chemicals. Their
abdomens became hard and dark, a process called
melanization, which indicated trauma to the guts.

We tend to think that all pollen resources are great
for all bees, but I don’t think that’s true.

For the sake of bumblebees pumpkin and squash
growers may think twice about bringing commercial
bumblebees into their fields and may provide
wildflower strips as alternative food sources.
Bumblebees avoided gathering cucurbit pollen.

5 _s: COMPONENTS 71

<~ DEVELOPERS

KBMMW PROFESSIONAL AND ENTERPRISE EDITION
V. 5.13 RELEASED!

e RAD Studio XE5 to 10.4.1 Sydney supported

e Win32, Win64, Linux64, Android, IOS 32, I0S 64 and
OSX client and server support

e Native high performance 100% developer defined
application server

e Full support for centralized and distributed load
balancing and failover

e Advanced ORM/OPF support including support of
existing databases

e Advanced logging support

Advanced configuration framework

e Advanced scheduling support for easy access to

multithread programming

Advanced smart service and clients for very easy

publication of functionality

High quality random functions.

High quality pronouncable password generators.

High performance LZ4 and Jpeg compression

Complete object notation framework including full

support for YAML, BSON, Messagepack, JSON and XML

Advanced object and value marshalling to and from

YAML, BSON, Messagepack, JSON and XML

High performance native TCP transport support

High performance HTTPSys transport for Windows.

CORS support in REST/HTML services.

Native PHP, Java, OCX, ANSI C, C#, Apache Flex client

support!

kbmMemTable is the fastest and most feature rich in
memory table for Embarcadero products.

e Easily supports large datasets with millions of records
Easy data streaming support

Optional to use native SQL engine

Supports nested transactions and undo

Native and fast build in M/D, aggregation/grouping,
range selection features

e Advanced indexing features for extreme performance

. COMPONENTS
< DEVELOPERS

® & & 6 o oo

¢

Improvement to ORM including support for rewriting JOINS.
Improvements to SmartBind

Improvements to SmartEvent

Improvements to LINQ

Support of XML mixed text documents

New TkbmMWXMLReformatter which can analyze and
reformat even damaged XML

New support for USB/HID devices including MagTek barcode
reader class (Windows/Ent)

More features improvements and fixes.

Please visit
http://www.components4developers.com
for more information about kbmMW

High speed, unified database access (35+ supported
database APIs) with connection pooling, metadata and
data caching on all tiers

Multi head access to the application server, via REST/AJAX,
native binary, Publish/Subscribe, SOAP,

XML, RTMP from web browsers, embedded devices, linked
application servers, PCs, mobile devices, Java systems
and many more clients

Complete support for hosting FastCGI based applications
(PHP/Ruby/Perl/Python typically)

Native complete AMQP 0.91 support (Advanced Message
Queuing Protocol)

Complete end 2 end secure brandable Remote Desktop with
near realtime HD video, 8 monitor support,

texture detection, compression and clipboard sharing.
Bundling kbmMemTable Professional which is the fastest
and most feature rich in memory table for Embarcadero
products.

feso

EESB, SOA,MoM, EAI TOOLS FOR INTELLIGENT SOLUTIONS. kbmMW IS THE PREMIERE N-TIER PRODUCT FOR DELPHI / C++BUILDER

