
BLAISE PASCAL MAGAZINE 86
Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js / Databases

CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

666
ebAssembly / Pas2Js / Databases

eb Apps
ebAssembly / Pas2Js / Databases

eb Apps
ebAssembly / Pas2Js / Databases

indows & Linux
eb Apps

indows & Linux
eb Apps

Editorial
HOT OFF THE PRESS

FastMM5 changes towards commercial licensing. Be aware of the new rules

Installing Lazarus on Mac OS Catalina
Including a test for debugging By Detlef Overbeek

The new WebCore 1.4 is coming
By Bruno Fierens

MY ORM (Object-relational mapping)
By John Kuiper

Covid19 Apps Saving Lives
Using Delphi to Better the World, By Stephen Ball and Jim McKeeth

Schedule for a Badminton Knockout Tournament
Unexpected treasures in numbers, By Rik Smit

The search for a special number Factor 11
By David Dirkse

AI recognizes speech patterns coming from the brain
By Detlef Overbeek

SmartBinding with kbmMW #5
Compile Tool #1 – An easier way to compile projects

By Kim Madsen

Lazarus Delphi Compatible Page 13
TMS All Acces Page 21
Library Blaise Pascal Magazine Page 42
Lazarus Build once Page 87
Barnsten Page 90
Components4Dveleopers Page 104

BLAISE PASCAL MAGAZINE 86
Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js / Databases

CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

2Blaise Pascal Magazine 86 2020

Pascal is an imperative and procedural programming language, which Niklaus Wirth designed in 1968–69 and published in 1970,
as a small, efficient language intended to encourage good programming practices using structured programming and data
structuring. A derivative known as Object Pascal designed for object-oriented programming was developed in 1985. The language
name was chosen to honour the Mathematician, Inventor of the first calculator: Blaise Pascal (see top right).

Niklaus Wirth DX PAS
2 JS

HTML

Publisher: PRO PASCAL FOUNDATION in collaboration © Stichting Ondersteuning Programmeertaal Pascal

Editorial Page 4
HOT OFF THE PRESS Page 94
FastMM5 changes towards commercial licensing. Be aware of the new rules

Installing Lazarus on Mac OS Catalina Page 6
Including a test for debugging By Detlef Overbeek

The new WebCore 1.4 is coming Page 14
By Bruno Fierens

MY ORM (Object-relational mapping) Page 22
By John Kuiper

Covid19 Apps Saving Lives Page 43
Using Delphi to Better the World, By Stephen Ball and Jim McKeeth

Schedule for a Badminton Knockout Tournament Page 47
Unexpected treasures in numbers, By Rik Smit

The search for a special number Factor 11 Page 88
By David Dirkse

AI recognizes speech patterns coming from the brain Page 91
By Detlef Overbeek

SmartBinding with kbmMW #5 Page 92
Compile Tool #1 – An easier way to compile projects Page 95
By Kim Madsen

ARTICLES

CONTENT

ADVERTISERS

Anton Vogelaar
ajv @ vogelaar-electronics.com

Siegfried Zuhr
siegfried @ zuhr.nl

Bob Swart
www.eBob42.com
Bob @ eBob42.com

Daniele Teti
www.danieleteti.it
d.teti @ bittime.it

B.J. Rao
contact @ intricad.com

Peter van der Sman
sman @ prisman.nl

Wim Van Ingen Schenau -Editor
wisone @ xs4all.nl

Rik Smit
rik @ blaisepascal.eu

Detlef Overbeek - Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Howard Page Clark
hdpc @ talktalk.net

Heiko Rompel
info @ rompelsoft.de

Kim Madsen
www.component4developers

Paul Nauta PLM Solution Architect
CyberNautics
paul.nauta @ cybernautics.nl

Vsevolod Leonov
vsevolod.leonov@mail.ru

Jeremy North
jeremy.north @ gmail.com

Boian Mitov
mitov @ mitov.com

Andrea Magni www.andreamagni.eu
andrea.magni @ gmail.com
www.andreamagni.eu/wp

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

Peter Johnson
http://delphidabbler.com
delphidabbler @ gmail.com

John Kuiper
john_kuiper @ kpnmail.nl

Wagner R. Landgraf
wagner @ tmssoftware.com

Mattias Gärtner
nc-gaertnma@netcologne.de

Primož Gabrijelčič
www.primoz @ gabrijelcic.org

David Dirkse
www.davdata.nl
E-mail: David @ davdata.nl

Benno Evers
b.evers
@ everscustomtechnology.nl

Bruno Fierens
www.tmssoftware.com
bruno.fierens @ tmssoftware.com

Stephen Ball
http://delphiaball.co.uk
@DelphiABall

Michaël Van Canneyt,
michael @ freepascal.org

Dmitry Boyarintsev
dmitry.living @ gmail.com

Marco Cantù
www.marcocantu.com
marco.cantu @ gmail.com

Peter Bijlsma -Editor
peter @ blaisepascal.eu

Holger Flick
holger @ flixments.com

Contributors

Robert Welland
support @ objectpascal.org

All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless otherwise noted and may not be copied, distributed
or republished without written permission. Authors agree that code associated with their articles will be made available to subscribers after publication by placing it
on the website of the PGG for download, and that articles and code will be placed on distributable data storage media. Use of program listings by subscribers for
research and study purposes is allowed, but not for commercial purposes. Commercial use of program listings and code is prohibited without the written permission
of the author.

Copyright notice

Editors Correctors
Peter Bijlsma, W. (Wim) van Ingen Schenau, Rik Smit Howard Page-Clark, Peter Bijlsma
Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavour to ensure that what is published in the magazine is correct, we cannot accept responsibility for any errors or omissions.
If you notice something which may be incorrect, please contact the Editor and we will publish a correction where relevant.
Subscriptions (2019 prices)

Subscriptions can be taken out online at www.blaisepascal.eu or by written order, or by sending an email to office@blaisepascal.eu

Subscriptions can start at any date. All issues published in the calendar year of the subscription will be sent as well.
Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
Subscriptions can be paid by sending the payment to:
ABN AMRO Bank Account no. 44 19 60 863 or by credit card or Paypal
Name: Pro Pascal Foundation-Foundation for Supporting the Pascal Programming Language (Stichting Ondersteuning Programeertaal Pascal)
IBAN: NL82 ABNA 0441960863 BIC ABNANL2A VAT no.: 81 42 54 147 (Stichting Programmeertaal Pascal)
Subscription department
Edelstenenbaan 21 / 3402 XA IJsselstein, The Netherlands
Mobile: + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

Editor - in - chief
Detlef D. Overbeek, Netherlands Tel.: Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Internat.
excl. VAT

Internat.
incl. 9% VAT Shipment

WIKIPEDIAMember and donator of

Printed Issue
±60 pages

Printed Issue inside Holland (Netherlands)
±60 pages

Electronic Download Issue
60 pages

€ 250

€ 200,00

€ 261,60

€ 65,40 € 60

€ 85,00

€ 60,00

3Blaise Pascal Magazine 86 2020

From your editor

4Blaise Pascal Magazine 86 2020

Dear reader,
I tend to say let's not talk about Covid -19 for a while, but I hope as a community we'll get over that as
soon as possible. So I wish everyone not only the best but also to stay clear of this pandemic.

Even now, besides causing accidents, this also offers new opportunities, and what is very interesting
about using the computer is now being raised to an absolute peak. At least you should be able to make
video calls, even if you are 90 or older.
That is excellent because it pokes up the old gray cells and that is life-extending.

In any case, this is a moment when - under pressure - the greatest possible creativity emerges.
We would have liked to mention that the new version of Lazarus and Delphi were already ready for use.
Lazarus 2.0.8 is out, but I'm waiting for the version that includes the latest Free Pascal version.
Unfortunately, that has been postponed to September 2020, and Delphi version 10.4 is not there yet.
In any case, the new season will bring a lot of news.

What I expect in the short term are two things: TMS Webcore 1.4, as soon as that appears, we will build
new apps with it and I will write about it.
I want to once again announce a renewal for our website.
It has been a thorn in my side for years that the site is based on WordPress and therefore PHP.
That must be changed, I have taken steps to convert that into a whole according to Pascal - Pas2JS.
Where possible we will use TMS Webcore.
There are three basic issues that need to be solved that we did not have yet, the link to a server, the
conversion of the database to one large structure and the link to our web shop.
The server issue has been resolved, the link to the database as well, now only the link of the shop needs
to be done.
All code we develop for this will of course become open source.

The major project of the Lazarus Handbook has almost been completed. I will present it as soon as
possible. The last corrections and articles are now being added and then we can do it
finally start printing.

And now happy readings and have fun in studying te projects!

T
h

e
 L

 a
 z

 a
 r

 u
 s

 F
 a

 c
 t

 o
 r

 y

L
a

z
a

r
u
 s

2
.0

.6

FPC 3.0.4

THE FREE COMPILER AND IDE

WHAT MOST PEOPLE
REALLY DO NOT KNOW
ABOUT LAZARUS:

BUILD ONCE
COMPILE ANYWHERE

WINDOWS

LINUX

APPLE (MAC)

RASPBERRY

IT’S NATIVE TO

2.0.8

Installation of Lazarus on a Mac varies according to
your Mac version, but you must be running an Intel
version of MacOS. Apple has been making each
release of MacOS stricter in what it allows and –
more importantly for installation of executables –
more comprehensive in what it forbids.

To install Lazarus on any version of MacOS requires
that you have already installed a recent version of
XCode on your system (XCode is Apple’s own
MacOS developer environment). XCode contains
various tools which Lazarus and Free Pascal need to
create MacOS programs. You must install XCode
through the MacOS App Store.
if you don’t have it. XCode is a large program of
several gigabytes, so the download and installation
is a lengthy and disk-consuming process.

After you have installed XCode, you must install
further command-line tools to accompany XCode.
Type the following commands in a Terminal
window to install these extra tools:

INSTALLING LAZARUS ON
MAC CATALINA

1

Because I needed to try to install Lazarus
on the next version of the MacOS
Catalina, I found that my Apple -machine
was not any more capable of updating to
this latest version Catalina.
It had nothing to do with the 64 bit
version that may people think is the
cause: It is simply a decision of Apple that
the period ended and your machine is still
working but not wit Catalina. So I turned
my older Mac into a Win10 Dual-Boot
machine. I found the installation of
Lazarus a very simple try.

However it was good to be in touch with
Mattias Gärtner and Martin Friebe. This
because we wanted to make sure we
would use the best debugger for our
purposes. This is to be found with a small
project at the end of this article.

Mattias checked the installation, Martin
showed how to fine-tune the debugger.

sudo xcode-select --install
sudo xcodebuild -license accept

This downloads and installs further tools that are
needed to run Lazarus on OS X.

When these prerequisites are completed, you
can install Free Pascal and Lazarus.
The necessary installers can be found on the
Lazarus download page. Just as for Linux, you
need to install three packages.

For newer versions of MacOS (Mojave and later),
the installation packages are located in the
Lazarus macOS x86-64 folder in the linked
website’s download section:

fpc-3.0.4-macos-x86-64.pkg

the Free Pascal compiler

fpc-src-3.0.4-laz.pkg
the sources for Free Pascal

lazarusIDE-2.0.6-macosx-x86_64.pkg

the Lazarus IDE and sources

6Blaise Pascal Magazine 86 2020

PAGE 1/7

INSTALLING LAZARUS ON MAC CATALINA PAGE 2/7

You need to let the browser save the package, and
open the package from within the
Mac OS Finder (it should be in the Downloads
folder).
Additionally, do not just double-click to open the
package. You must use the context menu from
within Finder, and explicitly select the Installer.app to
open the package:

Even after doing so, you will get a warning that the
package is from an unidentified developer, asking
you to confirm that you really want to open it:

You can safely ignore this warning and install the
package. The packages are normal Mac OS installers,
which will ask you several questions before actually
installing Lazarus. It is best to accept all default
locations to ensure that Lazarus will find all tools it
needs. Once you have accepted all the default
options, you should install Lazarus in
/Developer/lazarus

A shortcut is created for you in the Applications
location, so the application can be started from
Launchpad.
That’s all for installing, now let’s test it with a first
project.

Figure 1: Package can’ t be opened

Figure 3: Open the package

Figure 2: Open with and select

Figure 9: Ignore this warning...

You need to let the brYou need to let the brY owser save the package, and
open the package from within the

Figur

you to confirm that you really want to open it:

You can safely ignorYou can safely ignorY e this warning and install the A shortcut is cr

Figur

...

you to confirm that you really want to open it:

Figure 9: Figure 9: Figur Ignore this wIgnore this wIgnor are this ware this w ningningningningningningarningar ...

Figure 2: Open with and selectFigure 2: Open with and select

The installer packages are not signed, so you may
get an error if you try to open the package directly
from within the browser:

7Blaise Pascal Magazine 86 2020

DEBUGGING
After installing we can check if the right debugger
has been installed and is working. This because the
GDB does not work anymore on the new platform.

To find out we create a simple project with a form
and a button just to test the new install.

Run the project.

During first time compilation of this project we be
will presented with a special kind of message:
EnableDwarf 2 (-gw)?
The project does not write debug info in
Dwarf format. The “LLDB-debugger (with
fpdebug) (Beta)” supports only Dwarf.

It also shows three buttons + cancel:
u Enable Dwarf 2 with sets
v Enable Dwarf 2 (-gw)
w Enable Dwarf 3(-gw3)

 Info Dwarf (GDB and LLDB)

Dwarf 2 with sets (-gw -godwarfsets)
This setting adds the ability to inspect sets:
"type TFoo=set of (a,b,c);". This is borrowed from
the Dwarf 3 specs, but supported by most versions of
GDB (any GDB from version 7 upwards should do).
Dwarf 2 (-gw)
This sets the format to Dwarf2.
This is the most basic dwarf setting.
Dwarf 3 (-gw3)

Dwarf 3 can encode additional info for some types
(such as strings and arrays). It also preserves the case
of identifiers in the debug info.
However there are still issues with the produced
debug info. Some info may be incorrectly encoded,
and other is not understood by GDB. In some cases
this can lead to GDB crashing. This setting can be
used, when using the FpDebug based debugger (add
on package for the IDE).
According to Martin Friebe, who is the best informed
about this project DWARF 3 is the best version to
choose.

Figure 4: The backgroud image for Catalina

Figure 6: The message start up like this

Figure 5: Welcome message

Figure 7: Choose button 3, enable dwarf 3

TForm1 Button1Click Sender TObject. (:);
begin

 . := ' ';Button1 caption Hello Catalina

end;

LLDB is a high-performance debugger. It is built
as a set of reusable components which highly
leverage existing libraries in the larger LLVM
Project, such as the Clang expression parser and
LLVM disassembler.

https://wiki.lazarus.freepascal.org/
GDB_Debugger_Tips

INSTALLING LAZARUS ON MAC CATALINA: DEBUGGING PAGE 3/7

8Blaise Pascal Magazine 86 2020

The choice you make is definitive for this project. As soon you will create another Project you will
be confronted with that choice again. Here is how to make your selection persistent: first of all let’s
see if the correct debugger was installed:
choose: Tools Ú Options ÚDebugger as you can see in figure 7.
In the section Debugger type and path should be set: LLDB debugger (with fpdebug) (Beta).

In figure 8 (choose: from the) in the left part choose: Project Options Compiler Menu Project

Options Ú Debugging. In the right part is a line under Debugger info: Type of debug info:
The drop down menu is set by Default this is set to: Automatic (-g). Here you can make your choice
for any type you want. Once you have chosen, you can set compiler options as default
(in the left column just above Help), check the box.

Figure 8 Checking the settings of the debugger.

Figure 9 Here you can make settings for the project persistent, as wel as default for all projects.

9Blaise Pascal Magazine 86 2020

INSTALLING LAZARUS ON MAC CATALINA: DEBUGGING PAGE 4/7

Figure 10: The drop-down shows the available options for the kind of debugger you would like to use

Figure 11: The choice we suggest you make...

10Blaise Pascal Magazine 86 2020

INSTALLING LAZARUS ON MAC CATALINA: DEBUGGING PAGE 5/7

11Blaise Pascal Magazine 86 2020

INSTALLING LAZARUS ON MAC CATALINA: DEBUGGING PAGE 6/7
DEBUGGING,PROGRAM
To explain this subject Martin Friebe has created a
small program which shows an example of
debugging.
The idea is to create an error and then test it being
noticed. A simple way would be to find the next
prime number of an array of prime numbers. So here
is a simple example wherein you can find this.

I have illustrated the article with various pictures that
show the build. The coding is shown completely in an
overview and you can of course download the
project.

There are two functions in the project:
FindIndexOfNextPrime and
xFindIndexOfNextPrime.

The first is the simple solution to create the error and
the second – which you can simply replace the first
by renaming it without the ‘X’ of the second – is a
little more advanced: it is the so called Binary Search
that has been used here.
The Binary Search is separately briefly explained,
because it’ s a very simple but interesting manner to
find items in a large array. There is of course a short
remembrance of what a prime number really is.
The result is of course the same.

Binary search runs in logarithmic time in the
worst case, making comparisons, where is the n
number of elements in the array, the is Big O O

notation, Binary search is faster than linear
search except for small arrays.

Important is that the array must be sorted first to
be able to apply binary search. There are
specialized data structures designed for fast
searching, such as hash tables, that can be
searched more efficiently than binary search.
However, binary search can be used to solve a
wider range of problems, such as finding the
next-smallest or next-largest element in the array
relative to the target even if it is absent
from the array.

In computer science, binary search,
also known as half-interval search, logarithmic
search, or binary chop, is a search algorithm that
finds the position of a target value within a sorted
array.
Binary search compares the target value to
the middle element of the array.
If they are not equal, the half in which the target
cannot lie is eliminated and the search continues
on the remaining half, again taking the middle
element to compare to the target value, and
repeating this until the target value is found. If
the search ends with the remaining half being
empty, the target is not in the array.

Figure 2;This is an example of a
binary search steps through time.

Figure1;The progam to be tested

By AlwaysAngry - Own work,
CC BY-SA 4.0,
https://commons.wikimedia.org
/w/index.php?curid=53687795

PRIME NUMBERS
A prime number is a natural number
greater than 1 that cannot be formed by
multiplying two smaller natural numbers.
A natural number greater than 1 that is not prime
is called a composite number. For example, 5 is
prime because the only ways of writing it as a
product, 1 × 5 or 5 × 1, involve 5 itself.
However, 6 is composite because it is the product
of two numbers (2 × 3) that are both smaller than
6.
Primes are central in number theory because of the
fundamental theorem of arithmetic: every natural
number greater than 1 is either a prime itself or
can be factorized as a product of primes that is
unique up to their order.

WIKIPEDIA

WIKIPEDIA

ALINA: DEBUGGING PAGE 6/7ALINA: DEBUGGING PAGE 6/7

Figure1;The progam to be tested

ALINA: DEBUGGING PAGE 6/7ALINA: DEBUGGING PAGE 6/7

BINARY SEARCH

12Blaise Pascal Magazine 86 2020

INSTALLING LAZARUS ON MAC CATALINA: DEBUGGING PAGE 7/7

 ;unit Unit1
{$mode objfpc}{$H+}
interface

uses Classes SysUtils Forms Controls Graphics Dialogs Spin StdCtrls, , , , , , , ;

type
 { TForm1 }
 = ()TForm1 TFormclass

 : ;Button1 TButton

 : ;Label1 TLabel

 : ;Memo1 TMemo

 : ;SpinEdit1 TSpinEdit

 (:);procedure Button1Click Sender TObject
 private
 public

 ;end

var Form1 TForm1: ;

implementation

{$R *.lfm}

const

 : [] = (, , , , , , , , , , , , , , , , , Primes Integerarray of1..47 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
 , 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163
 , , , , , , , ,);167 173 179 181 191 193 197 199 211

function (:): ;FindIndexOfNextPrime APrimeToSearch Integer Integer

var HighIdx Integer: ;
begin

 := ();HighIdx High Primes

 := ();Result Low Primes

 < while do beginResult HighIdx

 [] >= if thenPrimes Result APrimeToSearch //// bug, this must be >

 ;break

 := + ;Result Result 1
 ;end

end;

function (:): ; xFindIndexOfNextPrime APrimeToSearch Integer Integer /// xfunction to replace the first function above

var LowIdx HighIdx Integer, : ;
begin

 := ();LowIdx Low Primes

 := ();HighIdx High Primes

 := (+) div ;Result LowIdx HighIdx 2
 < while do beginLowIdx HighIdx

 [] < if thenPrimes Result APrimeToSearch //// bug, this must be <=

 := + LowIdx Result 1
 else

 := ;HighIdx Result

 := (+) div ;Result LowIdx HighIdx 2
 ;end

end;

{ TForm1 }

procedure . (:);TForm1 Button1Click Sender TObject

var UserInput IndexOfNextPrime Integer, : ;
begin

 := . ;UserInput SpinEdit1 Value

 := ();IndexOfNextPrime FindIndexOfNextPrime UserInput

 . := (, [, []]);Memo1 Text Format UserInput Primes IndexOfNextPrime'You chose %d. The next prime after that is %d'

end;

end.

T
h

e
 L

 a
 z

 a
 r

 u
 s

 F
 a

 c
 t

 o
 r

 y

LAZARUS IS A DELPHI COMPATIBLE CROSS-PLATFORM IDE
FOR FREE PASCAL.
It includes LCL which is more or less compatible with Delphi's VCL.
Free Pascal is a GPL'ed compiler that runs on Linux, Win32, OS/2, 68K
RasberryPie and more. Free Pascal is designed to be able to understand
and compile Delphi syntax, which is OOP. Lazarus is the part of the
missing puzzle that will allow you to develop Delphi like programs in all
of the above platforms.

WHAT WIDGET SET?
You decide. Lazarus is being developed to be totally and completely API
independent. Once you write your code you just link it against the API
widget set of your choice. If you want to use GTK+, great! If you want it
to be Gnome compliant, great! As long as the interface code for the
widget set you want to use is available you can link to it. If it isn't
available, well you can write it.

CAN YOU USE YOUR EXISTING DELPHI CODE?
IN GENERAL: YES. If you are using some very specific databases,
OCX, or DCU then the answer would be no. THESE ITEMS ARE SPECIFIC
TO WINDOWS AND WOULD ONLY WORK ON AND WITHIN WINDOWS.

CAN I CREATE COMMERCIAL PRODUCTS WITH THIS?
YES. The code for the Free Pascal compiler is licensed under the GPL.

L
a

z
a

r
u
 s

2
.0

.6

FPC 3.0.4

THE FREE COMPILER AND IDE

2.0.8

14Blaise Pascal Magazine 85 Special 2020

The world of web development is evolving fast, it
comes as no surprise that TMS WEB Core evolves
fast.
When we embarked on this exciting adventure in
2017, we knew the road would be long. There is
simply an abundance of things to do in the world
of web development and we made it our mission
to put Delphi developers in a front seat to apply
the well known RAD approach to create web
applications with a, unparalleled productivity.
When we first released TMS WEB Core v1.0 on July
26, 2018, we named version 1.0 Brescia after the
city where the famous car race Mille Miglia starts.
And with each subsequent version, we name it
after a city across the legendary Mille Miglia track
of 1955. We visited meanwhile Verona with v1.1,
Padua with v1.2 and Ferrara for v1.3. So, now we
are heading to version v1.4 that will be named
Ravenna.

TMS WEB CORE V1.4 RAVENNA PAGE 1/7 PREVIEW
BY BRUNO FIERENS

14Blaise Pascal Magazine 85 Special 2020

RAVENNA

The theme for TMS WEB Core v1.4 Ravenna is:

 u widening the UI control offerings with
 controls for frequently used UI patterns

 v enhancing the HTML-first approach

 w increasing easy interfacing to additional
 popular back-end services

View on Ravenna

15Blaise Pascal Magazine 85 Special 2020 15Blaise Pascal Magazine 85 Special 2020

idening the UI control offerings

W

We have added two brand new UI
controls in TMS WEB Core v1.4 Ravenna:

TWebImageSlider
In many scenarios, people want to show various
pictures of things for specific items. Think about a
product on that might have different Amazon

pictures taken from different angles, think about an
online real-estate broker presenting different houses
with picture sets of the house on sale or a car dealer
showing cars for sale accompanied by pictures of
the car in various positions.

If you have such a use-case in your application,
TWebImageSlider is the shortcut to achieve this.
Basically this is a container control where you add
the links to the images to be displayed and the
control does everything else. It shows the picture

thumbnails left / right slider button, a and you
can click on thumbnails to of see the large version

a specific picture.

Now, to integrate this kind of
functionality should not take much
more than a couple of minutes.

 var

 : ;i Integer
begin

 := for to doi 1 8
 . . ((, []));ImageSlider ImageURLs add Format i'./images/nature-%d.jpg'

 . ;ImageSlider RefreshImages

 . . := ;ImageSlider Appearance TransitionEffect tefSlide

end;

N , to i t te this ki d of

;Integer

 := to do1 8
((, []));ImageSlider ImageURLs add Format i'./images/nature-%d.jpg'

TMS WEB CORE V1.4 RAVENNA PAGE 2/7PREVIEW

tmssoftw r .como

16Blaise Pascal Magazine 85 Special 2020 16Blaise Pascal Magazine 85 Special 2020

TWebContinuousScroll
Another often used pattern is to show lists of
items filling the viewing area of the browser only
and only load additional items when the user
decides to scroll down. The reasoning behind such
UI control is simple. By loading only the items in
view, the initial display of the page is very fast and
only when the user wants to see additional items,
extra items are loaded asynchronously in the list.

TWebContinuousScroll is again a shortcut to
this pattern. Drop the control on the form, add the
event handler code for the event that is triggered
when new items are needed and return the
requested items. does TWebContinuousScroll

the rest, it handles the rendering, it handles the UI
interaction (mouse dragging / touch scrolling) and
just triggers the event when new items are
needed.

ontinuousScroll is again a shortcut to
ttern. Drop the control on the form, add the
andler code for the event that is triggered
ew items are needed and return the

procedure . (: ; , : ; TForm1 WebContinuousScroll1FetchNextPage Sender TObject APageSize APageNumber Integer

var string :);AURL
begin

 := + () + + ();AURL IntToStr APageNumber IntToStr APageSize'https://tmswebcore.com:8082/?page=' '&per_page='

end;

TMS WEB CORE V1.4 RAVENNA PAGE 3/7PREVIEW

tmssoftw r .como

17Blaise Pascal Magazine 85 Special 2020

New TWebListControl demo
The is a very versatile list TWebListControl

control that might not be well understood enough
and therefore underused by TMS WEB Core
developers. uses the TWebListControl

Bootstrap CSS library do its magic. From a list of
items, it can create a breadcrumb, a tab list, an
item list, a list with expanding/collapsing subitems.
The new demo shows the various modes of the
versatile TWebListControl

Electron 8 support
The fast evolving framework for creating cross
platform desktop applications reached meanwhile
version 8. It is being polished & enhanced all the
time to allow to create responsive installable &
near-native experience desktop applications for
Windows, macOS Linux and with the advantage
that the UI is rendered from meaning HTML/CSS,

that in terms of graphical appeal, there are no
limits.

With TMS WEB Core v1.4, we did the necessary
changes to the framework and the Electron
specific controls to make these work as seamless
as possible with Electron 8

Enhancing the HTML-first approach
We've realized that not for all users looking at
TMS WEB Core it was clear that using the Delphi

IDE form designer for creating your web pages is
by far not the only way to do it. While TMS WEB
Core was developed from the ground up to
facilitate this for Delphi developers familiar
approach to create application forms, it was
equally from the ground up built to enable the use
of based pages. This means that you HTML/CSS

can use existing page templates which HTML/CSS

are not only created by web designers but can be
obtained free or very cheap from various websites.

Sometimes you get for $25 an extraordinary good
looking web page template. Of course, we
wanted to offer the capability to use such
templates and from the , you will Delphi IDE

basically just write the UI control logic and leave
the page layout to and HTML CSS.

on 8 support
t evolving framework for creating cross
m desktop applications reached meanwhile

n 8. It is being polished & enhanced all the

Enhancing the HTML-first appro
We've realized that not for all users lo
TMS WEB Core it was clear that using t
IDE form designer for creating your w

TMS WEB CORE V1.4 RAVENNA PAGE 4/7PREVIEW

tmssoftw r .como

18Blaise Pascal Magazine 85 Special 2020 18Blaise Pascal Magazine 85 Special 2020

New TWebElementActionList
This new component, not to be confused with
Delphi actions, facilitates easy hooking to events
for all the HTML elements in page templates. It is a
collection of actions that you define that happen
when an event happens for a HTML element on
the page. For example, the menu of your
application could be a graphically very good
looking based animated menu and you HTML/CSS

can use the to define TWebElementActionList

the actions that should happen when a specific
item in this menu is clicked. To do this, HTML/CSS

simple add the template to your form, HTML/CSS

make sure to set a unique ID to each HTML
element representing menu items and then add a
TElementAction for each item in the menu.
Define for the for TElementAction.Event

example heClick and then the
TElementAction.OnExecute event will be
triggered when this menu item is clicked. In this
OnExecute you could then for example add the
UI control logic to show a DB grid with data, show
a different form etc... As a developer, you Delphi

have reused the graphical skills of a web designer
and you just had to do a minimal effort to connect
the logic in your application that is happening
when the user interacts with the user-interface.

Increasing easy interfacing to additional
popular back-end services
In TMS WEB Core we have already included the
TWebClientConnecton,

TWebClientDataSet, TWebDataSource to
bring the pattern developers have VCL Delphi

known ever since the inception of Delphi to bind
data to UI controls. This concept also exists in TMS

WEB Core. To make the binding to the back-end
easy, we have a that shields TWebXDataDataSet

all the complexities of communicating with a TMS
XData REST server. We have the
TWebmyCloudDataClientDataSet to shield
this same complexity when our myCloudData

cloud data storage service is used (free for all TMS
ALL-ACCESS users). We also have the
TWebSQLRestClientDataSet that interfaces to
the Lazarus foundation open source SQLDBBridge
REST server. And we
TWebFirestoreClientDataSet for users
wanting to use Google's cloud data storage
solutions.

With TMS WEB Core 1.4 Ravenna, we are pleased
to offer 3 more easy out of the box solutions to
connect to back-end services.

TMS WEB CORE V1.4 RAVENNA PAGE 5/7PREVIEW

tmssoftw r .como

19Blaise Pascal Magazine 85 Special 2020 19Blaise Pascal Magazine 85 Special 2020

Delphi Enterprise Delphi Architect SKU or users
have out of the box a license to Embarcadero Rad

Server. Embarcadero Rad Server offers the
technology to create services and is able to REST

create a for performing operations on REST API

databases in the back-end. While TMS WEB Core
includes a component to perform requests REST

to work with out of Embarcadero Rad Server

the box, the new
TWebRadServerClientDataset just makes it
way easier to hook-up a UI with DB-aware controls
to an Embarcadero Rad Server and perform
through this dataset operations. Basically CRUD

you set the to the data exposed as URL JSON

based from Embarcadero Rad Server and REST API

the TWebRadServerClientDataset middleware will
perform all required HTTP GET, PUT, POST,
DELETE JSONrequests, handling behind the
scenes and from the TMS WEB Core client you
have just the DB-aware UI controls hooked up to it
via a TWebDataSource.
We have added our todo-list demo that is using
Embarcadero Rad Server just like we have this
same todo-list demo. Other than the dataset, there
is not much different from the demo using
Firestore, TMS XData, SQLDBBridge,

myCloudData. This shows how back-end agnostic
TMS WEB Core web client applications can be.

i Enterprise Delp or
t of the box a licen

. Embarcadero Rad S

y t t REST

New TWebRadServerClientDataset New TWebDreamFactoryClientDataSet
From all low code back-end technologies, Dream

Factory is without a doubt the most flexible one.

With () Dream Factory www.dreamfactory.com

you can create for access to data on REST APIs

the back-end by doing all the settings and
parameterizing via a web interface.
No need to do any programming, no need to dive
into all technical details of request, HTTP(s)

authentication, packets, ... JSON Dream Factory

does this all for you.
We had as a very interesting Dream Factory

back-end for TMS WEB Core already on the radar
even before the inception of TMS WEB Core in
2018 as it is a very interesting technology for
offering cloud data access for VCL Windows

applications or cross-platform applications, FMX

possibly further facilitated via a TMS Cloud Pack
component.

But now we embark with our first bridge
component, the
TWebDreamFactoryClientDataSet that you
can configure with the URL of your Dream
Factory REST API and this bridge component does
all the required communication to perform CRUD
operations via its dataset to a database with a
Dream Factory REST API.

This dataset is then easily hooked up via a
TWebDataSource to the TMS WEB Core DB-
aware UI controls.
Also here we have taken the same todo-list demo
and with minimal effort (basically replacing the
 dataset) our todo-list
 application talks to a Dream
 Factory based back-end.

Blaise Pascal Magazine 85 Special 2020

While
TWebDreamFactoryClient

DataSet is a first step for easy
Dream Factory REST API back-
end access from TMS WEB Core
web client applications, we're
eager to offer even more
integration with the Dream
Factory APIs in future TMS
WEB Core versions as well as in
future versions of the TMS FNC
Cloud Pack that can be used in
native Windows applications as
well as native cross platform
Delphi FireMonkey
applications.

TMS WEB CORE V1.4 RAVENNA PAGE 6/7PREVIEW

tmssoftw r .como

20Blaise Pascal Magazine 85 Special 2020 20Blaise Pascal Magazine 85 Special 2020

NEW TWEBFAUNADBCLIENTDATASET
Where offers automatic codeless Dream Factory

REST API creation for access to a multitude of
databases or services, FaunaDB

() is a cloud data storage www.faunadb.com

service that hosts the data for you and offers as
REST API to access it. It has similarities with our
own service and a few myCloudData.net

interesting angles. As such, to offer yet more
freedom of choice, we have added the
TWebFaunaDBClientDataSet component.

You can use the web interface on your account at
FaunaDB to design your tables and this can
automatically be consumed when setting the
proper URL to the TWebFaunaDBClientDataSet

component. There is not much more to it, go to
FaunaDB.com, setup your tables, set the URL to
TWebFaunaDBClientDataSet and hookup DB-
aware TMS WEB Core controls to this dataset via a
datasource and you are up & running to perform
CRUD operations on these tables.

Similar as for and the Embarcadero Rad Server

Dream Factory REST API, we have a version of the
todo-list demo that works with FaunaDB.

GET READY
The beta for is around the TMS WEB Core v1.4

corner. We are doing the testing, finishing the
demos and writing the new documentation.

TMS ALL-ACCESS users are in the front seat and
can expect this beta accessible from their account
shortly and after a couple of weeks testing, we will
release this new 1.4.

We hope you are as excited as we are about the
new TMS WEB Core v1.4.

And there is more, it is this v1.4 feature set that
will also be included in TMS WEB Core for Visual
Studio Code.

The project to offer a TMS WEB Core version
integrated in the Microsoft free and cross
platform has Visual Studio Code IDE

significantly advanced in the past couple of
months. A select group of beta users is
currently test-driving the newest builds. Very
shortly, TMS ALL-ACCESS users will also get
access to the beta and after a few more weeks
of testing/feedback/updates we plan to
release this version as well.

TMS WEB CORE V1.4 RAVENNA PAGE 7/7PREVIEW

tttmmmssssssoooffftttwww rrr ...cccooommmooo

Object-Relational Mapping (ORM, sometimes
O/RM) is a data-exchange technique required
when attempting to relate the otherwise
incompatible architecture of objects (as found in
object-oriented languages) with the architecture
of classic relational databases.

A typical SQL database management system
(DBMS) uses normalised data containers (usually
tables) whose component fields are all scalar types
such as integers and strings; whereas an
object-oriented approach to data management
uses non-scalar object containers. For example,
an object-oriented address book would consist of
multiple person-objects, each person-object
associated not only with fields such as name,
gender and so on, but with sub-objects such as a
phone-object containing lists of sub-objects each
with a phone number and description; an address
object containing sub-objects listing current and
past addresses and descriptions, and so on.
The person-object is treated as a single entity by
the object-oriented programming language, which
can have a single pointer variable referencing the
object. The object will have various methods such
as a method to return the preferred phone
number, the current home address and so on.
This data is retrieved from the tree-like object
container. Any given person object can have zero
or more phone numbers, zero or more addresses.

For the object’s data to be persistent requires
storing the object in some sort of database.
This means disintegrating the various parts of
the hierarchically structured object into simple
scalar values which can be represented logically in
the corresponding fields of a relational database.
ORM is the attempt to do this, and has to both
atomise or “explode” the object to store it, and
later also to integrate the exploded parts
coherently. This means correctly preserving not
just the object’s properties but their complex
inter-relationships so that when data is
subsequently retrieved from the database the
objects are perfectly recreated. This is the meaning
of the M in ORM: the mapping.

In effect, ORM creates a "virtual object database"
that you can use from within the object-oriented
programming language. Software, both free and
commercial, is available to perform object-
relational mapping, although some programmers
opt to construct their own ORM tools, as I have
done and explain in what follows.

Object Pascal has several existing ORM tools
designed to work with standard GUI components,
including the mORMot and tiOPF frameworks
which map Pascal objects to a database.

— mORMot is an open source client-server ORM
 SOA MVC framework for Free Pascal, whose
 server targets Windows and Linux, and
 whose clients can be any platform, including
 mobile and AJAX. mORMot uses an internal
 SQLite database to store all kinds of data.

— tiOPF is a free, open source framework for
 Delphi and Free Pascal that simplifies the
 mapping of an object oriented business
 model into a relational database.
 The framework is mature and robust having
 been in use on production sites since 1999.
 It is available for immediate download with
 full source code.

There are similar frameworks which combine non-
data components into a REST database without
using a dataset. Both the above frameworks work
well, but their documentation is problematic.
One has little documentation but numerous
examples. The other has an overwhelming
1000-page PDF. Exploring either of these two
frameworks requires a lot of time and patience.

Although in my view both frameworks have very
complex libraries, I nevertheless learned from tiOPF
how to connect my standard GUI components to
an object and how to work with other objects to
read and write their data.
I wanted to try building a simple ORM for myself to
explore what is really needed. That is how I built
my own MyMediator framework, starting by
designing the class. TMyBaseMediator

I explain the basic functions of TMyBaseMediator
later. This article shares the code I have developed
so far, and Blaise Pascal Magazine provides
the full sources for download.

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 1/20

expertstarter

22Blaise Pascal Magazine 86 2020

INTRODUCTION: WHAT IS ORM?
BY JOHN KUIPER

MYMEDIATOR: THE BASICS
It is best to save components using objects. I chose
to use generic code using the FGL in FPC/Lazarus
(and system.generics.collections in Delphi). This
gives you a ‘static’ way to read the added object
without using typecasting as you need to using,
say, or I also used a TObjectList TList.

dictionary to add a named object. A dictionary is
just like a but works only with TStringList,

generic types. Using a dictionary gives you an easy
way to search for an object with a specific name.
In Lazarus I used for Delphi I used TFPGMap;

TDictionary. The example below shows how the
dictionary is linked to my class. TMyCollection

TMyCollection TControl has a property called
fDisplayComponent, TControl being the best
ancestor for all the GUI components I want to use.
To begin with, only will be provided to the TEdit

base mediator as a display component.

unit ;clMyBaseMediator

interface

uses , , , , ;classes fgl sysutils controls stdctrls

type = (, , ,);TMyDeclarations dcString dcInteger dcFloat dcDate

TMyCollection = class

 : ;fDisplayComponent TControl

 : ;fClassname string

 : ;fOldValue string

 : ;fReadOnly boolean

end;

TMyBaseMediator = class
 private

 : ;fcomponentList Tmydictionary

 (: ; :) : ;function const string varlocate aFieldname cln TMycollection boolean
 protected

 (: ; :);procedure const string constmdread aFieldname aValue variant
 public

 ;constructor Create

 ; ;destructor overrideDestroy

 (: ; :);procedure const stringAddComp aCompname TControl aFieldname

end;

implementation

constructor . ;TMyBaseMediator Create
begin

 := . ;fcomponentList Tmydictionary create

end;

destructor . ;TMyBaseMediator Destroy
begin

 . ;fcomponentList Free

 ;inherited

end;

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 2/20

23Blaise Pascal Magazine 86 2020

For a demonstration let’s connect a few edits to
the mediator. We create a application, and World

place several labels (country, capital,
population continentand) with associated
edits to receive our data on the main form, naming
the form FrmMain.

To connect the four instances to the TEdit

mediator I can use but then I TBaseMediator,

have to copy the unit several times and code will be
duplicated. It is better to create a new
TBaseMediator descendant named
TMainMediator TMainMediatorso that in using
we can inherit all needed code and type
declarations from a single ancestor class:

type

 TMainMediator TBaseMediator = ()class

end;

Our main goal is to develop an application where
code is separated from the GUI. The form should
not know what the database is doing with the
data. This separation or ‘decoupling’ has the
advantage that we can easily modify or replace
the form with its GUI while still working with
data. So let’s create a separate unit containing a
class devoted to communication with the form.
Create a new unit named and a class clMain

named The form class is then declared TMain.

with a public variable named TMain flink.

clMain unit:

 {$mode objfpc}{$H+}

interface

uses

 , ;Classes SysUtils

implementation

type

 = TMain class

 ;end

end.

form* unit:

clMain unit:

form* unit:

clMain unit:
procedure const string const . (: ; :);TMyBaseMediator mdread aFieldname aValue variant

var : ;cln TMycollection
begin

 := ;cln nil

 (,) if thenlocate aFieldname cln
 begin

 . if is thencln fDisplayComponent Tedit

 (.). := ;TEdit cln fDisplayComponent Text aValue

 ;end

end;

procedure const string . (: ; :);TMyBaseMediator AddComp aCompname TControl aFieldname

var : ;cln TMyCollection
begin

 := . ;cln TMyCollection Create

 . := ;cln fDisplayComponent aCompname

 . := . ;cln fClassname aCompName ClassName

 . (,);fComponentlist Add aFieldname cln

end;

function const string var . (: ; :) : TMyBaseMediator locate aFieldname cln TMycollection

boolean;
begin

 := . (,)result fComponentlist TryGetData aFieldname cln

end;

T t the f i t s to th

clMain unit:

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 3/20

24Blaise Pascal Magazine 86 2020

Let me explain. is a method of AddComp

TBaseMediator which takes two parameters: a
component (here it is an edit) and a component
name. Because derives from TEdit TControl,

TEdit can be saved as a pointer value.
The second parameter is the name identifying the
component.
Hence each edit can display its unique value, based
on its name. For the application to know which
value applies to which edit, we have to make a
new class containing the variables and an object
list that holds a list of values (much like
TDataset). This class is saved in a unit named
objWorld. The following diagram illustrates how
each object is related to the others to work
together:

We create a class with string fields for TCountry

country name, capital, population and continent,
and a list to contain the country records. To put
data into an edit using the mediator we populate a
record with data from my country of origin, add it
to the list, and ask the mediator to transfer the
data to the appropriate component using a
procedure named which takes as a ReadToComp,

parameter the desired country record.

procedure . ;TMain init

var : ;country Tcountry
begin

 := . ;Country TCountry create

 . := ;Country countryname 'the Netherlands'

 . := ;Country capital 'Amsterdam'

 . := ;Country population '14 million'

 . := ;country continent 'Europe'

 . . ();fWorld Countrylist Add Country

 . (. []);fMediator ReadToComp fWorld fcountrylist 0
end;

TMain.init is called in the form’s
TFrmMain.FormCreate. Once the list is filled
with data we call fMediator.ReadToComp
which is implemented as follows:

d

procedure . (:);TMainMediator ReadToComp aCountry TCountry
begin

 (, .);mdread aCountry'countryname' name

 (, .);mdread aCountry capital'capital'

 (, .);mdread aCountry population'population'

 (, .);mdread aCountry continent'continent'

end;

ReadToComp mdRead calls with three
parameters: the name of the GUI object stored in
dictionary, a data value declared as a variant
type, and an optional value to specify the
declared type of the data. In the absence of a
third parameter the type defaults to string.
mdRead is implemented like this:

We have created the Now we can gateway.

declare as a property based on a Mediator

TMainMediator fMediator field named
(is of type). Mediator TMainMediator

Using the form’s variable we can connect flink

all the form’s edits to the mediator in the form’s
FormCreate procedure:

w
w

 . (:);procedure TFrmMain FormCreate Sender TObject
begin

 := . ;flink TMain create

 . . (,);fLink Mediator AddComp ECountry 'countryname'

 . . (,);fLink Mediator AddComp ECapital 'capital'

 . . (,);fLink Mediator AddComp EPopulation 'population'

 . . (,);fLink Mediator AddComp EContinent 'continent'

end;

c
a
d
r
t
d
p
p

e h d th

uses ……, ;clmain

type

 = ()TFrmMain TFormclass

 ………
 (: ; procedure varFormClose Sender TObject

CloseAction TCloseAction:);

 (:);procedure FormCreate Sender TObject
 public

 : ;flink TMain

 ;end

implementation

{$R *.lfm}

procedure . (:);TFrmMain FormCreate Sender TObject
begin

 := .flink TMain Create

end;

procedure var . (: ; TFrmMain FormClose Sender TObject

CloseAction TCloseAction:);
begin

 . ;flink Free

end;

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 4/20
form unit:

25Blaise Pascal Magazine 86 2020

We create a class with string fields for TCountry

country name, capital, population and continent,
W
c

TOR FRAMEWORK PAGE 4/20

form

form
class

form
class

mediator

FURTHER DATA
We will extend the mediator to add, save and
scroll data, and extend the main form with a
toolbar containing four buttons, using an action
list to provide each button with an appropriate
action.See https://wiki.freepascal.org/
TActionLi st if you are not familiar with
actions.To ensure an empty country list at startup,
remove the existing lines from and TMain.init,

create a new boolean property named `Newrecord`
in the class. In the object inspector double-Tmain

click the main form’s event to btnAdd.OnClick

generate a new handler, whose implementation
will call a new method named `addrecord`.TMain

form unit:

clMain unit:

procedure . (:);TFrmMain BtnAddClick Sender TObject
begin

 . ;flink AddRecord

end;

procedure . ;TMain addrecord
begin

 . ;fMediator Clear

 := ;fNewRecord true

 . ;fWorld IncreaseID

end;

We add a method to the base mediator to Clear

empty all connected components:

We set the property to to tell NewRecord True

the method to create a new object to be Save

stored in the list. Generate an handler OnClick

for the button and implement it asbtnSave

flink.save;

 which simply calls `TMain.save`.

The variable creates a new fNewRecord

TCountry record and calls
TMainMediator.CmpToWrite, a new method
we add to and TMainmediator Basemediator

to accomplish this:

`

procedure . (:);TMainMediator CmpToWrite aCountry TCountry
begin

 . := ();aCountry countryname mdwrite 'countryname'

 . := ();aCountry capital mdwrite 'capital'

 . := ();aCountry population mdwrite 'population'

 . := ();aCountry continent mdwrite 'continent'

end;

function . (TMyBaseMediator mdwrite

const string :) : ;aFieldname variant

var : ;cln TMycollection
begin

 := ;cln nil

 (,) if thenlocate aFieldname cln
 begin

 . if is thencln fDisplayComponent TEdit

 := (.). ;result TEdit cln fDisplayComponent Text

 ;end

end;

After saving, the variable is set to fNewRecord

False. Now we add several objects to the
object list. But if the record already existed and
only needs modifying, how do you know which
object must be modified? Although we could
search for a specific name, names can be
modified. It is better to identify a record via an
integer ID field. So we add an integer variable
called to the class listed by ID TCountry

objcountrylist. Each instance is saved with a
unique value. In the class we add ID TWorld

three further properties:

procedure const string const . (: ; : ; :);TMyBaseMediator mdread aFieldname aValue variant aDec TMyDeclarations

var : ;cln TMycollection
begin

 (,) if thenlocate aFieldname cln
 begin

 . (.). := ;if is then cln fDisplayComponent Tedit Edit cln fDisplayComponent Text aValue

 ;end

end;

The function first tries to locate the right mdread

component using the dictionary to search for
aFieldname. If this succeeds it checks if the
component found is an edit. If so it sets the edit’s
text. Initially we instructed the mediator to link to
the form’s edits. The reference to the edit is
actually a pointer giving the edit’s address, which
we use to set its the value which is displayed. Text,

Notice that the form remains unaware of what is
really going on.

procedure . ;TMyBaseMediator Clear

var index : ; : ;cln TMycollection integer
begin

 := . - for index to do0 1fcomponentList Count
 begin

 := . [];cln fComponentlist Data index

 (.). := ;TEdit cln fDisplayComponent Text ''

 ;end

end;

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 5/20

26Blaise Pascal Magazine 86 2020

procedure . ;TMain Save

var : ;Country TCountry
begin
 if thenfNewRecord
 begin

 := . ;Country TCountry Create

 . := . ;Country id fWorld LastID
 end else

 := . ;Country fWorld FindRow

 . ();fMediator CmpToWrite Country
 if thenfNewRecord
 begin

 . . ();fWorld Countrylist Add Country

 . := . ;fWorld ID fWorld LastID

 := fNewRecord false

 ;end

end;

We have to be be able to scroll up and down the
country list in order to show the correct edit
values, so we write and TMain.recordprior

TMain.recordnext methods:

procedure . ;TMain recordprior

var : ;Country TCountry
begin

 . > if thenfWorld ID 0
 begin

 . := . - ;fWorld ID fWorld ID 1
 := . ;Country fWorld FindRow

 . ();fMediator ReadToComp Country

 ;end

end;

procedure . ;TMain recordnext

var : ;Country TCountry
begin

 . < . if thenfWorld ID fWorld LastID
 begin

 . := . + ;fWorld ID fWorld ID 1
 := . ;Country fWorld FindRow

 . ();fMediator ReadToComp Country

 ;end

end;

We can now view and edit existing data as the next
screenshots show:

property : ;LastID integer read fLastID write fLastID

property : ;ID integer read fID write fID

property : ;Error boolean read fError write fError

function . : ;TWorld FindRow TCountry
begin

 := ;result nil

 () if thenassigned fcountrylist
 begin

 (. >) >= if and thenfcountrylist Count fID0 0
 := []result fCountrylist fID

 ;end

end;

The procedure now looks like this:TMain.save

Now we can locate the right instance
when saving an edit’s modified value:Text

How about deleting an item? We need a further
acDelete btnDelete action associated with a
button added to the toolbar, along with a
DeleteRecord method and an implementation
of the method of Execute acDelete.

procedure . (:);TFrmMain acDeleteExecute Sender TObject
begin

 . ;flink DeleteRecord

 . = - if thenfLink ID 1
 begin

 . ;flink AddRecord

 . ;ECountry SetFocus

 ;end

end;

procedure . ;TMain DeleteRecord

var : ;country TCountry

 : ;emptylist boolean
begin

 := . ;emptylist fWorld RowDelete

 . if not thenfWorld Error
 begin
 if thenemptylist
 begin

 := . ;country fWorld FindRow

 . ();fMediator ReadToComp country
 end else

 ;AddRecord
 end else

 ()showmessage 'cannot delete item'

end;

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 6/20

27Blaise Pascal Magazine 86 2020

The method calls TMain.DeleteRecord

TWorld.RowDelete fcountrylist to delete an
item and re-index the in the ID TCountryObject:

function . : ;TWorld RowDelete boolean

var : ;myID integer
begin
 try

 := ;fError false

 := ;myID fID

 . ();fcountrylist Delete fID

 . ;fcountrylist Pack

 . = if thenfcountrylist Count 0
 begin

 := ;result false

 := - ;fID 1
 end else
 begin

 = if thenmyID fLastID
 begin

 := - ;myID myID 1
 = - if thenmyID 1
 begin

 := - ;fID 1
 := ;result false
 end else
 begin

 := - ;fID fID 1
 := ;result true

 ;end

 = end else if thenmyID 0
 begin

 := - ;fID 1
 := ;result false

 < end else if thenmyID fLastID
 begin

 := ;result true

 ;end

 ;end

 ;Reindex
 except

 := fError true

 ;end

end;

Adding a non-TEdit component

The field value is identical for continent

European countries such as the United Kingdom,
Belgium, the Netherlands and Germany. The user
could repeatedly type in the appropriate Europe

field for each record, but sometimes you mistype
(Europe, europe, Europa). It is better to select a
correctly spelled continent name from a provided
list. We use a for this functionality. TComboBox

So replace the edit with a Econtinent

CBContinent combobox. We then have to tell the
mediator a new component is being used
(fLink.Mediator.AddComp(CBContinent,'c

ontinent')). We also need to make
modifications to to ensure we TBaseMediator

are reading from and writing to the correct
component:

procedure const string . (: ; TMyBaseMediator mdread aFieldname

const : ; :);aValue variant aDec TMyDeclarations

var : ;cln TMycollection
begin

 (,) if thenlocate aFieldname cln
 begin

 . if is thencln fDisplayComponent Tedit

 (.). := TEdit cln fDisplayComponent Text aValue

 . else if is thencln fDisplayComponent TCombobox

 (.). := ;Tcombobox cln fDisplayComponent Text aValue

 ;end

end;

function const string . (:) TMyBaseMediator mdwrite aFieldname

: ;variant

var : ;cln TMycollection
begin

 (,) if thenlocate aFieldname cln
 begin

 . if is thencln fDisplayComponent TEdit

 := (.).result TEdit cln fDisplayComponent Text

 . else if is thencln fDisplayComponent Tcombobox

 := (.). ;result TCombobox cln fDisplayComponent Text

 ;end

end;

Now we have to populate the CBcontinent
combo box with items for display and selection.
Choosing from a fixed list always gives the user
consistent values for the continent field.
However, more often the list is dynamic, and the
items are retrieved from values in a database,
often via a key which corresponds to a database
value, a lookup field.
For this example we will create objContinents
just as we created We create a new objWorld.

objbase.pas unit with the following
TObjectBase class declaration:

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 7/20

28Blaise Pascal Magazine 86 2020

 type

 = TObjectBase class

 : ;fError boolean

 : ;fID integer

 : ;fLastID integer
 public

 : ;property LastID integer read fLastID write fLastID

 : ;property ID integer read fID write fID

 : ;property defaultError boolean read fError write fError false

 ;end

The and classes can TWorld TContinentTable

use as a base class. TObjectBase

TWorld TObjectBase = ()class

end;

This enables us to save the same properties with less
code, simply by putting

uses objbase;

in the interface sections of the appropriate units.

Again we create the procedure to call the init

TContinentTable class. We declare the object
locally, since we only need the continent values to
populate they are not TCombobox.Items,

needed in the rest of the application.

procedure . (:);TMain init aContinent TStrings

var : ;fContinentTable TContinentTable

 : ;Continent TContinent
begin

 := . ;fContinentTable TContinentTable create
 try

 . for in docontinent fContinentTable Continentlist

 . (.);aContinent Add continent name
 finally

 . ;fContinentTable free

 ;end

end;

 . (:);procedure TFrmMain FormCreate Sender TObject
begin

 < >some code

 . (.);flink init CBContinent items
end

form unit:

Now when we run the application we can select a
continent, without making mistakes when typing
its name.

Data Persistence
This is all very well, but when you close the
application, all the data is lost. We need a small
database to make our data persistent. I chose
SQLite for this since it is small, easy to use, and has
drivers for almost every OS. For Lazarus I need one
DDL to connect the SQLite database.
The library can be found at
https://www.sqlite.org/download.html.

For our application we need the pre-compiled
Windows driver.
Download the correct driver for the bitness of your
Lazarus (either 32-bit or 64-bit). Unzipping the file
gives two files : and . sqlite3.dll sqlite3.def

I place these files in my development directory.
You can also put them in Windows\system32.
Of course under Unix you require different client
libraries than these, which apply to Windows. For
working with SQLdb I refer you to my SQLdb article
in or the Blaise Magazine Issue 80 page 16

tutorial at https://wiki.freepascal.org/
SQLdb_Tutorial1.

The diagram above explained how the form class is
related to the mediator. Now we have added a
database the diagram is expanded with dbtools
():https://online.visual-paradigm.com

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 8/20

29Blaise Pascal Magazine 86 2020

)p p g)p p g

form

form
class

object
(dataset)

databasemediator

The database works with both formclass and
object, and the form continues to be ignorant of
any database. Object is the communication layer
for the data. We need to create a new unit called
clDBWorld. This unit inherits from the
TMyDatabase base object, whose values and
properties are used to communicate with the
database unit:

clDatabase unit:

clDBWorld unit:

fWorld TWorld is a reference to the object in
objWorld. We need this to load values from a
database table. In the t the clmain uni

formclass fdatabase:creates a new object
TDBWorld. TMain.init In the method we insert
a new line of code to load the records into the
TWorld object:

 . (,); fdatabase GetValues fWorld'countries'

The first parameter specifies which table has to be
called, and the second parameter links the TWorld

object to the object TDBWorld fdatabase:

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 9/20

TMyDatabase = class

 : ;fSQLQuery TSQLQuery

 : ;fSQLTransaction TSQLTransaction
 private

 : ;fdberror boolean

 : ;fRecordCount integer
 public

 ;constructor create

 ; ;destructor overridedestroy

 (:);procedure const stringGetTable aQuery

 : ;function GetLastID int64

 : ;function dataset tdataset

 : property recordcount

 integer read fRecordCount write fRecordCount ;

 : property dberror

 boolean read fdberror write fdberror ;

end;

 = ()type classTDBWorld TMyDatabase
 strict private

 : ;fworld TWorld

 ;procedure ReadValuesToObject
 public

 (procedure GetValues

 const string overload : ; :); ;aTablename aWorld TWorld

 (: ; :); procedure GetValues aQuery TStrings aWorld TWorld

overload;

 (:);procedure constSaveToDatabase aNewRecord boolean

 (:);procedure constRowDelete aID integer

end;

30Blaise Pascal Magazine 86 2020

procedure const string . (: ; :);TDBWorld GetValues aTablename aWorld TWorld
begin

 ((,[]));GetTable format aTablename'select * from %s'

 := ;fWorld aWorld

 ;ReadValuesToObject

end;

procedure . ;TDBWorld ReadValuesToObject

var : ;Country TCountry
begin

 . if not thendataset Active

 . := ;dataset Active true

 := . ;RecordCount dataset recordcount

 > if thenRecordCount 0
 begin

 . := ;fWorld fID 0
 . ;dataset first

 . while not dodataset eof
 begin

 := . ;Country TCountry create

 . := . (). ;Country id dataset FieldByName AsInteger'id'

 . := . (). ;Country countryname dataset FieldByName AsString'countryname'

 . := . (). ;Country capital dataset FieldByName AsString'capital'

 . := . (). ;Country population dataset FieldByName AsString'population'

 . := . (). ;Country continent_id dataset FieldByName AsInteger'continent_id'

 . . ();fWorld Countrylist Add Country

 . ;dataset next

 ;end

 ;end

 . := . . - ;fWorld fLastID fWorld Countrylist Count 1
 . := ;dataset Active false

end;

We only have to open the required table in my
database to read all records. After loading, the
table can be closed. All data is held in TWorld.
If we run the application and no database is found,
it creates a database with a table:countries

procedure . ;TDMConnection CreateTables

var : ;MyTables TStrings
begin

 := . ;MyTables TStringlist create
 try

 . ();SQLConnector1 GetTableNames MyTables

 . () = - if thenMyTables IndexOf 'countries' 1
 begin

 . (SQLConnector1 ExecuteDirect

 +'CREATE TABLE "countries" ('
 +' "id" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,'
 +' "countryname" VARCHAR (30) NOT NULL,'
 +' "capital" VARCHAR (40) NOT NULL,'
 +' "population" VARCHAR (20) NOT NULL,'
);' "continent_id" INTEGER NOY NULL DEFAULT 0);'
 . (SQLConnector1 ExecuteDirect 'CREATE UNIQUE INDEX „

 countries_id" ON "countries" ("id");');
 . ;SQLTransaction1 commit

 ;end
 finally

 .MyTables free

 ;end

end;

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 10/20

31Blaise Pascal Magazine 86 2020

In the previous example we put continent name
strings directly into the combobox. CBContinent

The new design means we cannot now save text in
the table, only an integer as continent_id.
It is always better to save the ID rather than the
string because it uses less memory,
and the description connected to the ID can easily
change without changing the ID in the main table.
To let the application find the right ID for a text
item in create a new unit called CBContinent,

clLookup. This gives us only one lookup table,
but the object is created for multiple tables.
Therefore we use this construct:

TLookuplist: TFPGMap (for Delphi use
TDirectory) holds the name of the lookup table
with its items found in TLookupItemList.
The object gets a new object TMain fLookup:

TLookup. TMain.init In we call the procedure

 . (. ,);fLookup LoadContinent fContinentTable Continentlist aContinent

The first parameter has all the continent records
placed in the object, and the TContinentTable

second parameter holds the items of
CBContinent. We still have to fill the items to
select one of them. We also have to tell the
TWorld object that an extra value will be used to
perform a lookup to populate :CBContinent

At start-up the application finds no records, so it
immediately adopts an mode. append

We make one record for the country England (in
the continent Europe). When saving the record we
also have to call a procedure in the fDatabase
object to physically save the values in the
database:

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 11/20

Type class = TLookupItem

 : ;id integer

 : ;value string

end;

TLookupItemList =

 specialize TFPGObjectlist TLookupItem < >;

TLookupList =

specialize TFPGMap TLookupItemList < , >;string

 type

 = TCountry class

 : ;id integer

 : ;countryname string

 : ;capital string

 : ;population string

 : ; continent_id integer //for database/lookup purpose

 : ;continent string

 ; end

procedure . ;TMain Save

var : ;Country TCountry

begin
 if thenfNewRecord
 begin

 . ;fWorld IncreaseID

 := . ;Country TCountry Create
 end else

 := . ;Country fWorld FindRow

 . ();fMediator CmpToWrite Country

 . := Country continent_id

 fLookup KetItemKey Country continent. (, .);'continent'
 if thenfNewRecord
 begin

 . . ();fWorld Countrylist Add Country

 . := . ;fWorld ID fWorld LastID

 . ();fDatabase SaveToDatabase true

 := fNewRecord false
 end else

 . ();fDatabase SaveToDatabase false

 . if thenfdatabase dberror

 ()showmessage 'record nod saved'

end;

clmain unit:

32Blaise Pascal Magazine 86 2020

clDBWorld unit:

If we close the application and look with the
SQLiteStudio editor https:/sqlitestudio.pl
we see the record is saved:

Now running the application again shows we have
data. We now need a routine to display the
continent’s name rather than its ID. We do this
with the procedure:

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 12/20

If we close the application and look with the

procedure const . (:);TDBWorld SaveToDatabase aNewRecord boolean

var : ;Country TCountry

 : ;obJID integer

 : ;MyQuery TStrings
begin

 := . ;Myquery TStringlist create

 := ;dberror true
 try
 if thenaNewRecord
 begin

 . ();MyQuery AddText 'INSERT INTO countries (countryname, capital, population, continent_id)'

 . ();MyQuery AddText 'VALUES (:name, :capital, :population, :continent_id)'

 . . = if thenfWorld Countrylist Count 0
 := objID 0
 else

 := . . - ;objID fWorld Countrylist Count 1
 end else
 begin

 . ();MyQuery AddText 'UPDATE countries SET'

 . ();MyQuery AddText 'countryname = :name, capital = :capital,'

 . ();MyQuery AddText 'population = :population, continent_id = :continent_id'

 . ();MyQuery AddText 'WHERE id = :id'

 := . ;objID fWorld fID

 ;end

 := . [];Country fWorld Countrylist objID

 . . := . ;fSQLQuery SQL Text MyQuery Text

 . []. := . ;fSQLQuery Params AsString Country countryname0
 . []. := . ;fSQLQuery Params AsString Country capital1
 . []. := . ;fSQLQuery Params AsString Country population2
 . []. := . ;fSQLQuery Params AsInteger Country continent_id3
 if not thenaNewRecord

 . []. := . ;fSQLQuery Params AsInteger Country id4
 . ;fSQLQuery ExecSQL

 := . = - ;dberror fSQLQuery RowsAffected 1
 . . <> if thenDMConnection SQLConnector1 ConnectorType 'SQLite3'

 .fSQLTransaction Commit
 else

 . . ;dmConnection SQLTransaction1 Commit

 if thenaNewRecord

 . := ;Country id GetLastID
 finally

 . ;MyQuery free

 ;end
end

33Blaise Pascal Magazine 86 2020

When you scroll the method searches in Display

the object to display the right continent fLookup

on screen.

procedure . (:);TMain init aContinent TStrings
begin
 ………….
 . . > ;if then fWorld Countrylist Count Display0
 ………….
end;

procedure . ;TMain Display
var : ;Country TCountry
begin
 := . ;Country fWorld FindRow
 //lookup
 . := . (Country continent fLookup GetValueFromIndex
 , .);'continent' Country continent_id
 . ();fMediator ReadToComp Country

end;

All that remains is to add record deletion
functionality to the application. If you know how
to save it, you can use almost identical code for
deletion:

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 13/20

procedure . ;TMain DeleteRecord

var : ;country TCountry

 : ;emptylist boolean
begin

 := . ;country fWorld FindRow

 . (.);fDatabase RowDelete country id

 . if thenfdatabase dberror

 ()showmessage 'record not deleted'
 else begin

 ………
 ;end

end;

procedure const . (:);TDBWorld RowDelete aID integer
begin

 := ;dberror true

 . . := fSQLQuery SQL Text

 'DELETE FROM countries WHERE id = :id';
 . []. := ;fSQLQuery Params AsInteger aID0
 . ;fSQLQuery ExecSQL

 := . = - ;dberror fSQLQuery RowsAffected 1
 . . <> if DMConnection SQLConnector1 ConnectorType

 'SQLite3' then

 .fSQLTransaction Commit
 else

 . . ;dmConnection SQLTransaction1 Commit

end;

34Blaise Pascal Magazine 86 2020

While it is possible to load the lookup items from a
hard-coded object, it gives more flexibility to load
the items from a database. We amend the TLookup
class with a base class so we can TMyDatabase

load data from a table, adding a to TSQLQuery

load data into the items:

ADVANCED LOOKUP

TLookup TMyDatabase = ()class

 : ;fLookupList TLookupList
private

 (:);procedure constGetItems aItems TStrings
public

 …………
 (:);procedure LoadContinent aItems TStrings

 …………
end;

implementation
{ TLookup }

procedure . (:);TLookup LoadContinent aItems TStrings
begin
 try

 ();GetTable 'SELECT id, continent FROM continents'

 ();GetItems aItems

 ;TableCommit
 finally

 . := ;fSQLQuery Active false

 ;end

end;

procedure const . (:);TLookup GetItems aItems TStrings

var Item TLookupItem: ;
begin

 . while not dofSQLquery eof
 begin

 := . ;Item TLookupItem Create

 . := . []. ;Item id fSQLquery Fields AsInteger0
 . := . []. ;Item value fSQLquery Fields AsString1
 (,);Add Item'continent'

 . (.);aItems Add Item value

 . ;fSQLquery Next

 ;end

end;

We call the method of TableCommit()

TMydatabase to free the transactions after
reading and closing the dataset (table). Otherwise
we work with exactly as before. We no TLookup

longer need Later on we do TContinentTable.

use it to read the data for adding / modifying
/ deleting lookup table items. The only thing
left to do is creating a table with records in the
database unit:

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 14/20

 . () = - if thenMyTables IndexOf 'continents' 1
begin

 . (SQLConnector1 ExecuteDirect

 + +'CREATE TABLE "continents" (' ' "id" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,'
);' "continent" VARCHAR (30) NOT NULL);'
 . ;SQLTransaction1 commit

 . (SQLConnector1 ExecuteDirect

 + +'INSERT INTO continents (continent) VALUES ' '("Asia"),("North America"),("South America"),("Autralia"),'
);'("Europe"),("Africa"),("Antartica");'
 . ;SQLTransaction1 commit

end;
35Blaise Pascal Magazine 86 2020

Procedure . ;TDMConnection CreateTables

var : ;MyTables TStrings
begin

 := . ;MyTables TStringlist create
 try

 . ();SQLConnector1 GetTableNames MyTables

 . () = - if thenMyTables IndexOf 'countries' 1
 begin
 {countrysettings}
 ;end

 . () = - if thenMyTables IndexOf 'cities' 1
 begin

 . (SQLConnector1 ExecuteDirect

 + +'CREATE TABLE "cities" (' ' "id" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,'
 + +' "country_id" INTEGER NOT NULL,' ' "cityname" VARCHAR (30) NOT NULL,'
 + +' "major" VARCHAR (30) NOT NULL,' ' "capital" BOOLEAN NOT NULL DEFAULT FALSE,'
 + +' "sightseeing" VARCHAR (100), ' ' "square" INTEGER NOT NULL DEFAULT 0,'
 +);' "poprange_id" INTEGER NOT NULL,' ' "township_id" INTEGER NOY NULL DEFAULT 0);'
 . ();SQLConnector1 ExecuteDirect 'CREATE UNIQUE INDEX "city_id" ON "cities" ("id");'

 . ;SQLTransaction1 commit

 ;end

 . () = - if thenMyTables IndexOf 'continents' 1
 begin
 {continent settings}
 ;end

 . () = - if thenMyTables IndexOf 'popranges' 1
 begin

 . (+SQLConnector1 ExecuteDirect 'CREATE TABLE "popranges" ('

 +);' "id" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,' ' "rangename" VARCHAR (30) NOT NULL);'
 . ;SQLTransaction1 commit

 . (+SQLConnector1 ExecuteDirect 'INSERT INTO popranges (rangename) VALUES '

 +'("1 - 1.000"),("1.001 - 10.000"),("10.001 - 25.000"),("25.001 - 50.000"),'
 +'("50.001 - 75.000"),("75.001 - 100.000"),("100.001 - 250.000"),("250.001 - 500.000"),'
);'("500.001 - 1.000.000"),("1.000.001 - 2.500.000"),("2.500.001 - 5.000.000"),("5.000.000 and more");'
 . ;SQLTransaction1 commit

 ;end

 . () = - if thenMyTables IndexOf 'townships' 1
 begin

 . (+ SQLConnector1 ExecuteDirect 'CREATE TABLE "townships" (' ' "id" INTEGER NOT NULL PRIMARY KEY

 AUTOINCREMENT,' ' "townshipname" VARCHAR (30) NOT NULL);' +);
 . ;SQLTransaction1 commit

 . (SQLConnector1 ExecuteDirect

 +);'INSERT INTO townships (townshipname) VALUES ' '("Village"),("Town"),("City");'
 . ;SQLTransaction1 commit

 ;end
 finally

 .MyTables free

 ;end

end;

ADDING APPLICATION FORMS
To see if it really works let’s expand the application with a new form. A Countries form will show
that country’s cities with information about each city. A new form has its own units (formclass,
objectclass, dbobjectclass). The database is expanded with a table view (the text within
brackets is already put in code):

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 15/20

We create as a new form object. Most `objcities`

of the code will be copied from objworld. The only
code that has really changed is this:

 type

 = TCity class

 : ;id integer

 : ; country_id integer //for database purpose

 : ;cityname string

 : ;major string

 : ;capital boolean

 : ;sightseeing string

 : ;square integer

 : ; poprange_id integer //for database purpose

 : ;population string

 : ; township_id integer //for database purpose

 : ;township string

 ;end

TCitylist specialize TFPGObjectList TCity = < >;

36Blaise Pascal Magazine 86 2020

interface

uses Classes SysUtils sqlDB dConnection sqlite3conn DB fgl typinfo, , , , , , , ;

type

 = TobjFielddef class

 : ;fieldname string

 : ;varlength integer

 : ;datatype string

 ;end

 = < >;TObjFielddeflist specialize TFPGObjectList TobjFielddef
 { TMyDatabase }
 = TMyDatabase class
 {previous code}
 Private
 {previous code}
 : ;fObjFielddeflist TObjFielddeflist
 protected

 ;procedure LoadAttributes
 public
 {previous code}
 : ;property ObjFielddeflist TObjFielddeflist read fObjFielddeflist write fObjFielddeflist

end;

implementation
{ TDatabase }
constructor . ;TMyDatabase create
begin

 := . ;fObjFielddeflist TObjFielddeflist create
 {previous code}
end;

destructor . ;TMyDatabase destroy
begin

 . ;fObjFielddeflist free

 . ;fSQLQuery free

 ;inherited destroy

end;

procedure . ;TMyDatabase LoadAttributes

var index : ; : ;integer Fielddef TobjFielddef
begin

 . ;fSQLQuery First

 := . . - for index to do0 1fSQLQuery Fields Count
 begin

 := . ;Fielddef TobjFielddef Create

 . := . []. ;Fielddef fieldname fSQLQuery Fields FieldNameindex

 . := . []. ;Fielddef varlength fSQLQuery Fields DataSizeindex

 . := ((), (. [].));Fielddef datatype GetEnumName TypeInfo TFieldType Ord fSQLQuery Fields DataTypeindex

 . ();ObjFielddeflist Add Fielddef

 ;end

end;

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 16/20
We rename the class to changing in all procedures, changing to TCities TWorl` @countrylist

@Citylist @Country @City @and to (means all characters in the word).

Create a new and copy all code from changing the name of the class from clDBCity unit clDBWorld

TDBWorld TDBCity objCit* to and all related objects and variables related to the file.

As you can see in the class, the square variable is of integer type. String variables have unlimited TCity

characters, but database fields are always limited in storage. When a query is posed to a database, much
extra metadata is also extracted from the table definition such as length and datatype ((var)char,
integer, boolean, float). We want the GUI components to know about these attributes, so we
expand the file (related to to load these attributes:cldatabase cldbcity)

37Blaise Pascal Magazine 86 2020

We also change this in the unit. The clDBWorld

next file to create is As with clCity.pas.

cldbCity clMain we copy all the code, changing
the class name to and changing all TFCity,

related variables and objects to the objects of
objcity.pas cldbcity.pas. and There is one
extra property in country_id clCity.pas.

This is because all records created must be related
to a country. Otherwise all records would be
shown for every country.To give extra functionality
to the GUI-components we will read the field
definitions. So we add this code to the formclass
init() procedure:

As you can see, we call a procedure of Mediator.
This can be in the baseobject of the mediator.
Now every time a new is created the TMediator

components are given corresponding attributes:

 . (, : procedure constTMyBaseMediator SetAttributes aFieldname aDatatype

string;

 :);const aVarlength integer

var : ;cln TMycollection
begin

 := ;cln nil

 (,) if thenlocate aFieldname cln
 begin

 . if is thencln fDisplayComponent TEdit
 begin

 (.). := ;TEdit cln fDisplayComponent MaxLength aVarLength

 = if thenaDatatype 'ftInteger'
 begin

 (.). := ;TEdit cln fDisplayComponent NumbersOnly true

 = if thenaDatatype 'ftInteger'

 . := ;cln fDatatype dcInteger

 ;End

 ;end

 ;end

end;

This change gives the program the opportunity to
use the right data type for a variable in object and
database without having to specify to or mdread

mdwrite which data type must be used.
Now we can create the form, dropping labels,
edits, comboboxes, toolbar and actionlist on the
form. We copy the code in the implementation
section of to and link the fmain.pas fcyty.pas

action events to an action.

In we create a new button fmain.pas spCities

and in its handler in OnClick clmain.pas

create a new procedure: LoadCityform

procedure . ;TMain LoadCityForm

var : ;frm TFrmCity

 : ;Country TCountry
begin

 := . ();frm TFrmCity Create nil
 try

 := . ;Country fWorld FindRow

 . . := . ;frm Link country_id Country id

 . ;frm ShowModal
 finally

 . ;frm free

 ;end

end;

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 17/20

We also change this in the unit. The clDBWorld

procedure . ;TDBCity ReadValuesToObject

var : ; : ;City TCity Fielddef TobjFielddef
begin

 . if not thendataset Active

 . := ;dataset Active true
 {previous code}
 //this peace of code must be after reading the records.
 //If there are no records the definitions can still read
 . if thendataset active

 ;LoadAttributes
 {previous code}
end;

if then . . > fdatabase ObjFielddeflist Count 0
begin

 . for in doFielddef fdatabase ObjFielddeflist

 . (. , . , .);fMediator SetAttributes Fielddef fieldname Fielddef datatype Fielddef varlength

end;

38Blaise Pascal Magazine 86 2020

MASTER/DETAIL RELATIONS
It is nice to see the countries of the world, but I
want to see the cities as well. So we create a view
in the first form with all related cities. It can be
done with a grid or listview. Listview is the easiest
way. In report mode it can hold multiple text and
as reference I can save a pointer to each node.
Let’s put a listview on the main form. All GUI
components are controlled by the mediator. So we
tell the mediator to link the listview:

 . . (,);fLink Mediator AddComp LVDetail 'list1'

We add a new unit to the clause so uses

TBaseMediator can find the listview:

The listview is blank, and to see which fields are
used I created a new procedure in TBaseMediator
to show the given fields. This procedure can used in
any form linked to the mediator.

procedure const string array of string . (: ; :);TMyBaseMediator LVHeader aFieldname aHeader

var : ;cln TMycollection

 : ;LV TListview

 : ;Column TListColumn

 : ;index integer

 : ;fielddef TStringArray
begin

 := ;cln nil

 (,) if thenlocate aFieldname cln
 begin

 := (.);LV TListview cln fDisplayComponent

 . := ;LV ViewStyle vsReport

 := () - for index to do0 1length aHeader
 begin

 := []. ();fielddef aHeader splitindex ';'

 := . . ;Column LV Columns Add

 . := [];Column Caption fielddef 0
 () > if thenlength fielddef 1
 . := ([],);Column Width StrToIntDef fielddef 1 0
 ;end

 ;end

end;

uses , , , , , ;classes fgl sysutils controls stdctrls comctrls

We call the

procedure in the procedure in the init()

clmain unit. The first parameter specifies which
component is called. The second parameter is an
open array.
This covers two functions: a field name and a field
length separated by . ‘;’

If the field length is not given, the column’s default
length is used.
Now we need data. As for all data I use an object
to hold the data from a query. The object TWorld

in the unit was used for the main form’s objWorld

data. It is also the place for the new listview’s data:

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 18/20

39Blaise Pascal Magazine 86 2020

 . (, [, ,])fMediator LVHeader 'list1' 'cityname;200' 'population;150' 'township;150'

Now we can call fdatabase.GeDetaillist(fWorld)
to query and retrieve all detail data:

 . (:);procedure TDBWorld GeDetaillist aWorld TWorld

var : ;CityDetail TCityDetail
begin
 try

 . . := ;if thenfSQLQuery Active fSQLQuery Active false

 . . ;fSQLQuery SQL clear

 . with dofSQLQuery SQL
 begin

 ();Add 'SELECT c.id, c.country_id, c.cityname,'

 ();Add ' r.rangename, t.townshipname FROM cities c'

 ();Add ' LEFT OUTER JOIN popranges r on r.id = c.poprange_id'

 ();Add ' LEFT OUTER JOIN townships t on t.id = c.township_id'

 ();Add ' ORDER BY c.country_id, c.cityname'

 ;end

 . := ;fSQLQuery Active true

 . . ;aWorld CityDetaillist Clear

 . while not dofSQLQuery EOF
 begin

 := . ;CityDetail TCityDetail create

 . := . []. ;CityDetail country_id fSQLQuery Fields AsInteger1
 . := . []. ;CityDetail cityname fSQLQuery Fields AsString2
 . := . []. ;CityDetail population fSQLQuery Fields AsString3
 . := . []. ;CityDetail townrange fSQLQuery Fields AsString4
 . . ();aWorld CityDetaillist Add CityDetail

 . ;fSQLQuery Next

 ;end
 finally

 . := ;fSQLQuery Active false

 ;end

end;

Now we can call fdatabase.GeDetaillist(fWorld) fdatabase.GeDetaillist(fWorld)

 = TCityDetail class

 : ; country_id integer //for database purpose only

 : ;cityname string

 : ;population string

 : ;townrange string

 ;end

TCityDetaillist specialize TFPGObjectList TCityDetail = < >;

{ TWorld }

TWorld TObjectBase = ()class

 : ;fcountrylist TCountrylist

 : ;fCityDetaillist TCityDetaillist
private

 ;procedure Reindex
 public

 ;constructor create

 ; ;destructor overridedestroy

 : ;function FindRow TCountry

 : ;function RowDelete boolean

 ;procedure IncreaseID

 : ;property Countrylist Tcountrylist read fCountrylist

 : ;property CityDetaillist TCityDetaillist read fCityDetaillist

end;

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 19/20

40Blaise Pascal Magazine 86 2020

The last thing I have to do is to show detail data in
the listview for each country using the procedure

The first parameter specifies which component to
use. The second parameter specifies which
country’s data is to be retrieved. The last
parameter holds all the data the query retrieves.

CONCLUSION
It is a lot of work but these objects work well and faster
than the traditional way of using a TDataset. As far as I
know I have managed to separate all data from the form.
This works on every OS which Lazarus supports. In future I
want to add creating a database connection. This way of
working can also be used by SOAP / Rest servers. When data
is called from these servers, it can be put in the objects and
your application still works. I managed to read a
spreadsheet into an object to see the result. Once a
spreadsheet is open, it is read-only for other users, but I
created an extra object that holds extra data outside the

ORM AND THE MYMEDIATOR FRAMEWORK PAGE 20/20

fMediator ReadDetail Country id fWorld CityDetaillist. (, . , .). 'list1'

41Blaise Pascal Magazine 86 2020

A L L I S S U E S I N O N E F I L E

B L A I S E P A S C A L M A G A Z I N E

L I B R A R Y 2 0 2 0

B L A I S E P A S C A L M A G A Z I N E

L I B R A R Y 2 0 2 0

1
2

3

4
5

6

8

9 1110

12

13

15

17
19

20

18
16

21

29

31

39

47

54

40

48

55

62

63
64

656667
68

69
70

75
76

56

57

58

59

60

61

49

43
42

41

4477

80

81
82

83

84

85
86

45

46

50
51 52 53

33

35

37

32

34

36

38

23

24

25
26 27 28

7
14

22

30

71
72

73
74

78
79

ALL CODE ABOUT THE USE

42Blaise Pascal Magazine 86 2020

The Military Institute of Medicine in Poland has been making the news recently with its app
that is helping fight the spread of the global SARS-CoV-2 pandemic.

Piotr Murawski Ph.D, (Head of ICT, Military Institute of Medicine, Warsaw, Poland) shared
recently with me how back on the 13th March, 2020, that after the SARS-CoV-2 epidemic
reached Europe, the experience of other countries alerted his team that it will not be easy to
control the infection, and testing will take a longer time than normal due to the numbers.
This intern would have a negative impact on controlling the spread of the disease.

The solution
With an awareness that home quarantine was a likely step, the team started building an
extension to their hospital-based software used by Epidemiologists to monitor the health of
people at home. Initially tested by the Military Institutes Employees, it has since spread
further detecting potential epidemic outbreaks and enabling rapid response.

 By Stephen Ball

DX
MKS COVID19 APP SAVING LIVES PAGE 1/2
USING DELPHI TO BETTER THE WORLD

For more details go to this address:
https://www.medexpress.pl/mks-covid-19-ta-aplikacja-pomoze-chronic-zdrowie-i-zycie/77113

43Blaise Pascal Magazine 86 2020

The development
The work for the project was undertaken by a team of four, including two medical scientists
(Grzegorz Gielerak Prof, Paweł Krzesiński Ph.D) and two members of the IT team. (Piotr
Murawski Ph.D, Agnieszka Opłocka Msc) and even though it was their first mobile app, it
was completed in under two weeks, including deployment to corporate app stores.

The solution is built using a single code base, build with Delphi 10.3.3, to deliver the life-
saving remote app to Windows, iOS, and Android. The mobile app architecture includes
components from TMS (for transmission of data securely).

https://www.medexpress.pl/mks-covid-19-ta-aplikacja-pomoze-chronic-zdrowie-i-zycie/77113

DX
MKS COVID19 APP SAVING LIVES PAGE 2/2
USING DELPHI TO BETTER THE WORLD

44Blaise Pascal Magazine 86 2020

After registration onto the system, the app gathers responses to
8 multi-choice questions, completed twice a day, and takes seconds
to complete. Users are reminded via notifications and SMS to complete
the survey.

Results are securely sent immediately to experts from the Epidemiology section of the Military
Medical Institute in Warsaw where they are analyzed using artificial intelligence, to prioritize
review by Epidemiologists. This mix ensures are Epidemiologists able to focus on those with
the most need, rather than sifting through large volumes of data.

If the Epidemiologists makes contact with the patient, they are then able to supplement the
data on the system with additional case notes.

As soon as answers raise any doubts, the relevant services make contact to inform the user
what the next steps should look like, saving critical time and helping prevent transmission.

The app has three states:

Self Control
Quarantine
COVID-19 Positive
In the case of the last two states, after the user’s consent, the system additionally sends
location information, ready in case help is needed. This information is then available to staff

ERGEBNIS DES CORONA-TESTS IN ECHTZEIT
Angesichts der aktuellen Situation bezüglich des neuartigen Corona-Virus SARS-CoV-2 geht
es vor allem darum, Zeit zu gewinnen. Um schnellere Abläufe in der Diagnostik zu
gewährleisten, haben wir die COVID-19 App entwickelt, mit der auf Corona getestete
Patienten schnellstmöglich über ihre Testergebnisse informiert werden. Durch die Corona
App entfällt eine zeitintensive telefonische Abfrage, so bleiben die Leitungen frei und im Falle
eines positiven Testergebnisses können alle erforderlichen Maßnahmen direkt eingeleitet
werden.

Wie läuft das Ganze ab?

Zuordnung über QR-Codes. Grundlage für die Zuordnung der Proben sind Etiketten mit
jeweils zwei zusammengehörenden QR-Codes. Wird bei einem Patienten ein Abstrich
genommen, erhält der Patient eines der beiden Etiketten. Das zweite Etikett wird zusammen
mit der Probe an das Labor gesendet.

Download und Login

Der Patient kann die COVID-19 App im jeweiligen
App-Store herunterladen, installieren und sich
mithilfe des QR-Codes oder der ID-Nummer auf
dem Etikett einloggen.

Benachrichtigung in Echtzeit

Sobald der Befund verfügbar ist, erhält der Patient
eine Push-Notification. So wird er in Echtzeit
informiert und kann das Ergebnis sofort in der
App einsehen. Im Falle eines positiven Ergebnisses
können sofort Maßnahmen ergriffen werden.

COVID-19 APP FOR PATIENTS PAGE 1/2
USING DELPHI TO BETTER THE WORLD

Jim McKeeth

DX

https://bs-sd.de/unsere-softwareprodukte/

45Blaise Pascal Magazine 86 2020

 One of our customers, , is a leading manufacturer in networking in the BS Software Development
medical field. Laboratories, clinics and resident doctors, and specialists are networked via the software solutions from BS
Software (document exchange, laboratory results, etc.)
A current app for and has been developed in record time with in the past few days that enables iOS Android Delphi
direct communication between the laboratories and the patients in Germany regarding test results for the Corona Virus
SARS-CoV-2. This saves the patients time, because the app enables faster communication processes. After scanning a QR
code, which is individually assigned to each patient, the test result is communicated in the app by a traffic light display.
The app is free of charge and practical for patients. The result is communicated via a push notification, thus saving
telephone inquiries from doctors or the health authorities.

Get more information about app including links to download the app:
https://www.embarcadero.com/case-study/bs-software-development-case-study

Zuordnung im Labor
Im Labor wird der QR-Code eingescannt und zum
entsprechenden Auftrag zugeordnet. Anschließend
wird die Befundung durchgeführt.

COVID-19 APP FOR PATIENTS PAGE 2/2
USING DELPHI TO BETTER THE WORLDDX

https://bs-sd.de/unsere-softwareprodukte/

46Blaise Pascal Magazine 86 2020

SCHEDULE FOR A BADMINTON PAGE 1/40
KNOCKOUT TOURNAMENT BY RIK SMIT

Figure 1: Battledore and Shuttlecock: The popular and amusing game as at
present played in the Principal Thoroughfares.
Source: john-leech-archive.org.uk (photo of copy taken by w:user:
BozMo, who owns the site).

47Blaise Pascal Magazine 86 2020

DX
expertstarter ABOUT THE GAME:

Badminton is a racquet sport played using
racquets to hit a shuttlecock across a net.
Although it may be played with larger teams, the most common
forms of the game are (with one player per side) and singles
doubles Badminton is often (with two players per side).
played as a casual outdoor activity in a yard or on a
beach;
formal games are played on a rectangular indoor court. Points
are scored by striking the shuttlecock with the racquet and
landing it within the opposing side's half of the court.
Each side may only strike the shuttlecock once before it passes
over the net. Play ends once the shuttlecock has struck the floor
or if a fault has been called by the umpire, service judge, or (in
their absence) the opposing side.

The shuttlecock is a feathered or (in informal matches) plastic
projectile which flies differently from the balls used in many
other sports.
In particular, the feathers create much higher drag, causing the
shuttlecock to decelerate more rapidly. Shuttlecocks also have a
high top speed compared to the balls in other racquet sports.
The flight of the shuttlecock gives the sport its distinctive nature.

PURPOSE OF THE APPLICATION
There are two main goals to write this article:
First: Updating the program.
show how to update a program from a Turbo Pascal version up to
the latest Delphi and Pascal programs and solving the possible
errors.
Second: Update the printing of schemas
Adjust printing of schemas to modern pascal in as well Delphi and
Lazarus, to create a possible better way of printing on a normal
printer instead on canvas and documentation.

ITERATION STEPS
 1 Starting the Tournament schedule,
 basic sketching.
 2 From pseudocode to DOS Pascalcode
 3 Binary numbers
 4 Tree Index record definition
 5 Pointers
 6 Tree Object definition
 7 Code testing solving problems
 8 Code highligths.
 9 TTrNd Class definition
 10 Binary bit manipulation
 11 Difference of Value- and Variable parameter.
 12 Exception Class Error
 13 MakeTree
 14 Recursion
 15 Logfile
 16 Tree print procedures
 17 Ranking of participants
 18 Printing with graphic unicode chars

Writing many large game schedules by hand on paper is very
time consuming. The manual process was therefore converted
step by step via pseudo code to Pascal code, while looking for
the essence in the original paper design. Due to a "happy"
choice early in that process of converting the paper idea into
code, it later surprisingly turned out that all the information
needed to correctly print the schedule lines was stored in a
simple number of 8 bits.
Recursivity was used as a programming technique for making,
printing and cleaning.
The first version of this program was written in DOS Pascal in
the 90s of the last century and as a demonstration of this
article, it was tracked down to its modern versions: Lazarus
2.0.6 and Delphi 10.3.3. whereby with the code shown and
the extensive explanation about it, the beginning programmer
was especially kept in mind.

The new code uses Unicode chars to process the graphic line
elements of the game schedules.
Under DOS you could write directly to the computer screen
with Pascal. This is no longer permitted under Windows. If you
want to do this directly, you will have to (re) write the original
code into a console application.

In the Ftree program, a memo component was used to display
the output lines directly on the screen. Another possibility to
still display a ut schedule within the program on the knock o
screen is the Canvas. As a demonstration, the print routine has
been rewritten to send the output to the Main Form canvas
instead of to a text file (see fig 33 a / b / c) and placed under a
Button.
The explanation thereof falls outside the context of this article.

INTRODUCTION

SCHEDULE FOR A BADMINTON KNOCKOUT TOURNAMENT PAGE 2/40

In the initial period we wrote these schedules
by hand. There was clearly a need for a form of
automation here.
This article is about the designing process of
converting a handmade paper reality into a
software-based solution.
It is also about the surprises that showed hidden
in a simple number and the challenges of
transforming "old" software into modern.

It was written for the beginning programmer, so
the code will be carefully explained.
In that at that time I had the early version (V3,
another console version) of Borlands Turbo
Pascal, that became my first choice for a
development environment.
From version 4 onwards, it became a RAD-like
development environment. We are still talking
about in the early 90s of the last DOS Pascal

century. Delphi 1.0 was not born yet. Three
decades now: code starting early 1993 was used
in the early development process.
And surprisingly apart from the print routines,
still runs smoothly under Free Pascal 2019!

This code is then converted to a modern Free
Pascal Class object whereby the old code (ideas)
are reused as much as possible.

The new code was written in Lazarus 2.0.6 at the
end of 2019 and Delphi Rio 10.3.3 executed.
More than 25 years later!

 1───────┐
 ├────────┐
 2───────┘ │
 ├──────── Winner
 3───────┐ │
 ├────────┘
 4───────┘

KNOCKOUT TOURNAMENT SCHEDULE
We're going to talk about designing, building
and displaying knockout tournament schedules.
For those of you who don't really know what a
knockout tournament schedule is, listed below is
an example of such a schedule for up to 4
participants, schedule4:

fig 1: waste tournament schedule4 for max 4 participants

48Blaise Pascal Magazine 86 2020

A long time ago - still in the DOS era - a club
tournament was organized every year within my
sports association (badminton). Over the years, the
number of members grew so strongly that the
tournament had to be divided over several evenings
and the days during the two weekends in one week.
In addition to the size, there was also a large level
difference between youth, adults and veterans.
It was therefore possible to register in 5 different
game levels for single, mix and double, in which in
principle the games were played in a knockout
schedule.
For the higher levels the number of participants
increased by the day and the registrations where
numerous so that it could no longer be done
in the normal pool-system.

1 STARTING THE TOURNAMENT SCHEDULE,
BASIC SKETCHING.

Here participant 1 and 2 play against each other
(a) and the winner then plays (c) against the
winner of 3 and 4 (b) and that is where the finalist
of the schedule comes from:

 1───────┐
 a ├─nr 1 won from nr 2──┐
 2───────┘ │
 c ├─nr 4 won from nr 2──(=finalist)
 3───────┐ │
 b ├─nr 4 won from nr 3──┘
 4───────┘

fig 2: finished schedule4

Now this is an example of a with only scheme

four participants. Imagine that in the same
section, say a women's single competition, 64
participants can participate. Then there must be
127 lines with player names filled in before this
scheme64 is completely played out and a winner
is known.

There is a very simple calculation rule for
calculating the total number of competition
places in this : scheme64

Take the maximum number of starting places,
wich is now 64.
Multiply that by 2 (= 128) and reduce that by 1,
giving 127 = (64 * 2) -1. You can check that with
the above: 7 = (4 * 2) -1. scheme4

Now assume that they are doubles instead of
singles. That gives 254 lines of paperwork.
Then think of five playing strength levels, each
with three different parts.
This all together creates an enormous amount of
writing lines and then you need to remove
writing errors and cancellations.

It is clear that at that time, as the "administrator"
of the club tournament, I was in serious need of a
solution, preferably generally applicable, for all
schemes and that it should be possible to write it
out via a printer instead of by hand.

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 3/40

49Blaise Pascal Magazine 86 2020

The fundamental sketching can start.
At that time I had no programming experience, so I
had no idea where to start.
After reading a book about fractals, I noticed,
looking at the diagrams, that it looked like a kind
of fractal: An ever-repeating pattern that in our
case essentially looks like this:

fig 3: the central three-way diagram

Whether you look at the entire or just a scheme

single part of it: it keeps the same shape.

While reading, I came across the concept of tree-
structures and the diagram was somewhat like
such a tree structure.
It immediately became clear to me that the
branches of this tree would be at the basis of my
design. The was given the appropriate scheme

name and the branching in it the logical Tree

name I have an irresistible preference TreeNode.

for very short abbreviations when writing my
code so that these two names in the code were
abbreviated to and Tr TrNd.

Tree structures consist of parts that are always
connected in the same way. There are endless
numbers of different tree structures. When
designing code, our paperized play-schedules are
leading in terms of structure in which the
branches (the actual competitions) play a central
role. It is therefore obvious to design the central
basic idea as first sketch.TreeNode (TrNd)

TreeNode

It follows from the previous three-way diagram
(Fig. 3) that the TreeNode has three connections:
an Up, Down, and a Backward direction that has
been named Root. All three can either point to
one other (branche) or have No TreeNode

branch at all.
The definition of then gets TreeNode (TrNd)

an up , down and root field that (Up) (Dn) (Rt)

can each refer to a different In TreeNode.

pseudo code, for example, it looks like this:

 Type
 TreeNode
 Begin

 ? ;field Up TreeNode

 ? ;field Down TreeNode

 ? ;field Root TreeNode
 End

POINTERS:

How the above pseudo code is translated to
Borland's TurboPascal is discussed here later, but
first explain a construct that will be used for this:
Pascal Pointers can be used for references to
data structures.

Definition Pointers:
pointers are data type structures that refer
to the starting point of the object somewhere
in the computer memory. We write that as:
^ pointer-name.
(NOTE: note the circumflex ^ as a prefix).

a path to the top
 a path back
 a path down

Code fragment 1: In Pseudo Code the three Tree directions

The used Pascal Pointer definition to a TreeNode,
with abbreviation TrNd, will look like this in code:

 type

 = ;PTrNd ^TTrNd

Why here the use of the capital P or T respectively
as a prefix for the variable name TrNd?

INFO
You can write your code in many ways. Sometimes
easy to read for others, but often that is not the
case.
Think of my tendency to abbreviate names,
something that is essentially a bad feature in this
perspective. Everyone ultimately develops their
own writing style. Quite soon, for better
readability, so-called writing instructions, called
convention rules, were created for others.
According to such a "writing style" you put the
capital T as a prefix for the name of a type
definition:

. type name = T name

With pointers, the usual prefix is the uppercase
letter P.
The code above reads as follows:
Pointer is a pointer of (to) type type PTrNd (^)
TTrNd.

Another example of write convention rules is to
indent the code on a new line under, for example,
the reserved word and to jump back the begin

same distance at the corresponding d (see fig en

3).
It is then clear at a glance that the code between
this start / end block belongs together.
This write convention rule is also frequently
followed here when writing the code.
This indentation is also applied to other code that
belongs together.
Such as the If-then-else, While-do,
Repeat-Until, Try-Finally-End, etc.
blocks.

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 4/40

50Blaise Pascal Magazine 86 2020

Code 2: the TreeNode record definition
 in 1993 pascal code

This provides a generally useful description of the
TreeNode TreeNodesdata structure. The as a
whole then form the . scheme

If we want to be able to approach these nodes
individually, for example to link a player name,
match number or result, they must be given a sort
of address so that we know which node is where
in the scheme.

The next step in the paper-to-code-development

process is therefore to record the unique position
of each node in a scheme.

POSITION DETERMINATION

The only logical place to start the route to a
specific node is at the finalist, at the far right of
the : because it is easiest to get anywhere scheme

in the schedule starting there.

If you start reading from the finalist (right) to the
left you can only move in two directions:
up or down / one step back (higher / deeper) into
the schedule.
This also applies to every subsequent node.
If you put these “turns” one after another,
you will get a sketch of route-description:
eg Ú Ú or Ú Ú Ú etc.Up Dn Up Dn Dn Up

In the (larger) (see fig. 4) it looks like scheme8

this:

1───────────┐
 ├────────────┐
2───────────┘ │
 ├─────── ──┐<─Up
3 Up──────── ─┐ │ │
 ├───── ───┘ │<─Dn
4───────────┘ │
 ├──Finalist───
5───────────┐ │
 ├────────────┐ │
6───────────┘ │ │
 ├─────── ──┘<─Dn
7 Up─────── ──┐ │
 ├───── ───┘<─Dn
8───────────┘ fig 4: different routes in a schema of 8.

My first thought was to put hooks around this
route description so that it could be put in an Array
type.
You then get something like: type: routearray =
array [1 ..?] TRoute, TRoute = Of type where
Set (Up, Dn, Rt). or
But in the end I thought that was too cumbersome.
In addition, the question then arose whether the
construction would not cost too much memory
space?
Something that was very important at the time.
My computer had a “Large Memory” for that time:
it had 1MB of memory (650k for the system and
the rest defined as extended memory).
So it had to become simpler.
After looking at some other options I decided to
simplify the words Up and Dn to the numbers 0
and 1 where the 0 symbolizes the up and the 1 the
down.
If we now put the two series in the example above,
one to the next in a larger , then that scheme64

becomes the route to node no. 23: (See Figure 5 on
the next page).

But, by me, also with the const, type and var
declarations. For clarity, there are several write
convention rules about how you (for others and
perhaps yourself) can write "readable" code.
Back to our code.
Because these three fields belong together, they
were put in a Pascal Record type structure.
The basic element of scheme TreeNode (TrNd)

record type was created like this:TTrNd

In my search for a suitable way to accommodate
this series of ones and zeros, my eye fell on the
binary representation of a number:
a series of ones and zeros.
That is the way numbers are stored in the
computer.
This is called the Binary Number System.

DEFINTION OF BINARY NUMBER

A binary numbers composed of two digits, 0 and 1.
This base-2 system is the basis for digital systems.
Smallest binary item, called a bit (binary digit). The
binary number can be specified by preceding it with
a percent sign (%).

Binary Hexadecimal Decimal
%0000000000000000 $0000 0
%0000000000000001 $0001 1
%0000000000000010 $0002 2
%0000000000000011 $0003 3
%0000000000000100 $0004 4
%0000000000000101 $0005 5
%0000000000000110 $0006 6
%0000000000000111 $0007 7
%0000000000001000 $0008 8
%0000000000001001 $0009 9
%0000000000001010 $000a 10
%0000000000001011 $000b 11

Table 1: Example of the first 11 binary numbers and their representatives

Code 2: the T
 in 1993 pascal code

This provides a gene

 type

 = ;PTrNd ^TTrNd

 = TTrNd Record

 : ;fUp PTrNd

 : ;fDn PTrNd

 : ;fRt PTrNd

 ;End

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 5/40

51Blaise Pascal Magazine 86 2020

(1)──────────────────┐

...
 ├(1)──────────┐
(17)─────────────────┐ │ │
 ├(9)──────────────────┐ │ │
(18)─────────────────┘ │ │ │
 ├(5)─────────────────┐ │ │
(19)─────────────────┐ │ │ │ │
 ├(10)─────────────────┘ │ │ │
(20)─────────────────┘ │ │ │
 ├(3)─────────────────┐ │Dn/1
(21)─────────────────┐ │ │ │ │
 ├(11)─────────────────┐ │ │ │Dn/1
(22)─────────────────┘ │ │ │ │ │
 ├(6)─────────────────┘ │ │Up/0
nr 23 <== Up/0 Dn/1────────────┐ │ │ │
 ├(12)─────────────────┘ │ │ │
(24)─────────────────┘ │ │ │
 ├(2)──────────────────┘ Up/0
(25)─────────────────┐ │ │
 ├(13)─────────────────┐ │ │
(26)─────────────────┘ │ │ │
 ├(7)─────────────────┐ │ │
(27)─────────────────┐ │ │ │ │
 ├(14)─────────────────┘ │ │ │
(28)─────────────────┘ │ │ │
 ├(4)─────────────────┘ │
(29)─────────────────┐ │ │
 ├(15)─────────────────┐ │ │
(30)─────────────────┘ │ │ │
 ├(8)─────────────────┘ │
(31)─────────────────┐ │ │
 ├(16)─────────────────┘ │
(32)─────────────────┘ │
 ├ Finale

...

(64)─────────────────┘ fig 5: part of schema64: the road to node 23

Our range of if it’s a binary 0.1.0.1.1.0.
number, it looks like this: 010110.
If you look at the binary numbers from of table1,
you will see that they consist of 16 “ones” and / or
“zeros“ there.
Eg . % 0000000000001011
These 16 ones and zeros are the bits, word type
we say that a word is 16 bits in size.
You can also see in the table that such a series of
ones and zeros represents a decimal value.
For this series that is 11.
Before we get started, we first need some extra
knowledge: "how do you turn a binary number to
a decimal number?".
The positions of the bits in the series of a binary
number by definition have the following fixed
meaning.

1st bit stands for 20 = 1
2nd bit stands for 21 = 2
3rd bit stands for 22 = 4
4th bit stands for 23 = 8
5th bit stands for 24 = 16
6th bit stands for 25 = 32
7th bit stands for 26 = 64
8th bit stands for 27 = 128
9th bit stands for 28 = 256
10th bit stands for 29 = 512
11th bit stands for 210 = 1024
12th bit stands for 211 = 2048
13th bit stands for 212 = 4096
14th bit stands for 213 = 8192
15th bit stands for 214 = 16384
16th bit stands for 215 = 32768 Table 2: the value calculation of the individual bits in a binary number of type word

Added together is that , a known number, 65,023

right, for a 16-bit system?
Furthermore, it is very important here that you
know that the series is read from the right Ù left by
default.

So from the example the % 00000000.00001011

zero next to the bit number is 16 and the % char

rightmost is 1 bit number 1!

During reading of the bits, the number of the 2
power associated with that position is multiplied
by the value of the bit at that position, a or a . 0 1

Then all is added.

The range then becomes: % 00000000.00001011

1 devided by x1 + 1x2 + 0x4 + 1x8 + 0x16

0x32768 = 1 + 2 + 8 = 11.
If you now remove the last 8 zeros (the left series
from the dot) from the series, this will remain:

. And still the decimal number ! % 00001011 11

If you then fill the first 8 bits with a , 1:% 11111111

this represents decimal . The numbers to 255 0 255

can therefore all be made with the first bits and 8

this has been given its own name.
This smaller member of the type is called a byte.
A byte is therefore 8 bits in size.

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 6/40

52Blaise Pascal Magazine 86 2020

The binary number becomes the requested container
for storing the ‘ones’ and ‘zeros ‘ of a route
designation to a node somewhere in a .scheme

Back to the last route example:
Up, Dn, Up, Dn, Dn, Up.

This route is therefore converted to a binary number
by placing it from the right Ù towards left in the
series: . 011010

This equals the reading of the route in the diagram.

This allows the route of this schedule to be recorded
in a variable of type or Byte (8 places) Word
(16 places).
Now suppose that we increase this two scheme64

steps larger / deeper (64 Ú schema 256) and only left
up, with the last 2 steps.
Then the new route looks like this: . 00011010

And now we have a challenge, because from
011010 0011010one Up shows as a binary number
and two Up shows as a series. 00011010

But these three binary numbers all have the same
decimal value 22.
The same decimal number for three different
positions in a is of course unworkable. So, scheme

which position in the diagram do we indicate with
the number 22?
In fact, if we only move up from the finalist to the
top left, all these 8 nodes have the decimal value 0!
Because the route for all these 8 nodes is 00000000.
That’s rubbish, right?

NOTE: the size / length of the binary number
depends on the type: a byte as a binary
number has 8 bits, a word or integer has 16
and a double 32, etc.

The smallest type in that fits a decimal Free Pascal
value is the byte type. are required for one 8 bits

byte. If all eight bit locations for a route are used by a
schedule, then up to a schedule can be 256

contained in one byte. That is more than sufficient.
For the attentive reader: that is while the binary 256

number stands for . 11111111 decimal 255

Yes, the fits just fine but creates a small scheme

challenge elsewhere in the code. More about that
later.

With the series 00011010
lets say level and for level 6(011010 = 22)

7(0011010 = 22 22) the same decimal number
is used but then read out at 2 different levels
and therefore each with a different binary
series of bits 6 to 7 , bits.
The unambiguous position of a treenode can
now be determined by combining these two
parameters.
In the first node the route is stored as a binary
number of type Byte and the second is a
parameter of type Byte which indicates how far
you should go that "route" from the first
parameter.
Below the examples of four different treenodes
with the same decimal number 22

[5-00010110 = 22]
[6-00010110 = 22]
[7-00010110 = 22]
[8-00010110 = 22]

wherein the first number indicates the level in the
game schedule.
The 2nd, the binary number, shows the route in
the game schedule, while the decimal number
always remains the same.
You can also express the length of the path in the
number of times that you go to the next node or
how deep or far you have to move in the
Schema and has therefore been given the name
Depth as a . (dpth: byte) variable

The path to be followed has been given the name
"Position Code" (pscd: byte) as a variable.

The record type in which these two variables are
included has been given the name TreeIndex
(Trndx). As well a pointer variable has been
defined.
Finally, an extra number field has (nmcd: byte)

been added to be able to assign a competition
number. In a record code structure the index will
look like this:

The solution for this problem comes with the
introduction of an additional parameter.
In this parameter a number is added that indicates
how far we should follow the specified route path
from the . scheme

In other words:
how many bits must be read from the binary
number to reach the desired TreeNode?

 type

 = ; PTrndx ^TTrndx { Pointer to tree-index }

 = TTrndx Record { tree-index record type }

 : ; dpth Byte { tree depth }

 : ; pscd Byte { tree position code, binary bitwise used }

 : ; nmcd Byte { node number code }

 ;End

Code 3: The 1993 Tree Index record definition

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 7/40

53Blaise Pascal Magazine 86 2020

The record was then replaced by TTrndx

defining its three components as the Fields of the
Object The new Index Object was TTrndx.

housed in its own unit STDNODE.pas:

// Standard TreeNode-object definition
// developed on 20 februari 1993.
// last updates: 21 mei 1994 , 3 jan 1998

Unit ;STDNODE

interface

type

 = ;PTrndx ^TTrndx

 = TTrndx OBJECT { tree-index object type }

 , dpth { tree depth }

 , pscd { tree position code, bit wise oriented }

 : ; nmcd Byte { node number code }

 (, , :);constructor Init Adpth Apscd Anmcd Byte

 ; ;destructor VirtualDone

 : ;function Givedpth Byte

 : ;function Givepscd Byte

 : ;function Givenmcd Byte

 … { … = more code here }
 ; END { Objec }

 … { … = more code here }

Code 4: The 1993 Tree Index Object definition

The connection

To link the pointer of the new node-index object
(PtrNdx) TtrNd,to a node of the type an
additional field with the name index of (Ndx)

type has been added to the PtrNdx TtrNd

record. With this expansion, the definition of a
TreeNode schema will look like this:

 type

 = ;PTrNd ^TTrNd

 = TTrNd Record

 : ; Up PtrNd { pointer to another Up node }

 : ; Dn PtrNd { pointer to another Dn node }

 : ; Rt PTrNd { pointer to another Rt node }
 { New }
 : Ndx Ptrndx { pointer to the corresponding index}
 { object, see code 4}
 ;End

Code 5: The 1993 Tree Node record definition

The was given the name Tree (Tr) in code.scheme

A separate unit with the name was STDTREE.pas

also created for this.
Here the record got its place next to the new TrNd

tree Object definition and via its pointer TTr

PTrNd Nds was linked to the Field of the new
TTr STDTREE.pas Object. The unit:

// Standard Tree-object definition
// developed on 20 februari 1993.
// last update 20 mei 1994.
Unit ;STDTREE

interface
uses

 , STD_CTV { standard Const, Type and Var defintions }

 ; StdNode { node/index definitions }

type

 = ; PTrnd ^TTrnd { tree-node pointer}

 = TTrnd RECORD { tree-node record type }

 , rt { Root ptr }

 , up { Up ptr }

 : ; dn PTrnd { Down ptr }

 : ndx Ptrndx { treeindex ptr, unit stdnode.pas }

 ;END

 = ^ ; PTr TTr { tree Object pointer}

 = TTr OBJECT { tree Object type }

 : ; Nds PTrnd { nodes field }

 ;constructor Init

 ; ;destructor VirtualDone

 (:);procedure Add nwndx PTrndx

 (:);procedure MakeTree ATrdpth Byte

 ;procedure PrintTree

 … { … = more code }
 ; END { Objec }

Code 6: The 1993 Tree Object definition

OLD CODE TESTING

To test whether this 1993 code still works, these
two original units were inserted in a DOS Pascal

small Lazarus 2.0.6 program (). Ftree.exe

By means of the Tree.MakeTree (4)
procedure, this old code still proved to produce a
play schedule with depth 4 (= max. 16
participants) without any problems.
The is displayed on screen in a memo scheme

component and written to a text file. The number
of created nodes is displayed in a label. Exactly
the same program is also executed under Delphi

Rio 10.3.3.

Now you can drop the components
TOpenDialog TSaveDialog and on your form
and always use it to retrieve the required output
file from a directory somewhere (TOpenDialog)
and save it again (TSaveDialog),

A TTrNd record has now been created with only
pointers and therefore as compact as possible.

THE TREE SCHEDULE

Now that the two basic elements, the Node record
and its Index object, are ready, it's time to convert
the paper playing schedule to code.

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 8/40

54Blaise Pascal Magazine 86 2020

but you have to repeat that process manually each
time.
That is a lot of "unnecessary" work if, during
development, you still want to save the same file
to the same dir. That is why the opening and
saving of the output file is included in the code,
so-called "hard coded".

Here the code from the btnMake4 Lazarus Ftree

program that controls the print output:

unit ;FTree

{$mode objfpc}{$H+}

interface

uses Windows Classes SysUtils Forms Controls, , , , ,

 Graphics Dialogs StdCtrls lazUTF8, , , ;

 …
var Form1 TForm1: ;

implementation

uses STDNODE STDTREE, ; { the old 1993 DOS pascal units }

{$R *.lfm}

{ TForm1 }
 …
procedure . (:);TForm1 btnMake4Click Sender TObject

 : ; : ;var Stringtree Ttr MyFile
begin

 …
 := + ;MyFile FappPath 'Output\Print-Objecttree.txt'

 (,);AssignFile LST MyFile
 with dotree
 begin
 try

 Rewrite LST();

 ;{ tree. }init

 (); { tree. }maketree 4
 { claim extra memory for the pointers }
 . . := (); form1 label2 Caption IntToStr CntNds

 ; { tree. }PrintTree
 { write to textfile LST and to Memo.lines.Append() }
 finally

 ; { tree. } done
 { free the extra memory pointers }
 (); CloseFile LST

 ; end { try }

 ; end { with }

end; { procedure }

 …
end.

Code 7: The make4 code of the Lazarus Ftree program

In the and program the output lines Lazarus Delphi

are written both to the memo component on the
main form1 itself (see fig 6a / 7a) and to an external
text file (see fig 6b / 7b).

fig 6a: The Lazarus 2.0.6 Ftree program with memo

fig 6b: schema 4 textfile output:
1993 code running in 2020 Lazarus Free Pascal

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 9/40

55Blaise Pascal Magazine 86 2020

The same program running in Delphi Rio 10.3.3

fig 7b: schema 4 textfile output: 1993 code running in 2020 Delphi

fig 7a: The Delphi Rio 10.3.3
Ftree program with memo

If you now look at figures 6b and 7b you will
see a clear difference in output between
Lazarus and Delphi. Lazarus prints the Unicode
chars directly to the text file while Delphi only
shows half of our unicode widechars in the
text file.
Again: the exact same code runs here in both
Lazarus and Delphi. And yet the output result
to a text file is surprisingly different.

Aftersome research on the internet, the
solution in specifying code page 65001 was
found in the Project Options Ú BuildingÚ
Delphi Compiler Ú Compiling: Ú Code page
(see fig. 8).

Unfortunately that turned out not to work.
Finally, after much searching, the solution
was to add, in and not in Delphi Lazarus,

the same codepage 65001 as a parameter
to the command: AssignFile()

 assignFile(LST,MyFile,65001);

The function has an Assignfile()

optional parameter, which can be seen from
the use of the square brackets around one
or more parameters [Aparameter; ...]
in the function definition.
The Delphi Help provides the following
definition:

fig 8: Delphi options add codepage 65001

 . :Def System AssignFile

 (: ; : ; [:]): ; ;function var file String OverloadAssignFile F Filename Codepage word Integer

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 10/40

56Blaise Pascal Magazine 86 2020

When in the output is now sent to the text file Delphi

again, this produced the desired result (See fig. 9).

fig 9: The correct Delphi schema 4 textfile output
with the use of codetable 65001

With Lazarus you need the unit to work lazUTF8

in code with unicode chars, but since 2007 Delphi
is already internally completely ready for the use of
unicode and therefore does not need an extra unit.

Why the above difference between Delphi and
Lazarus still exists I have not found anywhere in
any documentation. Maybe one of our readers
knows the answer to this?
But you can understand that I was just
unpleasantly surprised.

fig 9: The correct Delphi schema 4 textfile output

CODE HIGHLIGTHS

We will take a closer look at the code of the Ftree

program (see Code 7). The Main Form1 of Ftree
has a public field FappPath: string

where, in the procedure the TForm1.FormCreate

path to the executing program is stored. In 1993
the path of the executable was assigned to the
variable of type String in the following exepath

way:

where is a function that retrieves GiveEXEPath

the path to the executable:

where, in the TF 1

 public

String : ;FAppPath

 := ; exepath GiveEXEPath // Path by Dos Pascal

 : ;FUNCTION stringGiveEXEPath

 , var chrps { char position }

 : ; hldchrps byte { hold char position }

 : ; Exepad string { path to executable program }
 BEGIN
 //Exepad gets the full path name (.exe inclusive)
 // to the running program
 := ();ExePad paramstr 0
 // search for the location of the last \ in the path string
 := (,);chrps Pos ExePad'\'

 := ;hldchrps 0
 Repeat

 := + ; hldchrps hldchrps chrps
{ keeps track of \ in the path string }
 := (,(+),); ExePad copy ExePad chrps 1 255
{ copy the path from the last found \ }
 := (,); chrps Pos ExePad'\'
{ locat next \ }
 = ;Until chrps 0
 // Give the ExePad the string including the last
 // found \. So excluding the executable name.exe *)
 <> if hldchrps 0
 then := Exepad

 Copy paramstr hldchrps((), ,)0 1
 := ;else Exepad ''

 := ;GiveEXEPath Exepad

 ; END { GiveEXEPath }

Code 8: The old GiveEXEPath code

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 11/40

57Blaise Pascal Magazine 86 2020

Lazarus Delphi and make it a lot easier for you.
The following code returns the same path to the
Form1.FappPath field:

 := (.) ;FappPath ExtractFilePath Application ExeName
 // Path by intern Lazarus/Delphi functions

It's easy to guess how that works.
Code 8 shows what it takes. And because the path
is already known when creating a program, let's
get it directly in the procedure
TForm1.FormCreate(Sender: TObject).

INFO:

You ceate this procedure by selecting the form in
the IDE, in the Object Inspector on the Events tab
and then double-clicking on the entry field after the
OnCreate event.
Lazarus will then create the FormCreate()
procedures for you:
both the procedure heading in the Class object of
the form and the procedure in the Implementation
section and immediately places the cursor there
after the first start, so that you can immediately
enter the desired code. (See Fig. 10).

fig 10: Dubble click in the form1
Object Inspector near the event OnCreate.

The code in the generated OnCreate event:
FormCreate()

procedure . (:);TForm1 FormCreate Sender TObject
begin

 := (.) ;FAppPath ExtractFilePath Application ExeName

end;

stores the requested path in the variable
FAppPath. This path is stored together with the
name of the output file in the variable MyFile:
MyFile := FappPath+'Output\
Print-Objecttree.txt';

To link the Textfile of type Text, variable LST

to the output file the internal routine (MyFile),

AssignFile() is used:
AssignFile(LST, MyFile).
Or at Delphi.AssignFile(LST, MyFile, 65001)

The output file will then be placed in the directory
Output of the dir FappPath.

Because you want to write text here to a clean
empty file, first set the text file to receive text by
calling the internal Rewrite(LST) procedure

before you can send text to it.

It does not matter for whether or Rewrite(LST)

not the specified file already exists.
If it does not exist, it first creates it before placing
the file cursor at the beginning of the file.
If the file does exist, it will first be cleaned before
the cursor is placed at the beginning of the file.
After this you can write text (lines) to the file with
Write(LST, ‘text’) or
Writeln(LST, text line).

The code of TForm1.btnMake4Click (Sender:
TObject) contains a special code Block (see code
7). You will see the following code construction
around the code discussed above:

 try

 ...
 finally

 …
 ; end { try }

This is a widely used construction that ensures
when executing the code between the reserved
words something would go try and finally

wrong, causing that (wrong) code to cause the
program to crash, the code between finally

and is still executed before the execution of end

the program is forced to stop.
In short: the code between is finally endand
always executed if this try construction is invoked.

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 12/40

58Blaise Pascal Magazine 86 2020

In our procedure that is important for two reasons:
 — Firstly, it must be ensured that the extra
 memory requested by us (for the node
 pointers) is always released before the
 execution of the program is stopped or
 interrupted.
 Otherwise that memory would always be
 occupied for other programs.
 The latter is also called memory leaking.

— Second, the text output file must be closed so
 that all information is actually written to it
 before the program closes. This prevents any
 information loss with the text file.

If you want to read its contents instead of writing to
the file, you must first use the internal Reset (var
file: textfile) routine that sets the file to
readonly.
With the readln routine (LST, ALine: string)

you can then read a file line.
However, for it now matters whether Reset(LST)

the file exists.
If you are following an ; AssignFile(LST, ‘...’)

causes a while the requested file does Reset (LST)

not exist you will be presented with a runtime I / O
Error 103: “File not open”.

fig 11: I/O error 103: File not open error

INFO:

Reported by CloseFile, Read Write, Seek,
Eof, FilePos, FileSize, Flush, BlockRead,

or if the file is not open.BlockWrite
(Input-Output Errors From RAD Studio).

 . (:);procedure TForm1 btnMake4Click Sender TObject

 : ; : ;var Stringtree Ttr MyFile
 // extra variable
 : ;MyHandle THandle
begin

 := + ;MyFile FappPath 'Output\Print-Objecttree.txt'
 // New code
 () if NOT FileExists MyFile
 then
 Begin

 := ();MyHandle FileCreate MyFile

 …
 ;End

 assignFile LST MyFile(, ,);65001
 with dotree
 begin
 try

 …

 End;

However, if you now run the program, as FTree

shown above, you will receive the following error
message from the Lazarus Debugger:

fig 12: Lazarus I/O Error 5 : ERROR_ACCESS_DENIED

INFO

Lazarus Run-time error 5: “permission to access
the file is denied”. This error might be caused by
one of several reasons:
 • Trying to open for writing a file which is
 read-only, or which is actually a directory.
 • File is currently locked or used by another
 process.
 • Trying to create a new file, or directory while
 a file or directory of the same name already
 exists.
 • Trying to read from a file which was opened in
 write-only mode.
 • Trying to write from a file which was opened
 in read-only mode.
 • Trying to remove a directory or file while it is
 not possible.
 • No permission to access the file or directory.

fig 12: Lazarus I/O Error 5 : ERROR_ACCESS_DENIED

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 13/40

59Blaise Pascal Magazine 86 2020

This means that the process cannot access the file
because it is being used by another process.

Both Lazarus and Delphi indicate that you are
accessing a file that is being used by another
process. You know that: if you want to open a text
document that is still being used by another word
processor, you will be denied access to it.
In our code above, exactly the same thing happens
and the error message follows.

And the Delphi 10.3.3 Debugger raises this
exception:

fig 13: Delphi I/O Error 32: ERROR_SHARING_VIOLATION

But why is it causing a problem here?
The creates FileCreate function (MyFile)

the MyFile file and returns the file handle to the
MyHandle variable before closing. If we then try to
write text to this file with, for example, a writeln
(’text’), we get the error
message: "MyFile is being
used by another process".
I expected that the newly
created file would be immediately available but,
despite the being FileCreate() function

closed and the file-Handle being offered as a
function result. The run-time errors show that the
FileCreate() function in this file-handle has
not been released! I do not know whether this was
done deliberately or if it is a Bug, but it does mean
that you must manually release the file Handle
before another (sub) process can gain access
to this file. In addition, it is now very handy that
you have already received the correct file Handle:
MyHandle. The file-Handle is released with the
internal procedure CloseHandle (var Ahandle:
THandle). In code:

 // New
 () if NOT thenFileExists MyFile

 := ();Begin MyHandle FileCreate MyFile
 (* NOTE:
 Close now MyHandle here to avoid later a I/0 error 32:
 "Sharing violation": "that means that another process is using
 that file, and you can not save your changes to the same file
 until that process is done." So free the handle with this file: *)

 // New
 ();CloseHandle MyHandle

 ;End

 …

Or shorter but less legible, if you
want to avoid the extra variable
MyHandle:

 (());CloseHandle FileCreate MyFile

Now you can use the following
routines with this text file without
any problems:

 var

 : ;ALine String
 // For reading lines from this text file:
 (); reset LST
 // opens de file for reading from
 (,); readln lst Aline
 // read a line and put it in Aline

 // For writing to this text file:
 ();rewrite LST // opens de file for writing

 (,); write LST 'piece of text'
 // writing text and stay on the line
 (,); writeln LST 'text line'
 // writing a line and go to the next line
 (); writeln LST
 // go straight away to the next line
 // when you are done close the file (this frees
 // the file handle automaticly):
 (); CloseFile LST

you must manually release the file Handle
before another (sub) process can gain access

to this file.

 But most of the above
 code dates from the early
 90s of the last century.

PASCAL IN THE YEAR 2020

The Pascal programming language has
undergone a major transformation in the last 25
years. From Dos Borland Pascal via Windows
Borland Pascal to Delphi or Lazarus IDE.
In addition, the computers and memories have
become much more powerful and larger.

In the above code from 1993 the tree is defined
as . This OBJECT is something very TTr = OBJECT

different from the current . Tobject

It was a record type extended with functions and
procedures that was stored on the stack.
Nowadays the stack can be very large, but at the
time it was quite limited, while a very large
scheme requires many of these objects and the
stack quickly got filled up.
As a result, a so-called stack overflow error was
always lurking.
In contemporary Pascal we use a Class type
instead. This is of type and is Class TObject

not stored in the stack or in the heap but only
once in the executable code block of the
program.

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 14/40

60Blaise Pascal Magazine 86 2020

 type

 = ; PTrNd ^TTrnd { TTrNd }

PROCEDURE . (:);TTr Add nwndx PTrndx

 : ;var nwnd PTrnd

BEGIN

 (); New nwnd create new Tree Node pointer}

 ^ with donwnd { with that new Tree Node do}
 BEGIN

 := ;ndx nwndx

 := ;up NIL

 := ;dn NIL

 := ;rt Nds

 := ;Nds nwnd

 ;END

END; { TTr.Add }

And from there again and again when needed.
Converting the type to a DOS Pascal Object

Class type was slightly more difficult (TObject)

than I initially thought.

In the 1993 code, a new node pointer was created
in the using the Add() procedure New (nwnd)

procedure. Then the object fields were immediately
filled with a value: (See code right Ú)

Running this code as part of an OBJECT instance in
Lazarus did not cause any problems as shown above
(See figs 6/7). But executing this code as part of a
Class (TObject) produced the following message
in the message window of the IDE:

The constructor of the new class is called Create
instead of init. My code changed and re-executed,

again posted a message in the message window,
this time with fatal consequences:

The program cannot be compiled like this!
The texts in both message windows are crystal clear:
You cannot use the procedure new()/dispose()

when working with Classes.
The Class and Class Constructor Create

Destructor Destroy are designed for this.

 BEGIN

 (, (, ,);New nwnd Create Adpth Apscd Anmcd

fig 14: Compiler warning.

fig 15: Fatal Error

Code converting

The old code was therefore adjusted when
transferring to a modern Class type.
And because we were put to work, the TTrndx
and records were both merged as fields in TTrNd

the new Class definition As a result, the old TTrNd.

Ndx field has been canceled.
The more modern 2020 looks (next page:Ú)

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 15/40

61Blaise Pascal Magazine 86 2020

TTrNd TObject = ()class
private

 : ; Fdpth Byte { tree depth tree branches}

 : ; Fpscd Byte { tree position code, bit wise oriented }

 : ; Fnmcd Byte { tree number code }

 : ; Fup TTrNd { forwards tree-up link}

 : ; Fdn TTrNd { forwards tree-dn link}

 : ; Frt TTrNd { backwards tree-root link}

public

 (, , :);constructor Create Adpth Apscd Anmcd Byte

 ; ;destructor virtualDestroy

 …
end; { TTrNd = Class()}

Code 9: The new TTrNd Class definition

What catches the eye here is that the pointer
prefixes and the pointer variables have (^)

disappeared.
Note that it now seems as if there are no pointers in
use, but in reality these are used extensively by the
IDE in the background.
Figure 16 below shows a screenshot of the include
file in which the basic definitions of the TObject
and types are given. TClass

Pay special attention to the pointer variable Pclass:

fig 16: Free Pascal Object and Class definitionsfig 16: Free Pascal Object and Class definitions

Hence the up / dn / rt fields in the new code are of
the Type TTrNd instead of the Pointer PTrNd type.
To indicate that the data fields of the Class are,
again according to a naming confention rule, the F
of Field is said: Fup, Fdn and Frt. Similarly with:
Fdpth, Fpscd and Fnmcd.

When converting the old DOS code to the new
Class, another bug came over you. For that we
must return to the relationship of schema256 with
node (255) that was mentioned at the beginning
of this article. (page 6).
As so often, the boundaries of our ideas throw a
spanner in the works during the development
process and so do my ideas about the code being
developed here.
Because if a is made in which the entire scheme

binary number series of a byte is used, then the

scheme must have a depth of 8.
If you now look at the lower part of such a very
large in which a maximum of 256 scheme256

players can participate, the lower treenode has a
binary position code of 11111111. That stands for
decimal 255:
255[8-01111111=127]─┐ │
 ├128[7-1111111=127]──┘
256 255[8-11111111=]─┘

In the program the number of nodes is recorded
with the variable ndcnt (node counter) of type
Byte. No problem until is going to be scheme256

printed. A byte type is not sufficient here: it lacks
one place number.
That is, not for the schedule itself, but for
displaying the number (ndcnt) of the last node.
Because that is node nr 256.
If we take the second-last node of , scheme256

then that has 255 as the place value. ndcnt

The last node must have the place number 256
but will receive the value 0 at Inc (ndcnt)

instead!

fig 17: Byte overloading

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 16/40

62Blaise Pascal Magazine 86 2020

Info Inc

Inc(Ordinal) is an internal procedure that
increases the ordinal entered by 1 value. You can
also increase the ordinal by more than one value at
once by using the lookalike Inc(Aordinal,
Acnt) for this.

The variable in which the number of nodes is
stored must therefore be of type to be able Word

to display the number 256, while in the old code it
was of type Byte.
Oops a borderline case.
In short, it is always wise to look at the possible
limit values of your variables before you 'just'
choose a type, as I apparently did at the time.

As a small demonstration of this the following
program Bite overloading (See fig 17).
The variables and MyByte: Byte MyWord: Word

are both assigned the number 250.
For both variables, a value of 1 is added 10 times
and the result for both variables is shown behind
it. The value 250 + 6 for the 256 type but Word

for the type a 0!Byte

So a byte type for the variable is just pscd

sufficiently large here to record the route in, but
insufficiently large to display the decimal number
of participant 256.
In order to still be able to display the value 256,
the variable from type byte has become a type:
16 bits instead of 8.
For the 1993 code, this boundary problem
naturally also applies. Only it was not relevant
there because a schedule of 256 participants never
occurs and this limit value was therefore never
achieved.

The current program is limited to a depth of 8.
scheme256 gives 256 participants a place and
that is very extreme and actually nonsense.
However, if you want to print even larger
schedules, you must change the type of and pscd

nmcd from byte to word. This does not matter for
the speed or storage on the computer.

Just as with the "old" Object type, corresponding
functions and procedures can be included as
methods in the class. Again a Class type is of a
different order than the old DOS Pascal Object
type, so not to be confused with Tobject,
which is really something very different.

The Class (TObject)

In a Class type definition there are different
zones, called sections, that determine the access
of (external) code to the code defined there.
E.g. private, public, published section.

The fields of are in the Private section. TTrNd

This means that they are only accessible in the
Interface section of this Class definition and not
outside of it.
The section is accessible for every code Public

in the final program. In order to gain access to
the fields in the section, we use Private

functions and procedures that have to be defined
in this Public section in order to be accessible
anywhere in the program.

A Class definition also requires the use of two
special methods, each with its own fixed name:
a constructor and a destructor.
According to the convention rules, they have
been named and you can Create Destroy,

give them any name, although that does not
improve readability for others.

In short: the constructor ensures, Create

among other things, that all memory required

for an instance of this class is reserved and the
Destroy destructor automatically ensures
that all the reserved memory is also
released afterwards.

In the constructor, however, you can also
directly reserve memory for all your own
instances.
But then you must also neatly release all this
extra memory in the destructor yourself.
The rule is: everything that you request here
(constructor) must be cleaned up here
(destructor) yourself.

The fields of the Class are therefore TTrNd

placed in the section so that they are Private

unreachable outside of this class definition. To
provide them with a value Or to get the (Set….)

value out . (Get…)

Methods have been placed in the Public

section. Here the prefixes "Set" and "Get"
follow convention rules, just like the prefix "A"
for the parameters in the methods below
declarations. The following methods are needed
to read the fields in the private section or to
provide them with a new value: (next page)

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 17/40

63Blaise Pascal Magazine 86 2020

 = ()TTrNd Tobjectclass

…
 public

 : ;function GetFdpth Byte

 : ;function GetFpscd Byte

 : ;function GetFnmcd Byte

 : ;function GetFup TTrNd

 : ;function GetFdn TTrNd

 : ;function GetFrt TTrNd

 (:);procedure SetFdpth Adpth Byte

 (:);procedure SetFpscd Apscd Byte

 (:);procedure SetFnmcd Anmcd Byte

 (:);procedure SetFup ANode TTrNd

 (:);procedure SetFdn ANode TTrNd

 (:);procedure SetFrt ANode TTrNd

 : ;function StringNdInfoStr

end; { TTrNd = Class(Tobject)}

Finally, in the TTrNd code example, you will see the
NdInfoStr function. The name stands for Node-
Information-String, which for now speaks for itself.
With this we have all methods to provide the t T
codes with the correct information.
How we generate that information is discussed in
the next paragraph.

GATHERING INFORMATION

BINARY BIT MANIPULATION

Back to the schedule route information processing
and storage thereof in a binary number. In order to
be able to store the route to a specific node in a
binary number, the individual bits thereof must be
accessible. To manipulate the individual bits in a
binary number, Free Pascal provides the following
Operators bit:

(**-- Get ---**)
FUNCTION . : ;TTrnd GetFDpth Byte
BEGIN

 := ;result Fdpth

END;
 (**-- Set --**)
PROCEDURE . (:);TTrnd SetFdpth Adpth Byte
BEGIN

 := ;Fdpth Adpth

END;
(**--**)

Here is an example of the simple Get and Set code
for the Fdpth field:

DEFINITION

The Bitwise operators supported by Pascal are
listed in the following table. Assume variable A
holds 60 (60 = 0011 1100) and variable B holds
13 (13 = 0000 1101), then :

Operator Description Example
 & Binary AND Operator copies a bit to the result if it exists in both operands. (A & B) will give 12,
 which is 0000 1100
 | Binary OR Operator copies a bit if it exists in either operand. (A | B) will give 61, which is 0011 1101
 ! Binary OR Operator copies a bit if it exists in either operand. Its same as | operator. (A ! B) will give 61, which is 0011 1101
 ~ Binary Ones Complement Operator is unary and has the effect of 'flipping' bits. (~A) will give -61, which is 1100 0011
 in 2's complement form due to a signed
 binary number.
<< Binary Left Shift Operator. The left operands value is moved left by the number of A << 2 will give 240, which is 1111 0000
 bits specified by the right operand.
>> Binary Right Shift Operator. The left operands value is moved right by the number of
 bits specified by the right operand. A >> 2 will give 15, which is 0000 1111

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 18/40

64Blaise Pascal Magazine 86 2020

Operators Operations
 Bitwise NOTnot

 Bitwise ANDand

 Bitwise ORor

 Bitwise exclusive ORxor

 Bitwise shift leftshl

 Bitwise shift rightshr

 Bitwise shift left<<

 Bitwise shift right>>

Table 3: Free Pascal - Bit Operators

Please note that different implementations of
Pascal differ in bitwise operators. Free Pascal, the
compiler we used here, however, supports the
following bitwise operators:

Just like with the binary numbers, we will look at the
diagram from right to left. The starting point is the
finalist of, for example, the with 4 scheme4

participants. This node gets a zero as position code
(pscd) value, zero as a depth (dpth) value and nr1 as
a count value. From the position of the finalist you
can go one level to the left, to the semi-finals: one
up nr 2 and one down (0000 0000) (0000 0001)

nr 3 in the schedule. From the up treenode (no. 2)
you can also have one up no. 4 and (0000 0000)

one down no. 6 and one down (0000 0010) (0000

0011) nr 7. In the schem4 it looks like this:

depth: 2: quarter final 1: semi final 0 final

nr4 [2-0000 0000 = 0]─────┐
 ├ nr2 [1-0000 0000 = 0]──────┐
nr5 [2-0000 0010 = 2]─────┘ │
 ├ nr1 [0-0000 0000 = 0] Final.
nr6 [2-0000 0001 = 1]─────┐ │
 ├ nr3 [1-0000 0001 = 1]──────┘
nr7 [2-0000 0011 = 3]─────┘

fig 18: Tree schema with nr, depth, binary number and its decimale value

Because we move from right to left in our , scheme

we also want to be able to manipulate the
individual bits of the binary number from right to
left. The Shl (pronounce Shift left) operator from
the operator list above is suitable for manipulating
individual bits of a binary number from right to
left, assuming 0 (0000 0000) as the starting value.
What does Shl do?

So with the function you can reach any bit Shl

position in a binary number. Only here does the
whole series of bits in the binary number shift the
number of places specified to the left.

As a result, the route through the schedule,
which is stored in the binary number, is also
immediately invalid.

That is of course not the intention: we only want
to manipulate one bit in one specific place in the
binary number.
To make that possible, we are going to make a 2-
stage "missile" that uses an auxiliary byte and yet
another bit operator.
For the auxiliary byte, we take bt: = $ 01.

That has a binary byte sequence of . 00000001

We define the following calculation rule: bt: =
bt SHL (Pos-1)
Note: because position 1 of the Pos minus 1

auxiliary byte bt already has a 1, then we can put
the 1 in the rightmost position using the value in
Pos on each of the other 7 bit positions. That's
staircase.

DEFINITION:

ShlShift left (shl) leftbit-shift byte performs a operation, shifting the value
the amount of specified as an argument (opposite of shr: Shift Right). bits

E.g
Command is: (shift left 2 bits)00000100 shl 2

Action is: (00 gets added to the right of the value; left 00 "disappears") 00000100 <- 00

Result is: 00010000

The second stage is: How do we get that 1 in
position at that same position in the (Pos-1)

relevant position code without changing (pscd)

the position of the other bits?
For this we use another Bit Operator: the OR
operator.

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 19/40

65Blaise Pascal Magazine 86 2020

Definition: Or

The reserved word or is a binary operator.
Originally it stood for the logical disjunction of two
boolean values only, but with the advent of
operator overloading FPC allows everything else,
too. FPC also defines the or operator accepting
two ordinal types while performing calculations on
their internal binary representation.
bitwise Or operation
Since virtually all instruction sets have an or
instruction, it is no surprise some high-level
languages, especially those which aim to be
suitable for hardware programming, provide some
comparable functionality by itself. In FPC the or
operator is defined appropriately. Such an
expression, also known as bitwise or, requires two
ordinal operands. The operation virtually performs
a logical or taking each corresponding bit from
both operands.

 0101'1010

or 0000'1011
 = 0101'1011

So the bitwise or places all bits that are 1 of the
ordinal to his right in the same bit position as the
ordinal to his left. It is therefore important to keep
the correct order: "left of or gets from right of or".

The following function puts a bit at position pos in
the number item by combining these two
operands:

// SetBit returns the bit 1 at the specified location (pos)
// in the specified variable (Item). 1993

FUNCTION (, :): ;SetBit pos item byte Byte

 : ;var bt Byte
BEGIN

 := ; bt $01 { bt ==> 0000 0001 }

 := SHL (-); bt bt Pos 1
 { bt ==> 0001 0000 as pos = 5: ==> put 4 zeros in front of it }
 := ; Result item btor
 { Result ==> ???1 ???? depending on the content of item }
END;

In this function, the result is returned via the
Result identifier instead of the function
name What is the internal identifier SetBit.

Result?

DEFINITION: RESULT
14.3 Function results

The result of a function can be set by setting the
result variable: this can be the function identifier
or, (only in ObjFPC or Delphi mode) the special
Result identifier:

In Delphi or ObjFPC mode, the above can also be
coded as:

Function : ; MyFunction Integer
begin

 := ; Result 12 // Return 12

end;

As an extension to Delphi syntax, the ObjFPC mode
also supports a special extension of the Exit
procedure:
Function : ; MyFunction Integer
begin

 (); Exit 12
end;

The Exit call sets the result of the function and
jumps to the final End of the function declaration
block. It can be seen as the equivalent of the C
return instruction.

REMARK: Function results are treated as pass-by-
reference parameters. That is especially
important for managed types: The function result
may be non-nil on entry, and set to a valid
instance of the type.
In a similar way you can also remove a bit (i.e.
give the value 0).

To understand what's going on here, this is clear,
readable code, right? On the internet I found a much
more compact code. Now perhaps a challenge for you
to decipher this “misty” code below:

function const (, : ClearBit aValue aBitNumber

integer integer) : ;
begin

 := (shl);result aValue aBitNumberand not 1
end;

o understand what's going on here, this is clear, e, this is clear, e, this is clear

// ClearBit returns the bit 0 at the specified location
// (pos) in the specified variable (Item). 1993

FUNCTION (, :): ;ClearBit pos item byte Byte

 : ;var bt Byte
BEGIN

 := ;bt $01
 > if thenPos 1
 { protection agains zero or negative number}
 := SHL (-); bt bt Pos 1
 { move the first bit (pos-1) positions to the left }
 () > if and thenitem bt 0
 := (xor) Result item bt
 // the bit is here 1, so returns the bit 0
 := ;else Result item

END;

In Delphi or ObjFPC mode, the above can also be In Delphi or ObjFPC mode, the above can also be

Function : ; MyFunction Integer
begin

 := ; MyFunction 12 // Return 12

end;

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 20/40

66Blaise Pascal Magazine 86 2020

DEFINITIONS:

AND Bitwise operation

Binary AND Operator copies a bit to the result if it
exists in both operands.

Xor Bitwise operation

Bitwise xor sets the bit to 1 where the
corresponding bits in its operands are different,
and to 0 if they are the same.
And with the function you can query BitSet

whether a bit at a certain position is a 1:

or again much shorter (borrowed from the internet
again) and perhaps another challenge for you to
decipher the code below:

// BitSet checks whether the specified position
// in the item has the value 1. 1993

FUNCTION var (, :): ; : ;BitSet pos item byte Boolean bt Byte
BEGIN

 := ; bt $01 { bt get 00000001 }

 > if thenPos 1 { limitation }

 := SHL (-); bt bt Pos 1
 { move bit no 1 pos-1 to the left }
 := () > ; Result item btand 0
 { check whether both bits have the value 1 }
END;

In the function above, the bit operands ClearBit

AND XOR and are used:
Suppose we want to connect two new nodes to a
node C, one to the up pointer and the other to the
down pointer. Linking nodes together is a bi-
directional system: link node a to node b and link
node b to node a. Otherwise you cannot walk back
and forth through the schematic. But before we can
link a new node it must first be created.

Now imagine that nodeC already exists and that
nodeA and nodeB have just been created and are
linked to nodeC.
Nodes A, B and C have the following three fields:

With these three functions above, a bit can be put in
a binary number (give the value 1), remove one (give
the value 0) or read its value (is it a 1 or a 0?) turn
into. They are used in the code examples below.

LINK NODES

Now that we can define the route through the
scheme, the next step in the development process is
creating the .scheme

Again we first start formulating our ideas in speudo
code.

field: Fup { Nil: empty }
field: Fdn { Nil: empty }
field: Frt { Nil: empty }

If you want to connect to the up-pointer of nodeA

nodeC nodeB nodeC and to the down-pointer of
they have to get each other's pointer address
(P ..) address.

In speudo code:

nodeC.Fup Ú PnodeA
PnodeC Ù Frt.nodeA
nodeC.Fdn Ú PnodeB
PnodeC Ù Frt.nodeB

and schematic:

When using a Class, the method Constructor

ensures the correct creation of new instances.
What is an Instance anyway?

Info Instance (computer science)
In object-oriented programming (OOP), an
instance is a concrete occurrence of any object,
existing usually during the runtime of a computer
program. The creation of an instance is called
instantiation.
In class-based programming, objects are created
from classes by subroutines called constructors, and
destroyed by destructors. An object is an instance
of a class, and may be called a class instance or
class object; instantiation is then also known as
construction.

function (, isBitSet AValue

AbitNumber integer boolean:): ;
begin

 := (shr);result odd AValue ABitNumber

end;

 PnodeA <──────Fup.─┐
 └─.Frt─┐ │
 ├──────> PC──.Frt─────> = Nil or another Pnode
 ┌─.Frt─┘ │
 PnodeB <──────Fdn.─┘

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 21/40

67Blaise Pascal Magazine 86 2020

Because you have to call the constructor for each
new node instance, you can take the opportunity to
immediately value all variables of the new node
there. Our Constructor Create is given a number of
parameters for this: the depth (dpth) in the scheme

where the new node comes, the saved path (pscd)
there and a number field (nmcd). In addition, the
"pointer" fields are set to "no value" with the
reserved word Nil.

Since no new memory is claimed in the constructor
itself, it is not necessary to release it in the
Destructor, and only the inherited destructor is
called there using the reserved word Inherited.

Code 10: The TTrNd.AddNode() class definition

What code is used here?
At first the info string: // Note the use of the word
var as prefix of the Rootnode in the parameter
list of the procedure: var RootNode: TTrNd.

The use of the prefix var before the parameter given
to a routine deserves further explanation. The FPC
provides the following definitions:

When parameters are declared as value parameters,
the procedure gets a copy of the parameters that
the calling statement passes. Any modifications to
these parameters are purely local to the procedure’s
block, and do not propagate back to the calling
block. So when the routine closes, the content of
the varaible is lost.

b)Variable parameters
code snippet:

 var

 : Aparameter AType
type

 (:);Aprocedure Aparameter Atypevar

When parameters are declared as variable
parameters with the word var, as prefix, the
procedure or function accesses immediately the
variable that the calling block passed in its
parameter list. The procedure gets a pointer to the
variable that was passed, and uses this pointer to
 access the variable's value
 (in this code snippet the
 variable Aparameter
 declared outsite the
 routine definition).
 From this, it follows that
 any changes made to the
 parameter, will propagate
 back to the calling block.
 This mechanism can be
 used to pass values back
in procedures. Because of this, the calling block
must pass a parameter of exactly the same type as
the declared parameter's type. If it does not, the
compiler will generate an error.

// 2020
// Note the use of the word var as prefix of the RootNode variable in the parameter list
PROCEDURE var . (, , : ; :);TtrNd AddNode Adpth Apscd Anmcd Byte RootNode TTrNd

 : ;var Newnode TTrNd
BEGIN

 := . (, ,); NewNode TTrNd Create Adpth Apscd Anmcd // instance NewNode

 . (); NewNode SetFrt RootNode // newNode.Frt get the RootNode value

 := ; RootNode NewNode // connect the new node at the calling node

END;

When parameters ar
the pr
the calling statement passes. Any modi
these parameters ar
block, and do not pr
block. So when the r
the varaible is lost.

 // 2020
 . (, , :);constructor TtrNd Create Adpth Apscd Anmcd Byte
 begin

 := ;Fdpth Adpth

 := ;Fpscd Apscd

 := ;Fnmcd Anmcd

 := ;Fup Nil

 := ;Fdn Nil

 := ;Frt Nil

 ;end

// 2020
destructor . ;TTrNd Destroy
begin

 ;Inherited

end;

INFO
Difference between a Value-
and a Variable parameter.

a)Value parameters
code snippets:

 var

 : Aparameter AType
 type

 (:);Aprocedure Aparameter Atype

or
 type

 (:);Aprocedure Aparameter Atype

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 22/40

68Blaise Pascal Magazine 86 2020

To demonstrate this, one line has been modified in
the code of TTr.Addnode () (See Code 10).
See screenshot below (fig 19) where code line 165:

 // NewNode := TTrNd.Create(Adpth, Apscd, Anmcd);

is temporarily replaced for line 166:

After that, the code was only recompiled
(compile: (Ctrl + F9)).

This also makes sense because the compiler
cannot check for in this placeNewNode

whether or not it has already been created.
Syntactics seems to make this code correct.

But if you then run this code then you get the
following error (fig 20) and the program
execution is aborted:

Fig 20: Exeption Class Error ‘External: SIGSEGV’

What is striking here is that we made a
"mistake" in unit on line 166,UtrClass.pas

but the error message that the program stops
talking about: "In file at line utrndclass.pas

133": a code line from another unit !
If we look at the code of the reported unit on line
133, we see the following there (See fig 21):

Briefly:

A value parameter has only meaning within the
routine in which it is given as a parameter.
Even if a variable with the same name already exists
outside of this procedure!
A variable parameter must already exist as a variable
outside the routine, in which it is given as a var
parameter, and is used within the routine. So no
copy is made! When this routine closes, the (possibly
changed) value of this variable is retained.

The declaration as a var variable:
var RootNode: TTrNd in the above code ensures that
the variable used in the Rootnode AddNode

procedure can be linked to and that Newnode

NewNode Rootnode. can also be linked to
In this way you can pass variables to a routine,
the changes of which remain after the routine has
ended.

Afterwards:

This is the usual way in which you have a new
instance generated in your code by the constructor
(Create) of the relevant class type.
Note that it is the constructor of the class type TTrNd
and not the constructor of the instance NewNode
itself, because it does not yet exist!
Very logical but a mistake is easily made and the
compiler will not warn you if you compile the
following code line:

 := . (, ,); NewNode TTrNd Create Adpth Apscd Anmcd

 := . (, ,); NewNode NewNode Create Adpth Apscd Anmcd

 := . (, ,);. NewNode NewNode Create Adpth Apscd Anmcd

fig 19: compiling succesfull dispite wrong code: NewNode.Create()

fig 21: Execution fails here!

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 23/40

69Blaise Pascal Magazine 86 2020

The TTrnd.Create () constructor is called here for
the first time within the program. But now of the
not yet created Class instantion NewNode since
we in the utrclass.pas unit deliberately have the
wrong syntax in the code: NewNode: =
NewNode.Create (Adpth, Apscd, Anmcd);
used (See fig 19). And this causes the fatal error
here in the code.

INFO
If you get the above error (fig 20) then you have
invoked a non-existent object somewhere, in any
way. For example, you will also see it when you try
to put a value in a field of a nonexistent object.
The problem is that it is often difficult to find out
where you made the crusial mistake in your code.
As in the example above, this can be in a
completely different unit than where the error
message occurs and is therefore often difficult to
detect.

But this aside, continue with our code:
Second to last, the Frt field of the new node is
linked to the var variable RootNode. We do this by
using the Class method SetFrt ().

Finally, the RootNode itself is assigned the value of
the new node:

Ttree

Now that all the parts we need for creating a
schematic have been designed, a container must be
defined in which all those elements can be placed.
In 1993 that was put in a (DOS Pascal) Object. Again
with a corresponding pointer variable:

In the current Pascal we make it a Class again.
This has been given the name Tree. If we follow
the naming convention rules, that gives a prefix T
for Type and with my preference for very short
abbreviations we get) as Class TTr (Type Tree

name from TObject.
If it is a Class of the basic type you TObject,

may also omit TObject: TTr = class.

In the private section, the root field of the tree is:
Froot TTrnd Nds of type (replaces the field in
the code).DOS pascal

We use to “fix” the schedule. It thus Froot

becomes the starting point of the virtual scheme

that is further built entirely in memory.
In the public section the constructor and Create

the must be added, destructor Destroy

supplemented with various own methods
(procedures and functions).
If you want to place more variables in this public
section, they must be placed immediately before
the constructor declaration.
As a rule, the variables are always listed first in
each section, only then the methods.
For example, if you look at the code definitions of
a Form1 you have created with different
components placed on it, you will see the same
image: first the component (s) variable definitions
and below that the methods are displayed.

The old looks like a modern Class DOS code

(2020) like this:

 type

 = ()TTr TObjectclass
 private

 : ; Froot TTrNd // Tree start point
 public
 // place any public fields here

 ;constructor Create

 ; ;destructor virtualDestroy

 (, , : ; procedure AddNode Adpth Apscd Anmcd Byte

var :);RootNode TTrNd

 (:): ;function MakeTree ATrdpth Byte TTrNd

 : ;function GiveTrdpth Byte

 : ;function GiveRt Pointer

 : ;function CntNds Word

 (:);procedure SetFroot ANode TTrNd

 : ;function GetFroot TTrNd

 ;end

Code 11: The TTr Class definition

// 2019
PROCEDURE . (:);TTrNd SetFrt ANode TTrNd
BEGIN

 := ;Frt ANode

END;

NewNode SetFrt RootNode. ();
// newNode.Frt get the RootNode value
RootNode NewNode := ;
// connect the new node to the calling node

 type

 = ;PTr ^TTr

 = TTr Object

 : ;Nds PTrnd

 ;constructor Init

 ; ;destructor VirtualDone

 (:);procedure Add nwndx PTrndx

 (:);procedure MakeTree ATrdpth Byte

 …
 ;END

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 24/40

70Blaise Pascal Magazine 86 2020

We have already discussed the (See AddNode()

code 10) procedure above. This procedure is used in
the function to build the schema in MakeTree()

memory.
NOTE: is defined as a function that MakeTree()

returns type TrNd.
Finally, the Froot field is assigned this value:
Tr.Froot: = Tr.MakeTree();

so that later you can access the tree schema, which
only exists in memory, via this field.
We have named the global Class variable Tree:TTr
 var Tree : TTr;

Then we need to bring this “lifeless” thing to “life”
using the Class constructor Create:

If you forget this step, when you run the program
you will get an error message that you want to do
something with an object that does not exist and
your program will crash (See Fig 19: Exception Class
Error "External: SIGSEGV").
As a final step, we need to ground the memory
created to the Froot field of the Tree variable scheme

so that we keep access to it. Since is of MakeTree()

type we can put it directly into the TrNd, SetFRoot

procedure, which accepts a variable of that type as a
value parameter:

MakeTree
What's in the function?MakeTree ()

It starts with the variable Treestart: The TTrNd.

value of this train start variable is returned to
TTr.Froot as the result value of the function at
the end of the code.
In the function itself, this is the starting point of the
scheme.

 // 1993/2020
 . (:): ;FUNCTION TTr MakeTree ATrdpth word TTrNd

 type

 : ;treestart TTrNd

 : ; ndcnt word { count nodes }

 … { code 10 }

 BEGIN

 := ; NdCnt 1 { first node }

 := ; TreeStart nil { initiate treestart }

 (, , ,); AddNode Ndcnt treestart0 0
 { create 1ste 'ROOT' treestart-node instance}
 (); SetFRoot treestart { Froot becomes 1ste node}

 … { code 11 }
 ;END
Code 12: The TTr.Maketree() methode definition

So far nothing special.
To link two new nodes to an existing node, we use a
local, that is, a local procedure defined in the
Ttr.MakeTree() procedure:

This is in place of the first row of red dots in the
code above.
The parameter is the node to which two reflink

newly created nodes are linked. Because two new
nodes are linked in this procedure, we need an
auxiliary node variable in which we (tempnd)

temporarily store the address of Then reflink.

with a new node is attached to the Up AddNode()

and Down fields of the variable TreeStart.

The local PreOrder procedure:

Tree SetFroot Tree MakeTree. (. ());
// connect the in memory tree to the field var Froot

 := . ; tree Ttr Create
// and again NOT: Tree := Tree.Create;

Code 13: The TTr.MakeTree() local ProOrder() procedure definition

BEGIN { TTr.MakeTree }

 …
 // built the complete tree with Froot/TreeStart as starting point
 ();Preorder TreeStart

 …
END;

Code 13: The TTrCode 13: The TTrCode 13: The TT .MakeTr.MakeTr.MakeT ee() local ProOrder() procedure definition

// 1993/2020
PROCEDURE (:);PreOrder reflink TTrNd

 : ;var tempnd TTrNd
BEGIN

 . < if thenReflink GetFdpth ATrdpth
 BEGIN // not yet at the requested depth: so make 2 new nodes
 with doreflink
 BEGIN
 //save the reflink-Ptr (Frt-link) link for the new
 //FUp/FDn-node^.Rt in the var tempnd
 := ; tempnd reflink
 // save then reflink link here for reuse beccause…
 // ...it immediately gets in AddNode a new value
 //make the new Up root
 (); Inc ndcnt // increase node counter

 ((), , ,);AddNode Succ GetFdpth GetFpscd ndcnt tempnd

 // give the new ptr to ^.UP
 (); SetFUp tempnd // make the link

 // make the new Dn root
 := ; tempnd reflink // restore the tempnd link

 (); Inc ndcnt // increase node counter

 ((),AddNode Succ GetFdpth

 SetBit Succ GetFdpth GetFpscd ndcnt tempnd((),), ,);

 // give the new ptr to ^.DN
 (); SetFDn tempnd // make the link

 ; END { if Reflink.GetFdpth < ATrdpth }

 … { code 12}
 ; END { with reflink do }

END;
PreOrder(reflink: TTrNd)}

Code 14: The second last TTr.MakeTree() code line

 (:); PROCEDURE PreOrder reflink TTrNd

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 25/40

71Blaise Pascal Magazine 86 2020

The only difference in code between the new Up and
Dn node is in the function of the Dn SetBit()

node. This sets a 1 to Succ (Reflink.GetFdpth)

in the pscd variable.
The function (def: Return next element of Succ

ordinal type) returns the next depth value. So in fact
one level deeper than that of the treenode to which
the two new knots are attached. Exactly what is
needed.
This is all it takes to create two new nodes and link
them to an existing node.

The line with the red dots at the bottom of the
PreOrder() procedure contains only the following
two code lines:

Code 15: The last 2 Preorder() code lines

These are only two lines of code, but these two lines
ensure that the entire is made scheme

"automatically".
Here the simpler code from :MakeTree

Before you read on:
Now try for yourself whether you can follow the
course of the procedure, ProOrder (starttree)

say depth 3. You will probably need some paper with
it!

In short, the procedure is called twice PreOrder

again in its own code until a certain condition is met.
If this condition is never met, the procedure will only
stop if the computer crashes due to lack of memory
space. It is therefore important to define this break
condition well. This mechanism is an example of
recursivity that we will come across here more often.

Because it is quite difficult to follow exactly what
happens step by step in this procedure, below is a
printout of a log file in which every step in creating
the schedule is written.

In this way, any size of a schedule is created
without worrying about it. The only limitation here
is the memory of your computer (and the byte type
of some variables). No matter how big or small the
schedule is.

INFO log file
The expression behind Str is the text string that can
be found in the above diagram. E.g: “(nr1) 1 [0]
Finale.” or “(13) 6 [3-101 = 5]”.

The different numbers represent the following:
The numbers in brackets e.g. (No. 5) correspond to
the numbers in brackets (5) in the diagram above.
They indicate the order in which the treenodes are
created. In the code, the variable (node ndcnt

 counter) maintains the counter value.

The number for the square bracket: 2, indicates the
order of the node at this depth level. The rank is
counted over and over for each depth level. The
number behind the square bracket: , indicates [2

the Depth at which this node point is located in the
diagram. These two numbers can be found in the
log file as = . R2 / D2

After the dash that follows, the distance traveled is
shown in the diagram in the form of a binary
number: -10 followed by its decimal representation:
= 2, closed with a].

So in the example (5) 2 [2-10 = 2]: “fifth node in
rank 2 and depth 2 with 10 as binary number
corresponding to the decimal number 2”
Each time the function is called, this is Preorder

indicated in the log file with an IN indented 2
spaces further than that of the previous IN. When
the function is ready, it says OUT and the next line
of text jumps back 2 spaces.

So everything between two associated IN and OUT
lines happens one function call. WITHIN Preorder

For example, the first call to Preorder():
"IN: (No. 1) = R1 / D0 Preorder
(ATree.Froot): (No. 1) 1 [0] Finale."

ends at the bottom last:
"OUT: End No. 1 = R1 / D0 Preorder
(ATree.Froot): (No. 1) 1 [0] Final."

So everything in between already happens in the
first call!Preorder

The log file on the next page Ú

Code 15: The last 2 Preorder() code lines

Here the simpler code from :MakeTree

Before you read on:
Now try for yourself whether you can follow the

 … { = PreOrder() see code 13 }
BEGIN { TTr.MakeTree }

 := ;NdCnt 1
 := ; TreeStart nil { initiate treestart }

 (, , ,); AddNode Ndcnt treestart0 0
 { create 1ste 'ROOT' treestart-node instance }
 (); SetFRoot treestart { Froot becomes 1st node}

 (* built tree with TreeStart as startpoint *)
 ();Preorder TreeStart

 := ; Result TreeStart
 { return root node address as function result }
END;

 (* First make the upper half of the tree, *)
 (.);PreOrder Reflink GetFUp

 (* than the lower half of the tree. *)
 (.);PreOrder Reflink GetFDn

 ;END

 ; END { PreOrder(reflink: TTrNd)}

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 26/40

72Blaise Pascal Magazine 86 2020

LOGINIT
MakeTree with dept 3
Start MakeTree

Add Start Node: (0,0,1,TreeStart)
Tree.Froot := TreeStart
 IN : (Nr 1) = R1/D0. Preorder(TreeStart): str = (nr1) 1[0] Final.
 Add(new UP node): Str = (2) 1[1-0=0]
 new Up.Root node: Str = (nr1) 1[0] Final.
 Add(new DN node): Str = (3) 2[1-1=1]
 new Dn.Root node: Str = (nr1) 1[0] Final.
 Thus: TreeStart.Up: Str = (2) 1[1-0=0]
 Thus: TreeStart.Dn: Str = (3) 2[1-1=1]

 IN : (Nr 2) = R1/D1. Preorder(Reflink.FUp)
 Add(new UP node): Str = (4) 1[2-00=0]
 new Up.Root node: Str = (2) 1[1-0=0]
 Add(new DN node): Str = (5) 2[2-10=2]
 new Dn.Root node: Str = (2) 1[1-0=0]

 IN : (Nr 4) = R1/D2. Preorder(Reflink.FUp)
 Add(new UP node): Str = (6) 1[3-000=0]
 new Up.Root node: Str = (4) 1[2-00=0]
 Add(new DN node): Str = (7) 2[3-100=4]
 new Dn.Root node: Str = (4) 1[2-00=0]

 IN : (Nr 6) = R1/D3. Preorder(Reflink.FUp)
 ==> max depth: No new Up node needed
 OUT: (Nr 6) = R1/D3. Preorder(Reflink.FUp)

 IN : (Nr 7) = R2/D3. Preorder(Reflink.FUp)
 ==> max depth: No new Dn node needed
 OUT: (Nr 7) = R2/D3. Preorder(Reflink.FUp)

 OUT: (Nr 4) = R1/D2. Preorder(Reflink.FUp)

 IN : (Nr 5) = R2/D2. Preorder(Reflink.FUp)
 Add(new UP node): Str = (8) 3[3-010=2]
 new Up.Root node: Str = (5) 2[2-10=2]
 Add(new DN node): Str = (9) 4[3-110=6]
 new Dn.Root node: Str = (5) 2[2-10=2]

 IN : (Nr 8) = R3/D3. Preorder(Reflink.FUp)
 ==> max depth: No new Up node needed
 OUT: (Nr 8) = R3/D3. Preorder(Reflink.FUp)

 IN : (Nr 9) = R4/D3. Preorder(Reflink.FUp)
 ==> max depth: No new Dn node needed
 OUT: (Nr 9) = R4/D3. Preorder(Reflink.FUp)

 OUT: (Nr 5) = R2/D2. Preorder(Reflink.FUp)

 OUT: (Nr 2) = R1/D1. Preorder(Reflink.FUp)

 IN : (Nr 3) = R2/D1. Preorder(Reflink.FUp)
 Add(new UP node): Str = (10) 3[2-01=1]
 new Up.Root node: Str = (3) 2[1-1=1]
 Add(new DN node): Str = (11) 4[2-11=3]
 new Dn.Root node: Str = (3) 2[1-1=1]

 IN : (Nr 10) = R3/D2. Preorder(Reflink.FUp)
 Add(new UP node): Str = (12) 5[3-001=1]
 new Up.Root node: Str = (10) 3[2-01=1]
 Add(new DN node): Str = (13) 6[3-101=5]
 new Dn.Root node: Str = (10) 3[2-01=1]

 IN : (Nr 12) = R5/D3. Preorder(Reflink.FUp) ==> max depth: No new Up node needed
 OUT: (Nr 12) = R5/D3. Preorder(Reflink.FUp)

 IN : (Nr 13) = R6/D3. Preorder(Reflink.FUp)
 ==> max depth: No new Dn node needed
 OUT: (Nr 13) = R6/D3. Preorder(Reflink.FUp)

 OUT: (Nr 10) = R3/D2. Preorder(Reflink.FUp)

 IN : (Nr 11) = R4/D2. Preorder(Reflink.FUp)
 Add(new UP node): Str = (14) 7[3-011=3]
 new Up.Root node: Str = (11) 4[2-11=3]
 Add(new DN node): Str = (15) 8[3-111=7]
 new Dn.Root node: Str = (11) 4[2-11=3]

 IN : (Nr 14) = R7/D3. Preorder(Reflink.FUp)
 ==> max depth: No new Up node needed
 OUT: (Nr 14) = R7/D3. Preorder(Reflink.FUp)

 IN : (Nr 15) = R8/D3. Preorder(Reflink.FUp)
 ==> max depth: No new Dn node needed
 OUT: (Nr 15) = R8/D3. Preorder(Reflink.FUp)

 OUT: (Nr 11) = R4/D2. Preorder(Reflink.FUp)

 OUT: (Nr 3) = R2/D1. Preorder(Reflink.FUp)

 OUT: End Nr 1 = R1/D0. Preorder(TreeStart): str = (nr1) 1[0] Final.

Result := GetFroot: str = (nr1) 1[0] Final.

Node count is: 15

LOGDONE

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 27/40

73Blaise Pascal Magazine 86 2020

INFO Logfile The procedures and functions used to
create the log file are listed in the Std_log unit. To
use this only for debugging, a custom compiler
directive has been defined in the implementation
section of the relevant unit:

By calling this directive usedebug in the code with: {$
IFDEF usedebug} and logging out with {$ ENDIF}; the
code between them is executed at compile time. If
you comment the line {DEFINE usedebug} in the
implementation section by prefixing 2 //,

the compiler ignores the code between the
usedebug call and call. The procedure is LOGINIT

used to connect the Log file of type TEXT to a text
file. The procedure to close LOGDONE(Logfile)

this text file using).Close (Logfile

fig 22: my own compiler directive in the implementation
section of the program

fig 23: LOGINIT() and LOGDONE()

A small piece of code example where the log
file is written by LOGIN (log file, string) LOGOUT
(log file, string) and LOG Text (log file, string):

fig 24: LOGIN(), LOGOUT() and LOGText in progress

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 28/40

74Blaise Pascal Magazine 86 2020

 LOGIN() ==> IN : (Nr 9) = R4/D3 Preorder(Reflink.FUp)
 LOGText()==> ==> max depth: No new Up node needed
 LOGOUT() ==> OUT: (Nr 9) = R4/D3 Preorder(Reflink.FUp)
 LOGText(leeg) ==>
 LOGOUT() ==> OUT: (Nr 5) = R2/D2 Preorder(Reflink.FUp)
 LOGText(leeg) ==>
 LOGOUT() ==> OUT: (Nr 2) = R1/D1 Preorder(Reflink.FUp)
 LOGText(leeg) ==>

You will find these text lines in the log file above, for
example at node 9 and the five lines below:

Print Tree
Now that the tree can be built in memory, it scheme

must of course also be possible to display it. In the
Ftree program written for this article, this is done in
two ways: directly written as the lines of a memo
component to the screen and in the background in
the original way to a text file on the disk. The latter
also takes account of printing to paper. The printing
procedure must also be suitable for line printers.
That is why the preparation of the printing process is
organized per line. What again proved to be an
advantage when writing these lines to the lines of
the memo component.
Since we don't want to send every attempt directly
to the printer while developing the code, we first
send it to a text file using the variable LST: Textfile.
(Textfile: Text).

(schema 16) (schema 8) (schema 4) (schema 2)

(8) [4]────┐
 ├ (6) [3]────┐
(9) [4]────┘ │
 ├ (4) [2]────┐
(10) [4]────┐ │ │
 ├ (7) [3]────┘ │
(11) [4]────┘ │
 ├ (2) [1]────┐
(14) [4]────┐ │ │
 ├ (8) [3]────┐ │ │
(15) [4]────┘ │ │ │
 ├ (5) [2]────┘ │
(16) [4]────┐ │ │
 ├ (9) [3]────┘ │
(17) [4]────┘ │
 ├(1) [0] Final.
(22) [4]────┐ │
 ├ (12) [3]────┐ │
(23) [4]────┘ │ │
 ├ (6) [2]────┐ │
(24) [4]────┐ │ │ │
 ├ (13) [3]────┘ │ │
(25) [4]────┘ │ │
 ├ (3) [1]────┘
(28) [4]────┐ │
 ├ (14) [3]────┐ │
(29) [4]────┘ │ │
 ├ (7) [2]────┘
(30) [4]────┐ │
 ├ (15) [3]────┘
(31) [4]────┘

The starting point
Which node should I start with and does the node
creation sequence provide a handle for this? Have a
look at the combined below; a scheme

scheme16with the creation order () at max depth []
per 16 / 8/4/2. For this is the scheme scheme8

series (6,7,8,9,12,13,14,15) and for scheme4

(4,5,6,7):

It contains between () the creation order of
the nodes during the creation of a . scheme16

Starting at the top left means for a scheme16

with depth [4]
starting with node (8) at the top left: (8) [4]
-. For a 8 with depth [3] start with scheme8

node (6) top left: (6) [3]
- and for with depth [2] start with scheme4

node (4) also top left: (4) [2] - , etc.

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 29/40

75Blaise Pascal Magazine 86 2020

It is striking that the creation order of the nodes
always depends on the size. So, unless you scheme

write down all possible schedules, there is no use for
the creation sequence when printing a scheme.

What would work? The creation of the in scheme

memory was done using recursivity. Could printing
also work with that so that you only have to specify
the level and the schedule can be printed like this?
Yes, that's possible.
By now you will have understood that the schematic
tree examples used in this article have not been
assembled by hand for this article. They have been
generated by a program and where necessary
adapted for this article by hand. In that program
recursivity is also used in various places, only slightly
different.

When building the schema in memory, the
recursivity in speudo code is like this:scheme

 Program
// declaration intern/local procedure
 ()prodedure Preorder
 begin

 - - if thenbreaks down condition
 begin

 ;do code

 (); Preorder up // recursive

 (); Preorder dn // recursive

 ;end

 ;end

Begin

 ;initialise

 (" ");Preorder start

End;

Because of the order of the code to be executed and
the recursive I then chose the name call(s)

Preorder: first execute the code before calling the
same procedure again. This call is not valid for
printing because the print order for a schedule of 8
players (depth 3) would be the following series from
the production order: no- 6,4,7,2,8,5,9,1, (etc).

As noted earlier, this sequence is specific to a
scheme8 with depth 3. This approach has therefore
not been found suitable for a general code.
What the nodes 8,6 and 4 in the above
scheme1616 have in common is that their Up and
Dn fields in their OWN have the value NIL. schemes

After all, there is no higher level at this point in a
scheme16 scheme8 scheme4, , or !

A general line in speudo code could then read:
“from the start node point (finalist) go all the way
up to the left until the Up and Dn fields of the node
concerned have the value NIL. If yes then do
something.
It follows that the recursivity order for printing is
different.
In speudo code:

prodedure ();Inorder
begin

 - - if thenbreaks down condition
 begin

 (); Inorder up // recursive

 ;do code

 (); Inorder dn // recursive

 ;end

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 30/40

76Blaise Pascal Magazine 86 2020

The “do code” is now between the two recursive
function calls. I have therefore named this procedure
InOrder.
If we look at the translation of this pseudo code into
Pascal code and taking into account the above
findings, we see:

The breaks down condition becomes:

 <> If Nil Thenreflink
 BEGIN

 (. , -); Inorder reflink GetFUp depth 1 { upper treenodes }

THE DO CODE
The code in “do code” here is considerably more
complicated than that of having the schema tree
generated in memory. In the original code, each
part of a line is sent separately to the printer. To get
a clear explanation, that code has also been used
here. For the memo component, this information is
first collected per line in a string variable before
that line is presented to the memo.lines.Append
(AString) Append () at once. Note the use of
here.
So we start with the basics and expand it further
and further until the schedule is complete on paper.

This means that as long as reflink is <> Nil, a new
Inorder procedure is always called with the node
point being the one who is on the Up link of reflink
with one step lower value for the depth. If the Up-
link is Nil (endpoint) then this procedure InOrder()

is exited and we return to the previous InOrder()
procedure at: do code.
When we are done with "do code" we will jump
down in the next procedure with the Dn InOrder()

link from For example, we finish the Reflink.

whole schedule from top left, via the final node on
the far right, to bottom left. This is how the
differences in the production order of the Nodes per
scheme size arise. And this works for any schedule
of any size.

What kind of variables do we need?
//PrintTree: print a tree to a textfile
PROCEDURE . ;TTr PrintTree
 var

 : ; cntnd word // node counter

 : ; trdpth Byte // tree depth

 : []; s string 25
 // length printstr = standard distance between the
 // nodes at different tree depths.

The first 2 variables speak for themselves. For
simplicity, the printing distance between two
treenodes, anywhere in the schematic, is kept the
same. The string s is used for this and has been
given the length 25 by default: s: string [25];
(A more complicated alternative could be that the
length of s depends on the length of the Node
information string and thus changes in length per
level.)
The procedure starts with preparing PrintTree

the required data in the various variables. Then calls
the procedure and ends by specifying Inorder()

the number of treenodes printed:the number of trthe number of treenodes printed:the number of trthe number of treenodes printed:

BEGIN { TTr.printtree }
//Innit parameters
 := ; trdpth Givetrdpth // give tree depth

 := ; cntnd 0 // initiation node counter

 := ; s '' // initiation standard string s

 ([], (),); Fillchar s High s1 ' '
 // fills entire show string with spaces
 // print entire tree structure recursive
 (,);Inorder GetFRoot trdpth

 (, ,);write LST cntnd'Number of nodes: '

END;

We go through the above code from top to bottom.

The Givetrdpth (Give Tree Depth) function is
included as a method in the TTr class and declared
as follows:

// 1993
FUNCTION . : ;TTr Givetrdpth Byte

 (:);PROCEDURE PreOrder reflink TTrNd
 BEGIN

 <> if Nil then BEGINreflink

 . > ();If Then reflink GetFdpth Result Inc Result

 (.);Preorder reflink GetFUp

 (.);Preorder reflink GetFDn

 ;END

 ;END

BEGIN

 := ;Result 0
 ();Preorder GetFRoot

END;

 := ;trdpth Givetrdpth

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 31/40

77Blaise Pascal Magazine 86 2020

The function does nothing but run through the whole looking for the highest value Givetrdpth() scheme

of dpth (via: and puts that value in the function result (Result). This also reflink.GetFdpth> Result)

happens again via a recursive mechanism This way always “knows” what maximum PreOrder(). TTr

depth a offered schedule has.
Now I hear you think that searching the whole tree is a lot of good: Just go all the way to the top left until
the up link is Nil shouldn't it be enough? This is also the case for our example in this article, but suppose that
there are 9 participants instead of 8. Then a of 8 participants (max place with of depth 3) is scheme8 scheme

not sufficient and a schedule 16 of depth 4 must be made. That's 16 playgrounds for which we only have
nine participants. This means that seven players have a bye and therefore only start their match in the next
round and 2 participants have to play a so-called preliminary round. For the distribution of 9 players over 16
places, there is an official distribution key which has been converted here into a constant ByeArr16:

{ 1 10 16}
{a) 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 }these are ranking numbers, 16 places here
{b)(0,1,0,5,0,4,0,8,7,0,3,0,6,0,2,0); }these are the byes in consecutive number order for een schedule of 16 places

Combine the two digit strings a and b above: 1st bye is in 2nd place, 2nd by 15th in the schematic,
etc gives the following code implementation:

 : [] = (, , , , , , ,); const array ofbyearr16 byte1..8 2 15 11 6 4 13 9 8 { these are the byes in consecutive number order }

There are 8 byes in the byearr16. If you use all 8 byes you will get automations on a of 8 places. In scheme8

the example here we use 16-9 = 7 byes. Then it follows from the byearr16 that the first 7 ranking places
(2,15,11,6,4,13,9) in the get a Bye. Ranking 8 (from) remains for participant 9. scheme16 scheme16

The other ranking places are allocated to the other 8 participants.
The with 16 places and only 9 participants will look like this:scheme16

(8) 1[]────┐participent 1
 ├(6) 1[3-000=0]──────────┐
(9) 2[BYE]──────────────┘ │
 ├(4) 1[2-00=0]───────────┐
(10) 3[]───┐ │ │participent 2
 ├(7) 2[3-100=4]──────────┘ │
(11) 4[BYE]─────────────┘ │
 ├(2) 1[1-0=0]────────────┐
(14) 5[]───┐ │ │participent 3
 ├(12) 3[3-010=2]─────────┐ │ │
(15) 6[BYE]─────────────┘ │ │ │
 ├(5) 2[2-10=2]───────────┘ │
(16) 7[]───┐ │ │participent 4
 ├(13) 4[]───┘ │winner 4 or 9
(17) 8[]───┘ │participent 9
 ├(nr1) 1[0] Final.
(22) 9[BYE]─────────────┐ │
 ├(20) 5[3-001=1]─────────┐ │
(23) 10[]───┘ │ │participent 5
 ├(18) 3[2-01=1]──────────┐ │
(24) 11[BYE]─────────────┐ │ │ │
 ├(21) 6[3-101=5]─────────┘ │ │
(25) 12[]───┘ │ │participent 6
 ├(3) 2[1-1=1]────────────┘
(28) 13[BYE]─────────────┐ │
 ├(26) 7[3-011=3]─────────┐ │
(29) 14[]───┘ │ │participent 7
 ├(19) 4[2-11=3]──────────┘
(30) 15[BYE]─────────────┐ │
 ├(27) 8[3-111=7]─────────┘
(31) 16[]───┘participent 8

Node count is: 31

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 32/40

78Blaise Pascal Magazine 86 2020

The places in this schedule that are unoccupied
(BYE), so that the players “move on” (have a Bye) to
the next round, can be removed from the schedule
together with the empty players. The cleaned
scheme16 scheme8 will then look like a , with only
one preliminary round in this example:

In this situation you go in the cleaned schedule tree
all the way to the top left and then set that at node
nr 6, 3 is the maximum depth of the tree then you
are wrong, because that is 4 at the treenodes 16 and
17! And because you never know in advance how
many participants will participate, you never know in
advance where exactly one or more preliminary
rounds will be played and so you have to go through
the whole tree in search of the highest value for the
depth dpth.

The code after that:
cntnd := ; 0 { initiate node counter }

 := ;s ''

 ([], (),); Fillchar s High s1 ' '
{ fills entire showstring with spaces }

The node counter (cntnd) is set to zero, the string s is
cleared and then using the FillChar procedure from
position one - s [1] - to one with the highest position
of s -Higs(s) = 25, because defined as string [25] -
provided with spaces. If we print the string s in the
code, we actually print 25 times “nothing”.
Now that everything is ready, we step into the
Procedure Inorder:

This procedure is given 2 parameters: the variable
that gives the starting point of the "higher" scheme

and the desired maximum depth of the to scheme

be printed.

// InOrder() is used recursively! 1993
PROCEDURE (: ; :);InOrder Reflink TTrnd depth byte

 : ; var i byte // loop counter

 : ; intern Boolean // 'insite' or 'outsite' the schema

 : ; prnstr string // 'the collecting string to print
 BEGIN

 <> If Nil Thenreflink // the breaks down condition
 BEGIN

1 Inorder reflink GetFUp depth) (. , -); 1
 // at first the upper tree-nodes
 …

 (6) 1[]──────┐participent 1
 ├(4) 1[winner 1 of 2]───┐
 (7) 2[]──────┘ │participent 2
 ├(2) 1[semi final]─────┐
 (12) 3[]──────┐ │ │participent 3
 ├(5) 2[winner 3 of4/9]───┘ │
(16) 7[]─────┐ │ │participent 4
 ├(13) 4[]────┘ │winner 4 or 9
(17) 8[]─────┘ │participent 9
 ├(nr1) Final.
 (20) 5[]──────┐ │participent 5
 ├(18) 3[winner 5 of 6]───┐ │
 (21) 6[]──────┘ │ │participent 6
 ├(3) 2[semi final]─────┘
 (26) 7[]──────┐ │participent 7
 ├(19) 4[winner 7 of 8]───┘
 (27) 8[]──────┘participent 8

Node count is:
17 {calculation rule: ([8*2]-1) +2}

The InOrder Code

The three variables speak for themselves. The first
line of code: 1) should now also be clear. Then
comes “The Code”:

// Note: dpth is zero by the draw-root where the fields
// FUp and FDn are NIL !
 . >= if thenreflink GetFdpth 0
 BEGIN

 := (,); for to doi depth write LST s1
 // print the correct number of s units =
 // equivalent to moving the print cursor

 := (,); for to doi depth write LST2 ' '
 // extra spaces for the (N-1) number of graphic char(s)
 // used in the line above

 . <> if ThenReflink GetFdpth trdpth

 write LST hvl(,); // hvl = the graphic char+

 …

Inorder GetFRoot trdpth(,);
{ print the entire tree structure recursively }

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 33/40

79Blaise Pascal Magazine 86 2020

When calling this function again within the Inorder
procedure, 1 value is always subtracted from the
depth. It then becomes zero when the highest level
of the schedule is reached. This is useful here
because we can read the diagram from the right
(from to the left, but we will print final = FRoot)

it from left to right! No matter how large the
schedule is when the depth here becomes zero, you
are always at the beginning of the lines to be
printed.
In the 1st “for” loop, we always write units of 25
spaces (s), as many times as we are towards the final
in the schedule. The second “for” loop adds, on the
same line, some necessary extra spaces to ensure
mutual line alignment. More about that later.

NdInfoStr TTrNd is a method of the Class
and returns a string with node info:

type

TTrNd TObject = ()class

…
public

…
 : ;function StringNdInfoStr

end; { TTrNd = Class()}

binstr = []; string 8 // is the binary string representation
 // of the byte value pscd. example: '01100101'
…

Code 16: Declaration of the type class TTrNd.NdInfoStr and binstr

And since Reflink is also an instance of that, you can
request it directly by means of the dot reference:
Reflink.NdInfoStr().

This function is specially designed to string as much
information about the node as possible. How? You
can figure that out yourself in the code below.

// NdInfoStr displays the available information from the node point as folows:
// (,creation sequence number,), ascending order number of the schema at that level,
// [, treedepth, -, nmcd written as a binary string, =, nmcd written as a number value,]
// eg maxdpth 7: dpth 7, draw-root 24 gives: (53) 24[7-1110100=116]
// eg maxdpth 7: dpth 4, in-between node 7 gives: (100) 7[4-0110=6]
// eg maxdpth 4: dpth 4, draw-root 7 gives: (16) 7[4-0110=6]
// eg maxdpth 4: dpth 2, in-between node 3 gives: (18) 3[2-01=1]
// eg maxdpth 4: dpth 0, in-between node 1 gives: (nb1) 1[0] Final

FUNCTION String . : ;TTrnd NdInfoStr
 var

 : [];prndpth string 2
 : [];prnrank string 3
 : [];prnpscd string 3
 : [];prnnmcd string 3
BEGIN
(* prepare the print strings *)
 ((,): ,); Str GiveRank Fpscd Fdpth prnrank3 // returns the rank order as a string
 / :3 is the amount of digits of the number

 (,); Str GetFdpth prndpth // returns the depth as a string

 (,); Str GetFpscd prnpscd // returns the position_code bit order as a string

 (,); Str GetFnmcd prnnmcd // returns the num_code as a string
(* concat for result *)
 = if thenGetFdpth 0 // final

 := (, , , , , , ,)Result Concat prnnmcd prnrank prndpth'(nr' ')' '[' ']' ' Final.'
 else

 := (, , , , , ,Result Concat prnnmcd prnrank prndpth'(' ')' '['

 , (,), , ,);'-' '=' ']'GiveBinstr GetFpscd GetFdpth prnpscd

END;

// Get the description of this node *)
 := . (); s Reflink NdInfoStr trdpth
// Node Info Str(.,.) in unit UtrNdClass.pas!
 (,);write LST s

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 34/40

80Blaise Pascal Magazine 86 2020

The above is composed of the function result

different strings and punctuation marks using the
internal and then assigned to Concat function

Result. Two other functions are used in this function:
Giverank() GiveBinStr().and The first is
discussed in detail later in this article. The code for
the second follows. It converts a decimal byte value
into a binary bit string of type binstr: binstr =
string[8]; (See code 16).

// GiveBinstr converts a byte into a string of ones en zeros.
// givebinstr: b is the byte to be converted, d indicates
// the number of bits put in a string. Max 8.

FUNCTION (, :): ;GiveBinstr b d byte binstr
 var

 , : ;i bt byte

 : ;s binstr
BEGIN

 := ;s ''

 := ;bt $01
 := for to doi d1
 BEGIN

 () > if andb bt 0
 then := + s s'1' // there is a 1 in b

 := + ; else s s'0' // there is a 0 in b

 := shl ; bt bt 1 // move bits one position to the left

 ;END

 := ;Result s

END;

If you still want to display larger than of scheme255

depth 8, the type of binstr will also have to be
changed, e.g. to binstr = string [16];
Then the string S is sent to the text file. Still without
line cover!

If we look at the name of the type, it turns binstr

out that this was an unfortunate choice.
Free Pascal has an internal function of the same
name that does the same as the 1993 function
GiveBinStr() Binstr().does here:

 . > if thenReflink GetFdpth 0
// exclude the finale node (= Froot) here
 := (()- ()) for to doi High s Length s1
 (,); write LST hrz
 // adds up to standard length(25) with dashes {-}
 ();Inc cntnd

Note the use of the standard functions High (s) and
Length(s):
High(s) returns the maximum length of s while
Length(s) returns the current length of s!
A node string currently looks something like this:
(7) 2[3-100=4]──────────

After this:

Info Binstr(aValue, aCnt): shortstring.

BinStr returns a string with the binary
representation of aValue. The string has at
most aCnt characters. (i.e. only the cnt
rightmost bits are taken into account) To
have a complete representation of any
longint-type value, 32 bits are needed, i.e.
aCnt=32.

But this aside. Because the information string of the
node point at different depth levels is not the same
length, S is now supplemented as necessary with
dashes (the constant char hrz: —) to the chosen
standard length of 25 chars.
The node counter then keeps track of the number
of node created. The code:

Below is code that needs further explanation.
For that we first look at what kind of scheme8

would be printed so far:

(6) 1[3-000=0]──────────
 ├(4) 1[2-00=0]───────────
(7) 2[3-100=4]──────────
 ├(2) 1[1-0=0]────────────
(8) 3[3-010=2]──────────
 ├(5) 2[2-10=2]───────────
(9) 4[3-110=6]──────────
 ├(nr1) 1[0] Final.
(12) 5[3-001=1]─────────
 ├(10) 3[2-01=1]──────────
(13) 6[3-101=5]─────────
 ├(3) 2[1-1=1]────────────
(14) 7[3-011=3]─────────
 ├(11) 4[2-11=3]──────────
(15) 8[3-111=7]─────────

 (-) <> if thentrdpth depth 0
 With doreflink
 BEGIN

 …

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 35/40

81Blaise Pascal Magazine 86 2020

In the above diagram, all treenodes with the exception of their content are equal:
(nr) followed by position code nr [depth-pcode = decimal number] followed by more or less fill marks so that
the string has a length of 25 characters. This is already starting to look similar to our previous schedules.
What are we still missing?
To make that clearer, 25 dots have been placed in the string s instead of spaces for the following example:
s: = '...................... ... 'and the still missing four graphic line elements with different basic text characters
(\> / +) are filled in:

If you compare this with the diagram above, we will miss the following four characters and a \,>, /, |

plus sign: just like the dot a visible substitute for a space.
If you look closely at the last diagram, the line segments of the different nodes are now NO longer exactly the
same: there are with a \ or a / or a>.
The question arises here how the code knows when and which of these 3 different graphical elements should
be added to a node point string. The solution lies in the binairy representation of the position code.
Take for instance that of node (8): 010. This symbolizes that the route to this node point from the final point
on the right side of the schedule 1x up (0), then 1X down (1) and again 1x up (0) runs from right to left by
default. These numbers indicate when a node point is an or a node: If the bit in place in the Up Dn dpth

pscd Dn Up is a 1 then it is a node otherwise it is an node. Converted to code you will get the following:

fig 25: schema printed with the help of standard text elements -\+>/.|fig 25: schema printed with the help of standard text elements -\+>/.|

(6) 1[3-000=0]----------\
.........................>(4) 1[2-00=0]-----------\
(7) 2[3-100=4]----------/.........................|
..+>(2) 1[1-0=0]------------\
(8) 3[3-010=2]----------\.........................|.........................|
.........................>(5) 2[2-10=2]-----------/.........................|
(9) 4[3-110=6]----------/.........................+.........................|
...++>(nr1) 1[0] Finale.
(12) 5[3-001=1]---------\.........................+.........................|
.........................>(10) 3[2-01=1]----------\.........................|
(13) 6[3-101=5]---------/.........................|.........................|
..+>(3) 2[1-1=1]------------/
(14) 7[3-011=3]---------\.........................|
.........................>(11) 4[2-11=3]----------/
(15) 8[3-111=7]---------/
Node count: 15

 (* if a node at (Trdpth-depth) level has a bit =1, then write graphic element {+} *)
 ((-),) if thenBitSet trdpth depth GetFpscd // this is a Dn node

 (,) write LST hup {+}
 (* else: (Trdpth-depth) level has a bit =0, so write here graphic element {+}*)
 else // this is a Up node

 (,); write LST hdn {+}

The schedule will now look like this:

(6) 1[3-000=0]──────────┐
 ├(4) 1[2-00=0]───────────┐
(7) 2[3-100=4]──────────┘
 ├(2) 1[1-0=0]────────────┐
(8) 3[3-010=2]──────────┐
 ├(5) 2[2-10=2]───────────┘
(9) 4[3-110=6]──────────┘
 ├(nr1) 1[0] Finale.
(12) 5[3-001=1]─────────┐
 ├(10) 3[2-01=1]──────────┐
(13) 6[3-101=5]─────────┘
 ├(3) 2[1-1=1]────────────┘
(14) 7[3-011=3]─────────┐
 ├(11) 4[2-11=3]──────────┘
(15) 8[3-111=7]─────────┘
node count: 15

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 36/40

82Blaise Pascal Magazine 86 2020

If you now look at figure 25 above, you will see that
after placing the lock (┐ or ┘) sign in the print string
[25], some nodes are followed by 1 or more blocks
with dots, sometimes with a plus sign in between,
sometimes with one or more plus signs at the end of
the series of blocks and others not at all.

Again the question arises how the code knows
where to place which graphic character in the right
place.
Where should there be vertical lines in the text line
to be printed to complete the diagram? "Of course"
between the (┘ or ┐) sign and the ├ sign on the line
below and above it, but how does the code "know"
for each line in the where that position is scheme

exactly in that line?
Finally, the code does not remember what it printed
before and does not "know" what happens next.
Once again, the key to the solution lies in the
position code.

A binary code is read from right to left by default
and is therefore filled from right to left with the
different routes. Again the previous example of node
(8) whose binary is 010. This route says that pscde

from the final on the right side of the schedule you
have to go 1x up (0), then 1x down (1) and 1x up
again, by default reading from right to left. This in
itself does not provide more information than what
we already know: a 1 stands for a Dn node and a 0
stands for an Up node.

It had been intriguing me for quite a long time
before I woke up one night and I knew I'd found the
solution.
It turned out not to be in the numbers 0 and 1 itself
but in the alternation of the 1 and the 0 in the series
of the binary number.

And because the schedule is going to be printed
from left to right, you MUST also see this variation
from left to right, starting at the level of the Dpth

node point itself.
If the neighbour to the right changes sign in the
sequence, that is, from a 1 to a 0 or vice versa,
the route at that location nods downwards or
upwards in the diagram: so the line to be printed at
that location is cut a vertical line of the schematic!

Check that in the schedule, it is always correct!

The code therefore does not have to remember
anything at all about what it printed before or what
it comes after, it already has the necessary
information in the data of the node point at its
disposal.

Before we can use the code for this, a number of
variables have to be reinitialized here in the code.
We will use a print string: prnstr as a collection
string and make s again a filled with string[25]

spaces. In addition, the boolean Intern is set to
False:

Then follows the code for placing the vertical graphic
line element (s) in the correct position in the line to
be printed:

// Question: have line elements to be placed
// further on as a rule?

 := for to doi GetFdpth2
 BEGIN
 // is there a sign change (0=>1 of 1=>0)
 //at position i in the position-code?
 ((,) <> (- ,)) if BitSet i GetFpscd BitSet i GetFpscd1
 then
 BEGIN { place graphic element (vrt=|) in prnstr }

 prnstr Concat s vrt prnstr := (+ ,);
 // concat prnstr after s with the graphical element |
 // in between
 := ;intern TRUE
 END
 else
 // concat prnstr after s with a space char instead of
 // the graphical element|in between
 := (+ ,); if thenintern prnstr Concat s prnstr' '

 ; END { For.... }

 (,); if thenintern write LST prnstr

In the above code, the boolean Internal is used.

The reason for this is that the vertical line elements
only have to be placed "within" the , of scheme

course they no longer serve any purpose. Internal is
set to if is still within the schedule and only True S

if Internal is is printing.True

See fig 25 Page 34 of this article: only the enclosed
area is provided with strings s (here filled with dots).
Now the whole can be printed complete scheme

with all graphic line elements:

 := ; Intern FALSE { initiate }

 (,); SetLength prnstr 0 { initiate }

 (, ()); SetLength s High s
 { High(s) give's back max length of s }
 ([], (),); Fillchar s High s1 ' '
 { fills entire showstring(25) with spaces }

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 37/40

83Blaise Pascal Magazine 86 2020

(6) 1[3-000=0]──────────┐
 ├(4) 1[2-00=0]───────────┐
(7) 2[3-100=4]──────────┘ │
 ├(2) 1[1-0=0]────────────┐
(8) 3[3-010=2]──────────┐ │ │
 ├(5) 2[2-10=2]───────────┘ │
(9) 4[3-110=6]──────────┘ │
 ├(nr1) 1[0] Finale.
(12) 5[3-001=1]─────────┐ │
 ├(10) 3[2-01=1]──────────┐ │
(13) 6[3-101=5]─────────┘ │ │
 ├(3) 2[1-1=1]────────────┘
(14) 7[3-011=3]─────────┐ │
 ├(11) 4[2-11=3]──────────┘
(15) 8[3-111=7]─────────┘
node count: 15
Fig 26: The entire schema8 is printed

The Inorder procedure ends with the following code:

 ; END // if (trdpth-n) <> 0 then With reflink do

 ; END // if reflink.Givedpth >= 0

 (); writeln LST // now writeline

 (. , -); Inorder reflink GetFdn depth 1
 // make down nodes

 ; END // If reflink <> Nil

 ; END // Inorder()

A log file has also been kept for the printing
process, in which almost every step is saved.
For clarity, the string is also filled here with dots s

instead of spaces.
Even for a small of 8 participants, scheme

it produces a very large log file. Therefore, only
part of the chart8 , with the last few lines of the
bottom is shown here. Since you can download
the complete code you will be able to have a closer
look.

And this is how the with a depth of 3 scheme8

and node information, "printed" on the canvas of
a Form, looks like:

fig 27: Tree schema8 with nr, depth, binary number and his decimal value in the Forms Canvas

RANKING OF PARTICIPANTS
In a knock-out each node has a rank order scheme

number. This number is used in the lottery draw and
thus determines which players will face each other
where in the schedule. This number runs from the top
node to the left to the bottom node to the left from 1
to 4, 8,16, 32, 64,128 etc. depending on the size of
the . These ranking numbers are generated by scheme

the code. Here again the question arises how the
code “knows” what the rank number of a node point
is, regardless of the level at which the treenodes act.
We again take the used for this as an scheme8

example:

In this those numbers run on level 3 scheme8

from 1 [..] to 8 [..], on level 2 from 1 [..] to 4 [..]
and on level 1 from 1 [..] to 2 [..] . The question is
how the code gets these numbers in the right
place. And again the key is hidden in the position
code (pscd). If you look in the pscd for the binary
numbers for all numbers 2 of the entire , scheme

you will see the following information in the
corresponding series: 100 = 4, 10 = 2 and 1 = 1
with their decimal number behind it: 4.2, 1.

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 38/40

84Blaise Pascal Magazine 86 2020

Since schedules always start to count with 1, we
have to add the value 1 for each result to make the
ranking numbers correct. As I mentioned at the
beginning of this article, it was a happy choice to
choose the Up towards the value 0. This makes the
ranking numbers easily in the right place.
The ranking numbers are in the node info string in
the diagram just before the brackets. For example
with (7) 2[...] ——

In code it will look like this:
 (** GiveRank convert the pscd byte value into a tree depth *
* dependent ranking value that is numbered ascending *
* from top to bottom, starting with the value 1. date: 1993 **)

FUNCTION (, :): ;GiveRank Apscd Adpth Byte Word

 , : ;var i j Word
BEGIN

 := ;j 0
// If from Hi to Lo the bit in the pscd has the value one ...
// … then sum the read byte value with function result.
 := for downto doi Adpth 1
// read the bit value from left to right out !
 (,) if thenBitSet i Apscd

 (, ((- +),));Inc j SetBit Adpth i 1 0

 := + ; Result j 1
 { compensate the function result for the start value zero}
END; { GiveRank }

GRAPHIC LINE ELEMENTS
Now something about the graphic line elements
used. These are not ordinary elements AnsiChar

but unicode characters. They are declared WideChar

as constants in the interface section of the relevant
unit so that they are available for all code in the
implementation section of that unit. And of course
for any other code if this unit is included in the uses
clause.

 : = ; const vrt widechar #9474 {= ¦}

 : = ; hrz widechar #9472 {= -}

 : = ; hup widechar #9496 {= +}

 : = ; hdn widechar #9488 {= +}

 : = ; hvl widechar #9500 {= +}

It then follows that the position code itself does
not give the correct information about the
ranking number (it should always be 2 here) of
these treenodes.

And yet that information is hidden in it.

Take the pscd binary number from node point 2
at depth 3. It reads 100 and is decimal 4, read
from right to left by default. Now read the
binairy position code number at depth 3 from
left to right, starting at the correct position (here
depth 3). Then it says 1x20 + 0x21 + 0x22 = 1.
And those of depth 2: 1x20 + 0x21 = 1, and of
depth 1: 1x20 = 1. Now the results are the same,
namely 1.
If we now put the other decimal value read from
left to right in the entire diagram above, instead
of the current decimal value, you will see that
this always, at any depth, is part of the nicely
increasing series of 0,1,2,3,4,5, etc.

 Depth:3 (rank-1) 2 1 0
(6) 1[3-000=0 {0}]──────┐ (rank-1)
 ├(4) 1[2-00=0 {0}]───────┐
(7) 2[3-100=4 {1}]──────┘ │ (rank-1)
 ├(2) 1[1-0=0 {0}]────────┐
(8) 3[3-010=2 {2}]──────┐ │ │
 ├(5) 2[2-10=2 {1}]───────┘ │
(9) 4[3-110=6 {3}]──────┘ │
 ├(nr1) 1[0] Finale.
(12) 5[3-001=1 {4}]──────┐ │
 ├(10) 3[2-01=1 {2}]───────┐ │
(13) 6[3-101=5 {5}]──────┘ │ │
 ├(3) 2[1-1=1 {1}]────────┘
(14) 7[3-011=3 {6}]──────┐ │
 ├(11) 4[2-11=3 {3}]───────┘
(15) 8[3-111=7 {7}]──────┘

number of nodes: 15

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 39/40

85Blaise Pascal Magazine 86 2020

Where does this Encoding information come from?
After some research on the internet, the following
website was found:
unicode-table.com/en/#box-Drawing

Widechar character

A wide character is a computer character datatype
that generally has a size greater than the traditional
8-bit character. The increased datatype size allows
for the use of larger coded character sets.

A wide character is a 2-byte multilingual character
code. Any character in use in modern computing
worldwide, including technical symbols and special
publishing characters, can be represented according
to the Unicode specification as a wide character.

WideChar

A variable of type WideChar, which has a synonym
of UnicodeChar (type UnicodeChar = WideChar;), is
exactly 2 bytes in size, and usually contains one
Unicode character in UTF-16 encoding. As it is
impossible to encode all Unicode code points (a code
point normally corresponds to a character) in 2
bytes, two WideChars may be needed to encode a
single code point.

As of version 3 of Free Pascal, the Char datatype is a
synonym for an AnsiChar. However, in the future the
Free Pascal compiler may consider Char a synonym
for WideChar.

What is a widechar?

Unicode chars

When printing a , we use AnsiChar (= 1 byte) scheme

characters for the plain text and WideChar (= 2 byte)
for the line elements. Actually, that is not done
because you should not actually put them together
because you could lose half of the WideChar. If you
still want to merge them, the Pascal compiler of the
ShortString makes a WideString so that all
information is retained.
In the message window of the Lazarus IDE the
following text will appear:
Warning: Implicit string type conversion from
"ShortString" to "WideString"
Below a code example of which the compiler issues a
warning in the message window:

fig 28: warning: Compiler warnings about ShortString en WideString “abuse”

for WideChar. warning in the message window:

fig 28: warning: Compiler warnings about ShortString en WideString “abuse”

for WideChar

COUNTDOWN SCHEDULE FOR A BADMINTON TOURNAMENT PAGE 40/40

86Blaise Pascal Magazine 86 2020

Since Delphi 7 (2007), Delphi has been fully
standardized for the use of unicode chars. For Lazarus
you need to add the lazUTF8 unit to the uses clause if
you want to use unicode chars in your code:

unit ;FTree

{$mode objfpc}{$H+}

interface

uses

 , , , , , Classes SysUtils Forms Controls Graphics

Dialogs StdCtrls lazUTF8, , ;

 … , ;trls lazUTF8

 …

THE TREE PROGRAM
Now that all this preliminary work has been done,
the code can be executed. A simple program -
classtrnd-has been written for that. With which the
depth to be printed can be set to a maximum of
eight and the schedule, printed in different ways, is
written to a text file. In addition, it can also be sent
as a demonstration to the canvas of the form.

fig 29: The classtrnd program

The form has two scroll bars that allow you to scroll
to the invisible portion of a schedule when the
scheme is too large for the window.
The final but important code
Now that the schedule has been printed, the work is
done and all the memory used must be released
again before the program can be closed. That also
happens recursively and again in a different order.
First you go to the nodes themselves to check there
whether both the Up and Dn fields are Nil and then
the memory for that node itself can only be released.
Hence the name PostOrder.

In the old code, the release of the memory happens
with the counterpart of New, Dispose. Dispose () is
called 2x here. The first time, the destructor
ndx.Done of the index is called first, which clears
the memory of the index and then the pointer itself
is released with Dispose command. The second
Dispose releases the memory for the node itself.

The old code

 // TTr.Destroy 1993
 // Destructor for tree's nodes
 // developed 20 februari 1993

DESTRUCTOR . ;TTr Done

 (:);PROCEDURE PostOrder reflink PTrnd
 BEGIN

 <> if NIL thenreflink
 BEGIN

 (^.);PostOrder reflink Up

 (^.);PostOrder reflink Dn
 // both nodes (Up and Dn) are Nil so:
 (^. ,);Dispose reflink ndx Done
 // first ndx.Done, then the reflink
 ();Dispose reflink

 ;END

 ;END

BEGIN

 ();PostOrder treestart

END;

Because the new code combines the two old records
into one Class, the memory used by the node can
also be released at once. This happens when using a
Class using the Free method. Finally, the ancestor
Class memory itself is released by calling the reserved
word Inherited.

(**-- TTr.Destroy -----------------------------------2020---*
 * Destructor for tree's nodes *
 *--**)
DESTRUCTOR . ;TTr Destroy

 (:);PROCEDURE PostOrder reflink TTrnd
 BEGIN

 <> if NIL thenreflink
 BEGIN

 (.);PostOrder reflink GetFUp

 (.);PostOrder reflink GetFDn
 // both nodes (Up and Dn) are Nil so:
 . ;reflink Free

 ;END

 ;END

BEGIN

 ();PostOrder GetFRoot

 ;inherited

END;

And with this all the used memory is released
and the program can be closed.

T
h

e
 L

 a
 z

 a
 r

 u
 s

 F
 a

 c
 t

 o
 r

 y
LAZARUS SPECIAL EDITION 2.0.6
THIS PROGRAM IS FREE (YOU CAN DOWNLOAD IT HERE:
(https://www.blaisepascalmagazine.eu/9372-2/)
or from our website
Colourbuttons,(HS) Free including Code,
Webcore (TMS) Free, fully functional, no code
kbmMemtable(Standard Version)
Components4DevelopersFree, fully functional, no code

You can compile & add other components to this version.
Do NOT do: CleanUp and Build from the Lazarus Menu.
Then you will damage the files for this version, because it can NOT
recompile the sources.
But you probably will never have to...
Be sure to have a copy of this on your system

You can unpack this zip file and simply copy it to any directory,
even a USB stick and it will work.

IMPORTANT:
Request a trial license:
https://www.tmssoftware.com/site/trialkey.asp
You need to install the TMS Webcore Trial
TMSWEBCoreXE12_BIN.zip
You can install only Webcore for Lazarus or install it as well for Delphi.

Lazarus TMSDemo Projecten
(https://www.blaisepascalmagazine.eu/
wp-content/uploads/2019/12/
LazarusTMSDemoProjecten.zip)or go to our website

Align \ Anchors\ Bootstrap \ DataModule \ Dataset \ DBGrid \
EditAutoComplete \ FilePicker \ Formhosting\
Forminheritance \ Frames\GridPanel \ HTML\ ImageZoom \
IndexedDB \ MainMenu \ MessageDialogs \ Multiform \
PaintBox \ Pictures \ PushNotifications \ Regular Expressions \
ResponsiveGrid \ ResponsiveGridPanel \ RichEditor \ Simple \
ableControl \ Themes \ Treeview \ Accordion\Upload \
WebCrypto

Lazarus206KbmMemtable_ChangeTool
https://www.blaisepascalmagazine.eu/wp-
content/uploads/2019/12/
KbmMemtable_ChangeTool.zip

THE SEARCH FOR A SPECIAL NUMBER PAGE 1/2
BY DAVID DIRKSE

INTRODUCTION
A well known math puzzle is this:
A number has 2 as the lowest digit.
If this digit is moved to the left of the number the
effect is multiplication by 2.
Similar: A number has 2 as the leftmost digit.
If this digit is moved right of the number the
effect is division by 2.
The funny thing about this puzzle is that is
requires only primary school calculation
however even math teachers have problems
solving it.
After some tries by hand the question arises if such
a number exists anyhow.
Also : are there digits other then 2 possible and :
are there other factors possible than 2?
This article describes a Delphi program that
searches for number having these properties.

The algorithm.

For explanation we use digit 2 as a start and also a
multiplication factor of 2.
Note: a carry is written as (..)
To start 2
2 x 2 = 4 42
2 x 4 = 8 842
2 x 8 = 16 (1)6842
2 x 6 = 12 + 1 = 13 (1)36842
2 x 3 = 6 + 1 = 7 736842

Finally 105... 736842
2 x 1 = 2 2105... 736842

Now the first and the last digit are equal
(and no carry exists)

Discard the lowest “2” digit and we have
found a number that divides by 2 if the first digit is
moved right of the number. The picture above
shows the program at work. UpDown controls,
associated with statictext components, select the
first digit and the multiplication factor.

The button starts the search.GO

The button copies the result tot he SAVE

clipboard, which allows for pasting in text
editors.
If step mode is checked, the program stops after
each iteration, showing intermediate results.
The number is stored in byte array A[0…120]
Integer N is the index of array A[].

Initialization:.
N := 0;
A[0] := start digit.

Step 1:

A[N] 2 is multiplied by , the result placed in
A[N+1] A[N+2] (lower digit) and (carry).

Step 2:
N := N + 1;

Steps 1 and 2
are repeated until (no solution) N = 120

or and (no carry).A[N] = A[0] A[N+1] = 0

There is also a Lazarus version

DXexpertstarter

88Blaise Pascal Magazine 86 2020

This code does the job:

 …..
procedure . (:);TForm1 GObtnClick Sender TObject

var , , , , : ;carry i f h N byte

 : ;hit boolean
begin

 := ;activecontrol nil

 := [] := ;for to doi maxN A i0 0
 ();displayA 0
 [] := . ; A N0upDown Position0 //starting digit

 := . ; f factorUpdown Position //factor
//--
 := ; N 0 //array A index
 repeat

 ();inc N

 [] := [-]* + [];A N A N f A N1
 := ;h 0
 [+] >= while doA N h 10 //handle carries
 begin

 := [+] div ;carry A N h 10
 [+] := [+] mod ;A N h A N h 10
 ();inc h

 [+] := [+] + ;A N h A n h carry

 ;end

 := ([] = []) (=);hit A N A h0 0and

 until N maxN hit (=) ;or
//--

 if then beginhit

 . := ; msgText Caption 'solution'

 (); displayA N
 end
 else begin

 . := ; msgText Caption 'no solution'

 . := ; label4 Caption ''

 ;end

end;

Step mode

If is selected, after each iteration then stepMode

variable is set stopflag true

followed by :
while stopFlag do
application.ProcessMessages;

Pressing <SPACE BAR> resets the so stopflag

the proces continues.

This needs the property set to keyPreview true

in the form1 object inspector.

The search procedure started with
Activecontrol := nil.

This prevents the <SPACE> character being
send to the GO button which has the focus after
pressing.

Display of I use a paintbox for display.array A[]

Reason is that this allows for the display of digits
in different colors.

Carries are displayed in red.
Courier new font is used, having characters with a
fixed width.

A[1] is placed right, character position x is
decremented to display the next characters left.
procedure does the job.displayA(n : byte);

n is the number of digits.

Any non zero character from a higher index of n
from is painted in red.A[n]

Saving the result to the clipbord.

Clipbrd unit is added to the clause.uses

With the result saved in string s, this statement
does the job:
clipboard.AsText := s;

But first must be copied to A[] s.

The highest digit is transferred first.var string : ;s

 , , : ;i n p byte
begin

 := ;s ''

 := ;n maxN

 ([] =) (>) ();while and doA n n dec n0 0
//find first non zero digit
p := ;0
 := for downto doi n 1
 begin

 = if then beginp 3
 := + '.';s s

 := ;p 0
 ;end

 := + ([] + ());s s char A i ord '0'

 ();inc p

 ;end

end;

Please refer to the source code for more
details.

An astonishing property of the answer
(for factor 11) is this:
Split the number in halves and add then.
The result shows only digits: “9” 99……99.

At counter p = 3 " . " is placed for clarity,
separating triple digits.

89Blaise Pascal Magazine 86 2020

90Blaise Pascal Magazine 86 2020

Official Embarcadero partner in Benelux,
France and French speaking countries

Contact us for free advice, promotions and quotations,
license management questions,

hiring developers,
training, consultancy and much more!

Watch our new French YouTube channel with training
video’s:

Regardez notre nouvelle chaîne YouTube en français. Vous
y trouverez des vidéos de formation pour Delphi

www.barnsten.com / info@barnsten.com
France: Téléphone +33 (0)9 72 19 28 87
Benelux: Telefoon +31 (0)2 35 42 22 27

https://bit.ly/3aMG8sx

VIDEOVIDEO

Blaise Pascal

begin
end

AI RECOGNIZES SPEECH PATTERNS COMING FROM THE BRAIN

MIND-READING AI IS ABLE TO TRANSLATE
THOUGHTS INTO WORDS USING A BRAIN
IMPLANT.
This article is based on a publication in “NewScientist”

Some types of Artificial Intelligence can accurately
translate thoughts into sentences of limited size
through their learning patterns - a vocabulary of
± 250 words.

The system can greatly help us make a start in
speech recovery, for example for people cut off
from communication for any reason.

Joseph Makin and a number of colleagues from
the University of California at San Francisco

used in-depth learning algorithms to study the
brain signals of multiple women while speaking
language.

The women, who all have epilepsy as a clinical
picture, were already in the condition that
electrodes had been inserted into their brains
because of their illness in order to be able to
monitor possible attacks.

Each patient individually was asked to read a
number of sentences while the Development Team
recorded the brain activity.
The vocabulary was based on 250 unique words,
spoken in complete sentences.
The fed this brain activity OT (Research Team)

data to a , and through neural network algorithm

an ever-repeating pattern, the AI network

attempts to discover frequently occurring patterns
that can be linked to repetitive speech properties,
such as vowels , consonants, timbre, hiccups and
coherence of the entire sentence.

These previously recorded patterns were then
presented to another neural network also
intended for this task, attempting to convert them
into words and form a sentence.

Each patient repeated the sentences at least twice
with the last repetition not being part of the
previously obtained training data, allowing the
system to be put to the test:
When a person speaks the same sentence
repeatedly, the corresponding brain activity will
be similar but not one-on-one.

It is not really important to remember the brain
activity of these sentences. The has to AI network

register what is comparable, so that it can
extrapolate the meaning and content. In the four
patients, the best softening of the AI network

turned out to make an average number of errors
of only 3 percent.

The use of a small number of short sentences
makes it easier for the AI network to discover
syntactic similarities.

The team tried to convert the brain signals into
individual words rather than whole sentences,
but that resulted in an increased error rate of 38
percent. The thus clearly teaches facts AI network

about which words fit together, and the
conclusion is not just which neural activity is
mapped to which words.

Unfortunately, this makes it difficult to expand the
system to a larger vocabulary as each new word
produces more possible sentences, which is bad
for the overall learning curve.
Presumably, it will have to go the same length of
time as that also took years to get to great OCR

accuracy - and this is a much more difficult task.

About 250 words can of course make sense for
people who cannot speak.

The average word knowledge per person is much
greater. The average person's vocabulary develops
from about 300 words at two years of age,
through 5,000 words at five years old, to about
17,000 words at 12 years of age.

It stays around this number of words for the rest
of most (average) people's lives, with the result
that this is about the same number of words as
the words recorded by a popular newspaper in the
course of producing the daily editions, while a
graduate might have a vocabulary that is almost
twice as large (23,000 words).
Shakespeare, had one of the largest recorded
vocabulary of an English writer at about 30,000
words. But him we cant make speak again.

91Blaise Pascal Magazine 86 2020

PREFACE
One of the very nice
things about users is that
they sometimes request
features that I did not
originally think about.

So how is it done?

First we create a TStringList:

I have also defined a placeholder for the
TStringList instance, called strings. This makes
it easy to access it later on, and even to replace it
with another descendant on the fly.TStrings

This time I show how to bind from code, but using
the textual expression method:

Binding Bind self. (,);'{@strings.#strings, to:Edit10.Text, twoWay:true}'

Binding Bind self. (,);'{@strings.#name, to:Edit11.Text, twoWay:true}'

Binding Bind self. (,);'{@strings.#value, to:Edit12.Text, twoWay:true}'

Binding Bind self. (,);'{@strings.#objects, to:Edit13.Text, twoWay:true}'

As you probably have noticed, the source
reference in the binding use a syntax like
@strings.#strings. Obviously we want to
bind between the placeholder strings (which
refers to the instance), FStrings:TStringList

and the Edit controls.
To tell what part of the item we want TStrings

to bind to, we refer to either TStrings’s

properties directly, or what is more relevant in this
case, we refer to a couple of specialized binding
members, namely #strings, #name, #value
and #objects.

#strings refers to that we want to bind to the
complete strings value (name, separator and value
if such are defined), for the current position by
refered to by the bindings navigator.

#name refers to that we only want to bind to the
name part.

#value refers to that we only want to bind to the
value part.

#objects refers to that we want to bind to the
objects property. It is treated as an integer or
int64 value depending on if you are running on a
32 or 64 bit CPU. The reason for this, is that the
Objects property often is used as a strings item
integer tag value.

Remember… if you like or what you readkbmMW

here, share it with your friends and colleagues.

 Also remember you can get going
 totally for free by downloading

 , kbmMW Community Edition

 which can be used for teaching,
 personal use and even commercial
 use (terms apply). kbmMW
Community Edition do not include source, and
only supports latest version of Delphi in 32 bit
mode, it however contains most features found in
kbmMW Enterprise Edition except those that
require compilation of the kbmMW source code.

Happy binding

Kim/C4D

SMARTBINDING WITH KBMMW #5

FStrings TStringList Create:= . ;

FStrings AddObject TObject. (, ());'Name1=Item 1' 1000
FStrings AddObject TObject. (, ());'Name2=Item 2' 2000
FStrings AddObject TObject. (, ());'Name3=Item 3' 3000
FStrings AddObject TObject. (, ());'Name4=Item 4' 4000
FStrings AddObject TObject. (, ());'Name5=Item 5' 5000
Binding DefineData FStrings. (,);'strings'

The four could have been bound up TEdit’s

using designtime binding as have been shown
earlier, or by binding specifically to the FStrings
variable. But I do recommend using the
placeholder technique since it makes it so easy to
separate binding from data, and thus to replace
data with something else.

This article explains a new one of those, namely
binding to (including TStrings TStringList

and other descendants). The shown TStrings

features will be available in the upcoming release
of kbmMW.

Binding to a TStringList

First let us see what it can do, then I will show how
to do it:

COMPONENTS
DEVELOPERS4COMPONENT
DEVELDEVEL

COMPONENTS
DEVELOPERS4COMPONENT
DEVELDEVEL

92Blaise Pascal Magazine 86 2020

https://www.av-comparatives.org/comparison/

Independent Tests of Anti-Virus Software

FastMM5
Homepage: https://github.com/pleriche/FastMM5
FastMM is a fast replacement memory manager for Embarcadero Delphi applications that scales well
across multiple threads and CPU cores, is not prone to memory fragmentation, and supports shared
memory without the use of external .DLL files.

Version 5 is a complete rewrite of FastMM. It is designed from the ground up to simultaneously keep
the strengths and address the shortcomings of version 4.992:

— Multithreaded scaling across multiple CPU cores is massively improved, without memory usage
 blowout. It can be configured to scale close to linearly for any number of CPU cores.

— In the Fastcode memory manager benchmark tool FastMM 5 scores 15% higher than FastMM
 4.992 on the single threaded benchmarks, and 30% higher on the multithreaded benchmarks.
 (I7-8700K CPU, EnableMMX and AssumeMultithreaded options enabled.)

— It is fully configurable runtime. There is no need to change conditional defines and recompile to
 change options. (It is however backward compatible with many of the version 4 conditional
 defines.) Debug mode uses the same debug support library as version 4
 FastMM_FullDebugMode.dll) by default, but custom stack trace routines are also supported.
 Call FastMM_EnterDebugMode to switch to debug mode ("FullDebugMode") and call
 FastMM_ExitDebugMode to return to performance mode. Calls may be nested, in which case
 debug mode will be exited after the last FastMM_ExitDebugMode call.

— Supports 8, 16, 32 or 64 byte alignment of all blocks.
 Call FastMM_EnterMinimumAddressAlignment to request a minimum block alignment,
 and FastMM_ExitMinimumAddressAlignment to rescind a prior request. Calls may be nested,
 in which case the coarsest alignment request will be in effect.

— All event notifications (errors, memory leak messages, etc.) may be routed to the debugger (via
 OutputDebugString), a log file, the screen or any combination of the three. Messages are built
 using templates containing mail-merge tokens. Templates may be changed runtime to facilitate
 different layouts and/or translation into any language. Templates fully support Unicode, and the
 log file may be configured to be written in UTF-8 or UTF-16 format, with or without a BOM.

— It may be configured runtime to favour speed, memory usage efficiency or a blend of the two via
 the FastMM_SetOptimizationStrategy call.

Hot off the press
FastMM5 changes towards commercial
licensing. Be aware of the new rules

Once payment has been made at https://www.paypal.me/fastmm (paypal@leriche.org),

please send an e-mail to for confirmation. fastmm@leriche.org

Support is available for users with a commercial licence via the same e-mail address.

94Blaise Pascal Magazine 86 2020

COMPILE TOOL #1 – AN EASIER WAY TO COMPILE PROJECTS PAGE 1/9
BY KIM MADSEN

But one of the things did very well.. in the Delphi

early days (I suppose until got to see the light), XE

was to consistently tell you that some 3rdparty
packages should be referenced to compile
kbmMW’s packages nicely.
Delphi was even nice enough to add the relevant
requirements to the package so kbmMW

everything just worked.

Unfortunately, has stopped to do that Delphi

stabily since many years. I have reported it to
Embarcadero on numerous occasions, and they
have acklowledged the issue, but have not been
able to figure out why it has stopped working.
Mind you.. sometimes it works… but then
suddenly it does not, usually when that happens,
it stops working for good in my experience.

So the Compile Tool has as goal to:

— Know everything about the units and
 requirements of the project in hand
— Be able to manage knowledge about

 3rdparty libraries/packages
— Produce correct valid project files for the

 project that the Compile Tool has been
 prepared for.
— Compile and install the projects

 automatically
— Be able to recompile and restart itself,

 so it is up to date with whatever settings you
 may have made in for example
 and thus based on thosekbmMWConfig.inc

 settings, is able to produce correct project
 files.

At first I created it to make compilation and
installation of easier, but it soon kbmMW

dawned to me that should be kbmMemTable

supported too (standalone), and that it as
such could be a generic tool that will work for
other developers too.
(Currently it is not released with license for other 3rdparty
developers to use it, but ping me if you have interest in that.)

Some people may have wondered if I have fallen
off the face of the earth as I have been less vocal
the last couple of weeks.

It has nothing to do with the dreadful COVID-19
infection I suppose most of us, one way or the
other, are affected by. It rather has to do with
being overly busy with various things.

One of the things, that relate to kbmMW and
kbmMemTable, is the development of a brand new
COMPILETOOL which will be included in next
release of kbmMemTable and kbmMW.

The purpose of the CompileTool is … TA DAAA….
to compile stuff �

So what’s new about that? Not really much… but
let me explain the rationale behind my apparent
brain damage.

THE COMPILE TOOL
Compiling and installing has in kbmMemTable, Delphi

always been fairly easy. In only mode, C++Builder

not so much, partly because the only environment C++

diverge more and more from what kbmMemTable

originally supported, and the matching project C++

files.

To complicate matters even more, can be a kbmMW

pain to install in due to ability to Delphi kbmMW’s
seemlessly integrate with loads of 3rdparty stuff.
Paths and requirements and more needs to be provided.
In only mode it is even more complex to get it C++

going, and despite the Compile Tool helping much on
the situation, it is not fully solved with yet, kbmMW

because exhibits random crashes and C++Builder

unexplained compile/link errors (internal errors).

COMPONENTS
DEVELOPERS4COMPONENT
DEVELDEVEL

expertstarter DX

COMPONENTS
DEVELOPERS4COMPONENT
DEVELDEVEL 95Blaise Pascal Magazine 86 2020

COMPILE TOOL FOR KBMMEMTABLE
Let us have a look at the for Compile Tool

kbmMemTable. It will usually be found, as
CompileTool.exe, in the source directory of the
project for which it is supposed to support.
Further the source of the Compile Tool will be
found in the subdirectory CompileTool under
the managed projects source directory.

If you loose , it can be CompileTool.exe

recompiled by opening and building the project in
the CompileTool directory.
You can not use the CompileTool

source/executable from a different project (like
kbmMW), because they contain different settings,
specially in the uCompileToolFeatures.pas

file, which is specialized for each project.

If you start on a computer on CompileTool.exe

which or is not Delphi, C++Builder RAD Studio

installed, you will get an exception and the tool
will shut down.

So let us start it on a computer with RAD Studio
installed.

On the left side, a list of supported features for
the project, is listed. In the case of kbmMemTable
it is pretty simple, and will not change, since all
features are available for all versions of
kbmMemTable. However look later for how the
Compile Tool for kbmMW looks.

In the center, the discovered versions of Delphi,
C++Builder or RAD Studio is listed. You can select,
in which of them, kbmMemTable should be
installed.

On the right side, you can follow the status of
what is happening.

At the bottom, various buttons are available.

COMPILE TOOL #1 – AN EASIER WAY TO COMPILE PROJECTS ` PAGE 2/9

COMPONENTS
DEVELOPERS4COMPONENTCOMPONENT
DEVELDEVEL 96Blaise Pascal Magazine 86 2020

COMPILE TOOL #1 – AN EASIER WAY TO COMPILE PROJECTS ` PAGE 3/9

The project files will automatically be written to
the parent directory (which is the kbmMemTable
source directory).

x Generate, compile and install – It will
generate projects, as described above, compile
the projects and automatically install the resulting
packages in the IDE, for all selected IDE’s. Usually
you will be required to close the selected IDE
before being able to compile and install. You can
start with the option -F: CompileTool.exe -F

to override the requirement to stop the IDE.
However the packages will not show up until you
restart the IDE later on, and if the packages
already was in use by the IDE you will get
compile/linker errors.
This is an example.
The result. You may notice that there are various
paths shown in the status. Those paths are
automatically picked up from your current
installation, and provided for the compiler by the
Compile Tool.

After it succeeds, you can close the tool, and start
the IDE. Now kbmMemTable will be available and
installed with all paths for Windows 32
compilation, correctly setup automatically.

So let us look at how it works when installing
kbmMW.

u Update compile tool – Will rebuild the
Compile Tool itself, and restart it with the newly
compiled executable. For kbmMemTable it is not
often needed to do, but in the case of kbmMW,
you will want to do that, everytime you have
changed something in kbmMWConfig.inc.

v Validate requirements – It will show a dialog,
where 3rdparty requirements, which the Compile
Tool has not been able to resolve itself, can be
defined. The definitions made here will be
remembered for next time in the file
CompileTool.ini, making it easier to
recompile/install without having to reconfigure
each time. The file will never be overwritten .ini

by kbmMemTable or kbmMW installations.
kbmMemTable will usually not need any settings in
this dialog. See section about kbmMW installation
further down for more information.

w Generate projects – It will produce new
kbmMemTable project files matching the selected
IDE.

COMPONENTS
DEVELOPERS4COMPONENT
DEVELDEVEL 97Blaise Pascal Magazine 86 2020

COMPILE TOOL FOR KBMMW

In this case, I have, for the demo, opened uncommented the line:kbmMWConfig.inc,

{$DEFINE KBMMW_DBISAM3_SUPPORT} // DBISAM 3 support.

and saved the file again, which essentially tells kbmMW that we want full support for DBISAM v3. (FTR
there are similar defines for 36 other databases too, incl. DBISAM v4, ElevateDB, NexusDB and many
many more).

Since this is a new setting, I first start the Compile Tool, where the Feature support at this time do not
include DBISAM3, and let it recompile itself.

COMPILE TOOL #1 – AN EASIER WAY TO COMPILE PROJECTS ` PAGE 4/9

COMPONENTS
DEVELOPERS4COMPONENT
DEVELDEVEL 98Blaise Pascal Magazine 86 2020

COMPILE TOOL #1 – AN EASIER WAY TO COMPILE PROJECTS ` PAGE 5/9

When it restarts, it looks like this:

Now the Compile Tool recognize the request for
feature support for ElevateSoft DBISAM v3.
Since it is a new 3rdparty tool that kbmMW should
support, compared to previous settings, we want to
check the requirements dialog by clicking on the
Validate requirements button.

COMPONENTS
DEVELOPERS4COMPONENT
DEVELDEVEL 99Blaise Pascal Magazine 86 2020

You can see that there are a runtime package
requirement that is currently unresolved. To resolve
it, simply type the name of the DBISAM v3 runtime
package, typically something like db300d20 or
something along those lines. As the structure of
the package name can vary wildly between various
3rdparty projects, it is left for you to type the right
value. Remember that this value will be used for all
the IDE’s that the Compile Tool will compile for.

You can include parameters in the name.
E.g.
BISAM3=db300[!–IDESHORTYPE–!][!–IDESHORTID
–!] which will replace [!–IDESHORTYPE–!] with D
for Delphi or C for C++Builder and
[!–IDESHORTID–!] with 20 for Delphi 10.3.

If you need to refer to multiple
packages/requirements for the DBISAM3 selection,
you can separate those with a semicolon ;

Click save, and the Compile Tool will remember
your settings, also for next time you start the
Compile Tool.

Clicking either Create projects or Create, compile
and install, will ensure the kbmMW project files
contains the relevant requirements.

COMPILE TOOL #1 – AN EASIER WAY TO COMPILE PROJECTS ` PAGE 6/9

Also notice that there is an extra Prerequisites
section at the top of the Compile Tools window. It
is there because kbmMW requires compilation
and installation of kbmMemTable beforehand.
You can point out where its source is, and click the
checkbox, then it will automatically recompile and
install it when you recompile and install kbmMW
via the Create, compile and install but.

COMPONENTS
DEVELOPERS4COMPONENT
DEVELDEVEL 100Blaise Pascal Magazine 86 2020

BEHIND THE SCENES

So what is happening behind the scenes? Well… I told about the file uCompileToolFeatures.pas

which is special for each project. It is in that file of the Compile Tool sources, where the project
specialities are defined.

It contains a class definition which groups a few methods which should be defined for a project.

class function const string . (:): ;TkbmCTFeatures GetText ATextInfo TkbmCTTextInfo
begin
 case ofATextInfo

 : := ; cttiCaption Result 'kbmMW Compile Tool'

 : :=cttiRebuildToolCaption Result

' Update this compile tool by automatically recompiling it.
 It is required if kbmMWConfig.inc has been modified
 since last time the compile tool was compiled.';
 : :=cttiRecreateProjectsCaption Result

' Recreate kbmMW project files from scratch
 based on settings in kbmMWConfig.inc';
 : :=cttiRecreateInstallCaption Result

' Recreate kbmMW project files from scratch based on settings
 in kbmMWConfig.inc,, compile and install if possible';
 : := ;cttiPrerequisiteCaption Result Auto compile and install kbmMemTable'

 : := ;cttiPrerequisiteExplanation Result 'If checked, select path to kbmMemTable source and project files'

 ;end

end;

COMPILE TOOL #1 – AN EASIER WAY TO COMPILE PROJECTS ` PAGE 7/9

 type

 = TkbmCTFeatures class
 const

 = ; LOWEST_SUPPORTED_BDS_VERSION 12.0 // XE5
 public

 (:): ;class function const stringGetText ATextInfo TkbmCTTextInfo

 (:);class procedure constRegisterRuntimeFeatures AInfo TProjectInfos

 (:);class procedure constRegisterDesigntimeFeatures AInfo TProjectInfos

 (: ; : ; :): ;class function const const constBuildParameters AMain TfrmMain ACpp boolean AIDE TIDEInfo TStringList

 (: ; : ; class function const constGenerateProjectFileName ACpp boolean AIDE TIDEInfo

 const string :): ;ADesignTime boolean

 ;end

The above specifies the texts to be shown and thus can be configured for other projects (like
kbmMemTable which Compile Tool has a similar section).

class function const const . (: ; : ; TkbmCTFeatures BuildParameters AMain TfrmMain ACpp boolean

const :): ;AIDE TIDEInfo TStringList

This method builds relevant parameters that must exist for the project file generation. It includes version
numbers, project names and descriptions and more. The method will be called multiple times during
project generation.

COMPONENTS
DEVELOPERS4COMPONENT
DEVELDEVEL 101Blaise Pascal Magazine 86 2020

This section defines all the features that can exist in a , and their library kbmMW runtime package

requirements and units, including the DBISAM v3 option.

AddProjectInfo takes 5 arguments:

u The unique ID of the project part. For example KBMMEMTABLE.
 Any ID can be used, as long as it is unique.

v The descriptive name of the project part.

w The libraries that are required for the project part, separated by semicolon and without file
 extensions. If it is an empty string, there are no requirements for that particular project part.
 If it is a question mark, it is unknown, and thus can be handled by the user in the Compile Tool

 package resolver dialog. It is allowed to include paths if needed, but recommended to only use
 relative paths from the Source directory.
 Further it is legal to prefix each library with either < or }. Doing so will ensure to sort the item
 first (<) or last (}), rather just according to its regular name, when project files are generated.

x The unit names (without extension) that are to be part of this project part. Multiple unit names can
 be specified separated by semicolon (;). If the unit also encompasses a form or datamodule file,
 use this syntax:
 Eg. unitname=formname:formclass.
 kbmMWCustomJavaService=kbmMWCustomJavaService:TkbmMWSimpleService;}JNI

y A boolean indicating if a requirement is mandatory for this project part. It is used for
 validation/warning that the project file may not have been generated correctly, if the requirement
 value has not been made available.

COMPILE TOOL #1 – AN EASIER WAY TO COMPILE PROJECTS ` PAGE 8/9

class procedure const . (:);TkbmCTFeatures RegisterRuntimeFeatures AInfo TProjectInfos
begin

 . (, , , ,);AInfo AddProjectInfo true'RTL' 'Embarcadero RTL' 'rtl' ''

 . (, , , ,);AInfo AddProjectInfo true'VCL' 'Embarcadero VCL' 'vcl;vclimg' ''

 . (, , , ,);AInfo AddProjectInfo true'FMX' 'Embarcadero FMX' 'fmx' ''

{$IFDEF KBMMW_ENTERPRISE_EDITION}
 . (, , , ,);AInfo AddProjectInfo true'KBMMEMTABLE' 'kbmMemTable Professional Edition' 'kbmMemRun[!--IDE--!]Pro' ''
{$ELSE}
 {$IFDEF KBMMW_PROFESSIONAL_EDITION}
 . (, , , ,);AInfo AddProjectInfo true'KBMMEMTABLE' 'kbmMemTable Professional Edition' 'kbmMemRun[!--IDE--!]Pro' ''
 {$ELSE}
 . (, , , ,);AInfo AddProjectInfo true'KBMMEMTABLE' 'kbmMemTable Standard Edition' 'kbmMemRun[!--IDE--!]Std' ''
 {$ENDIF}
{$ENDIF}
...
 {$IFDEF KBMMW_DBISAM3_SUPPORT}
 . (, , , ,);AInfo AddProjectInfo true'DBISAM3' 'ElevateSoft DBISAM v3 data adapter' '?' 'kbmMWDBISAM3'
 {$ENDIF}

...

COMPONENTS
DEVELOPERS4COMPONENT
DEVELDEVEL 102Blaise Pascal Magazine 86 2020

class procedure const . (:);TkbmCTFeatures RegisterDesigntimeFeatures AInfo TProjectInfos
begin

 . (, , , ,);AInfo AddProjectInfo true'RTL' 'Embarcadero RTL' 'rtl' ''

 . (, , , ,);AInfo AddProjectInfo true'VCL' 'Embarcadero VCL' 'vcl;vclimg;vclx' ''

 . (, , , ,);AInfo AddProjectInfo true'IDE' 'Embarcadero IDE' 'designide' ''

 . (, , , ,);AInfo AddProjectInfo true'FMX' 'Embarcadero FMX' 'fmx' ''

{$IFDEF KBMMW_LICENSE_DATABASE}
 . (, , , ,);AInfo AddProjectInfo true'KBMMW core database' 'kbmMW Core database' 'dbrtl;vcldb' ''
{$ENDIF}
...

This section defines all the features that can exist in a kbmMW designtime package,
and their library requirements and units.

It follows the same explanation as for the runtime part.

The above code is used for creating the relevant project file name for a specific IDE. The file
name should not include any file extensions. The method will be called multiple times
during project creation.

FINAL PLEA

If you have reached here, then you are qualified to assist me making the Compile Tool
better. Since kbmMW supports so many 3rdparty tools, I have for now only specified library
requirements in the Compile Tool for some of them. For the remaining, I have left it for you
to define, simply because I do not know the naming rules for all the various 3rdparty
libraries. Please comment here on this thread if you have some pet libraries that kbmMW
supports and that you would like the Compile Tool to know about, preferably with the
complete description of how the library name is defined. I.e. what each part of the name
consists of.

If the name do not change based on the version of the 3rdparty library, it most likely will
be possible to add automatic support in the Compile Tool for that particular library, making
it even easier to compile and install kbmMW.

COMPILE TOOL #1 – AN EASIER WAY TO COMPILE PROJECTS ` PAGE 9/9

class function const const . (: ; : ; TkbmCTFeatures GenerateProjectFileName ACpp boolean AIDE TIDEInfo

const string :): ;ADesignTime boolean

...

COMPONENTS
DEVELOPERS4COMPONENT
DEVELDEVEL 103Blaise Pascal Magazine 86 2020

EESB, SOA,MoM, EAI TOOLS FOR INTELLIGENT SOLUTIONS. kbmMW IS THE PREMIERE N-TIER PRODUCT FOR DELPHI / C++BUILDER

kbmMemTable is the fastest and most feature rich in
memory table for Embarcadero products.
● Easily supports large datasets with millions of records
● Easy data streaming support
● Optional to use native SQL engine
● Supports nested transactions and undo
● Native and fast build in M/D, aggregation/grouping,
 range selection features
● Advanced indexing features for extreme performance

● RAD Studio XE2 to 10.3 Rio supported
● Win32, Win64, Linux64, Android, IOS 32, IOS 64 and
 OSX client and server support
● Native high performance 100% developer defined
 application server
● Full support for centralized and distributed load
 balancing and failover
● Advanced ORM/OPF support including support of
 existing databases
● Advanced logging support
● Advanced configuration framework
● Advanced scheduling support for easy access to
 multithread programming
● Advanced smart service and clients for very easy
 publication of functionality
● High quality random functions.
● High quality pronouncable password generators.
● High performance LZ4 and Jpeg compression
● Complete object notation framework including full
 support for YAML, BSON, Messagepack, JSON and XML
● Advanced object and value marshalling to and from
 YAML, BSON, Messagepack, JSON and XML
● High performance native TCP transport support
● High performance HTTPSys transport for Windows.
● CORS support in REST/HTML services.
● Native PHP, Java, OCX, ANSI C, C#, Apache Flex client
 support!

● High speed, unified database access (35+ supported
 database APIs) with connection pooling, metadata and
 data caching on all tiers
● Multi head access to the application server, via REST/AJAX,
 native binary, Publish/Subscribe, SOAP,
 XML, RTMP from web browsers, embedded devices, linked
 application servers, PCs, mobile devices, Java systems
 and many more clients
● Complete support for hosting FastCGI based applications
 (PHP/Ruby/Perl/Python typically)
● Native complete AMQP 0.91 support (Advanced Message
 Queuing Protocol)
● Complete end 2 end secure brandable Remote Desktop with
 near realtime HD video, 8 monitor support,
 texture detection, compression and clipboard sharing.
● Bundling kbmMemTable Professional which is the fastest
 and most feature rich in memory table for Embarcadero
 products.

COMPONENTS
DEVELOPERS4

KBMMW PROFESSIONAL AND ENTERPRISE EDITION
V. 5.10.20 RELEASED!

DX

· NEW! SmartBind now fully supports VCL, FMX,

 including image/graphics and TListView

· NEW! SmartBind data generators and data proxies

 for easy separation of data sharing concerns in modular
 applications

· NEW! SmartEvent for easy separation of event

 and execution workflow based concerns for the ultimate in
 modular application design

· NEW! Native highly scalable TCP server transport

 now also supports REST

· Significant improvements and fixes in many areas including

¹ RTTI
¹ Scheduler
¹ LINQ
¹ Object Notation
¹ ORM

	Page 4
	Page 12
	Page 20
	Page 21
	Page 62
	Page 72
	Page 93

	Artificial DNA:

