
F O R D E L P H I, L A Z A R U S, A N D P A S C A L

R E L A T E D L A N G U A G E S / W E B A P P S,

I N T E R N E T, A N D R O I D, I O S, M A C ,

W I N D O W S & L I N U X

DX
Blaise Pascal

BLAISE PASCAL MAGAZINE 69/70

RADical Web

TMS WEB Core

WEB

TMS WEB By Detlef Overbeek and Holger Flick
Installation

The first project
Architecture
Components

Examples of projects

Enumerated Types and Associated Attributes
By Paul Nauta

Funxy
By David Dirkse

kbmMW LINQ #1
REST easy with kbmMW #9 – Database 4

– Data augmentation and XML
REST easy with kbmMW #10 – Logging to a database

By Kim Madsen

CLIENT DATASETS TO-DO LIST PART 1 PAGE 8/8

barnsten
• development tools • training
• consultancy • hands-on workshops
• components • support

https://www.barnsten.com/default/promotions/amnesty

TO UPGRADE

FROM ANY PREVIOUS
VERSION

of
Delphi / C++Builder/Rad Studio

AMNESTY
for everybody till 31 march 2018

After 31 march 2018
there are no

upgrade products anymore.
ACT NOW!

2Issue Nr 1/2 2018 BPM

DX

CONTENTS

D E L P H I , L A Z A R U S , S M A R T M O B I L E S T U D I O ,
A N D P A S C A L R E L A T E D L A N G U A G E S
F O R A N D R O I D, I O S, M A C, W I N D O W S & L I N U X

Publisher: Foundation for Supporting the Pascal Programming Language
in collaboration with the Dutch Pascal User Group (Pascal Gebruikers Groep)
© Stichting Ondersteuning Programmeertaal Pascal

BLAISE PASCAL MAGAZINE 67/68

BARNSTEN - LAST OPPORTUNITY PAGE 2
BARNSTEN - TOKYO RELEASE 3 PAGE 5
BLAISE PASCAL MAGAZINE / SPECIAL OFFER PAGE 47
BLAISE PASCAL MAGAZINE / COMBINATION PAGE 55
COMPONENTS 4 DEVELOPERS PAGE 100
FASTREPORT NEW RELEASE PAGE 51

ADVERTISERS

3

ARTICLES

3

TMS WEB By Detlef Overbeek and Holger Flick Page 6
Installation Page 8
The first project Page 9
Architecture Page 14
Components Page 18
Examples of projects Page 21

PROJECT NAME PAGE ILLUSTRATIONS NRS CODE LISTING PAGE
Simple standard controls demo 21 26/27 7 21
Align 22 28/29/30
Anchor 23 31/32
Canvas drawing on TPaintbox 24 33/34 8 24
Multiform Application 25/26 35/36/37/38 9 26
Message Dialog 27/28 39/40/41 10 28
Grid Panel 29 42/43
HTML Template 30/34 44/45 11 30
Client Dataset 31/32 46/47
Bootstrap theme 33/38 48
RichEditor 34/35 49/50/51
FNC Grid 36/37 52/53 12/13 37
FNC TableView 38/39 54/55
FNC Tabset &Page Control 40 56
FNC NavigationPanel 41/42 57/58
FNC Listbox 43 59/60
FNC Chart 44-46 61/62/63/64/65/66/67
FNC Planner 48-50 68/69
FNC Planner TVGuide 52-55 70/71
FNC TreeView 56-58 72/73
Simple REST Service 59/60 74/75/76 14 60
Google Calendar 61/62 77/78
MyCloudData 63/64 79/80
Embedding YouTube&GoogleMaps 65/66 81/82 15 66
GeoLocation 67 83 16 67
jQWidget controls 68-70 84/85 17 70

Enumerated Types and Associated Attributes Page 71
By Paul Nauta
Funxy Page 85
By David Dirkse
kbmMW LINQ #1 Page 90
REST easy with kbmMW #9 – Database 4 Page 95
– Data augmentation and XML
REST easy with kbmMW #10 – Logging to a database Page 96
By Kim Madsen

Issue Nr 1/2 2018 BPM

All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless otherwise noted and may
not be copied, distributed or republished without written permission. Authors agree that code associated with their articles will be made
available to subscribers after publication by placing it on the website of the PGG for download, and that articles and code will be placed on
distributable data storage media. Use of program listings by subscribers for research and study purposes is allowed, but not for commercial
purposes. Commercial use of program listings and code is prohibited without the written permission of the author.

Copyright notice

Editors Correctors
Peter Bijlsma, W. (Wim) van Ingen Schenau, Rik Smit Howard Page-Clark, Peter Bijlsma
Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavour to ensure that what is published in the magazine is correct, we cannot accept responsibility for any errors or omissions.
If you notice something which may be incorrect, please contact the Editor and we will publish a correction where relevant.
Subscriptions (2017 prices)

Printed magazine edition
10 issues per annum, 44-page Delphi-only section: € 100.-- This includes postage, VAT at 6 % and all code and programs accompanying the articles.
Excluding postage the 44-page edition is € 75.-- per annum.
10 issues per annum 80-page Delphi + Lazarus sections: € 150 plus € 100 for postage.
Digital magazine edition (PDF format)
10 issues per annum 80-page Delphi + Lazarus sections: € 50.-- (excluding VAt at 21%).

Subscriptions can be taken out online at www.blaisepascal.eu or by written order, or by sending an email to office@blaisepascal.eu

Subscriptions can start at any date. All issues published in the calendar year of the subscription will be sent as well.
Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
Subscriptions can be paid by sending the payment to:
ABN AMRO Bank Account no. 44 19 60 863 or by credit card or Paypal
Name: Pro Pascal Foundation-Foundation for Supporting the Pascal Programming Language (Stichting Ondersteuning Programeertaal Pascal)
IBAN: NL82 ABNA 0441960863 BIC ABNANL2A VAT no.: 81 42 54 147 (Stichting Programmeertaal Pascal)
Subscription department
Edelstenenbaan 21 / 3402 XA IJsselstein, The Netherlands
Mobile: + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

Editor - in - chief
Detlef D. Overbeek, Netherlands Tel.: +31 (0)30 890.66.44 / Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Printed Normal Issue
44 pages

Printed IssueExtended
80 pages

Electronic Download Issue
80 pages

€ 100

€ 150 € 159

€ 60,50 € 50

€ 106,50 € 75

€ 100

Internat.
excl. VAT

Internat.
incl. VAT Shipment

WIKIPEDIA

Member and
 donator of

4

Anton Vogelaar
ajv @ vogelaar-electronics.com

Siegfried Zuhr
siegfried @ zuhr.nl

Bob Swart
www.eBob42.com
Bob @ eBob42.com

Daniele Teti
www.danieleteti.it
d.teti @ bittime.it

B.J. Rao
contact@intricad.com

Peter van der Sman
sman @ prisman.nl

Wim Van Ingen Schenau -Editor
wisone @ xs4all.nl

Rik Smit
rik @ blaisepascal.eu
www.romplesoft.de

Detlef Overbeek - Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Howard Page Clark
hdpc @ talktalk.net

Heiko Rompel
info@rompelsoft.de

Kim Madsen
www.component4developers

Paul Nauta PLM Solution Architect
CyberNautics
paul.nauta@cybernautics.nl

Vsevolod Leonov
vsevolod.leonov@mail.ru

Jeremy North
jeremy.north @ gmail.com

Boian Mitov
mitov @ mitov.com

Andrea Magni www.andreamagni.eu
andrea.magni @ gmail.com
www.andreamagni.eu/wp

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

Peter Johnson
http://delphidabbler.com
delphidabbler@gmail.com

John Kuiper
john_kuiper @ kpnmail.nl

Wagner R. Landgraf
wagner @ tmssoftware.com

Mattias Gärtner
nc-gaertnma@netcologne.de

Primož Gabrijelčič
www.primoz @ gabrijelcic.org

David Dirkse
www.davdata.nl
E-mail: David @ davdata.nl

Benno Evers
b.evers
@ everscustomtechnology.nl

Bruno Fierens
www.tmssoftware.com
bruno.fierens @ tmssoftware.com

Stephen Ball
http://delphiaball.co.uk
@DelphiABall

Miguel Bebensee
mbebensee@ibexpert.biz
http://devstructor.com

Michaël Van Canneyt,
michael @ freepascal.org

Dmitry Boyarintsev
dmitry.living @ gmail.com

Marco Cantù
www.marcocantu.com
marco.cantu @ gmail.com

Peter Bijlsma -Editor
peter @ blaisepascal.eu

Holger Flick
holger@flixments.com

Issue Nr 1/2 2018 BPM

CLIENT DATASETS TO-DO LIST PART 1 PAGE 8/8

barnsten
• development tools • training
• consultancy • hands-on workshops
• components • support

5

https://www.barnsten.com/default/promotions

Celebrate Tokyo Release 3 with Exclusive Promo

We're celebrating the latest release of RAD Studio, Delphi, and C++Builder:

Tokyo Release 3!

With powerful new features, now's a great time to start using

the best visual IDE for Delphi and C++Builder.

Join the celebration with this exclusive promotion worth up to 20% Off.

What Can You Do with Release 3?
Delphi and C++Builder Professional Editions Now Include Mobile Support

(Previously available in Enterprise, Architect or as additional purchase)
Develop for Windows and macOS Design, code, test, and publish robust cross-platform

applications (plus build Linux apps in Delphi!)
Design Stunning Applications

Visual Design is a breeze with our IDE, hundreds of components, and HighDPI support for VCL.
Modernize Apps and Improve Code Readability.

We've added C++ Rename Refactoring to help you quickly and safely update identifiers throughout

your project. Faster Builds. Enhancements for CMake Command Line Support allows for fast

parallel builds. Expanded RAD Server Support for Ext JS Rapidly build services based

applications, now with support for javascript web clients.

10.2.3 Special Offer:
Professional versions now with
the mobile Pack for FREE and

Save 10% on Professional Editions of RAD Studio, Delphi, C++Builder.
Save 15% on Enterprise Editions
Save 20% on Architect Editions.

Offers end 31 March 2018.

UP TO 20% OFF THE BEST TOOLS
FREE 12 MONTHS OF UPDATE SUBSCRIPTION

Issue Nr 1/2 2018 BPM

t finally arrived - on Valentines day.

IThe web framework we always wanted.

We now have a framework which is capable of what I
had been looking for since I had a meeting in Paris with
an Embarcadero official, about eight years ago. We
talked about Delphi, the future what was missing in
Delphi and how to move ahead.

I had already met with Michael van Canneyt - he is the
author of many articles and a large book about Pascal-
Lazarus and told him the web interface I wanted was
missing from both Delphi and Lazarus.
He agreed and said he had the same idea and showed
me software similar to what he would like to create for
Pascal, (Morfik) but by that time it was in its infancy. He
had been dreaming about realising this, but it was a
huge task, it would take years, he predicted.
It did. Altogether 10 years.

About two years ago, Michael and I decided to ask
others to help develop the Web Suite we had started.
One Developer of the Pascal Lazarus team was Mattias
Gärtner (an IDE development expert in the Lazarus
team) and I made contact and asked him if he was
willing to help us. Michael and Mattias spoke in two ways
the same language, (being Belgian and German) so it
was a very successful contact and especially since these
two guys had fallen into the bucket – like Obelix in his
“strengthening Bouillon” the project suddenly got an
enormous boost.
Michael had already done a hellish task, so now the
project exploded. We decided to work together closely,
and as fast as we possibly could. Once we had done
that, we realized it would be necessary to find a third
party for the Delphi aspect.
It was years ago that I had first met Bruno Fierens and
encountered TMS, and, I knew immediately that TMS
Software would be the only candidate… Does
coincidence exist?
So I went to Bruno and asked him if he could possibly do
that for us. This article is part of the outcome.
I have been knocked sideways by the quality and
versatility of the product Bruno has developed.
He created a web framework which in my view is as
important as the invention of Delphi itself.

Of course we have a roadmap and still lots of
things need to be done: further functionality will
be added to the compiler and various annoyances
must be ironed out…
For the short term now there will be a Beta version
that enables you to play around with the
components and their capabilities. The trial will
be available not only for Delphi but also for
Lazarus.
Quite soon now we will present a fully working
and well-tested framework of components that
you can buy in various combinations with either
basic or more comprehensive functionality.

1. TMS WEB Core:
 295 EUR introductory price
 https://www.tmssoftware.com/
 site/tmswebcore.asp
2. TMS WEB Studio
 (TMS WEB Core
 + TMS FNC controls
 + TMS XData) :
 595 EUR introductory price

https://www.tmssoftware.com/site/
tmswebcore.asp
https://www.tmssoftware.com/site/
tmsfncuipack.asp
https://www.tmssoftware.com/site/
xdata.asp

The sheer number of components you will be
able to use for the web is enormous. At the
end of this article we append several
examples designed for you to learn from..
Many of the examples have complete
working project code, so once you have the
components available you can immediately
create any website you want. All you need to
understand is: Object Pascal. We aim to help
you understand this new framework from
the inside, and offer an outline of its
architecture and working. You will be able to
appreciate the tremendous possibilities this
TMS WEB FRAMEWORK has. Hopefully you
will be as enthusiastic as we are, and agree
this is next best thing that ever happened to
Delphi. I have had guidance and great help
from Holger Flick and you will find his
explanations and diagrams very
enlightening. I want to commend him for his
excellent help, without which I would not
have been able to understand the inner
workings of this new framework myself.

DX
expertstarter

TMS WEB CORE AND RADICAL WEB ARTICLE PAGE 1 / 61

INTRODUCTION
AUTHORS: DETLEF OVERBEEK/HOLGER FLICK - CORERCTOR HOWARD PAGE CLARK

6Issue Nr 1/2 2018 BPM

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 2 / 61

7

WHAT DOES TMS WEB MEAN?
TMS Web is a comprehensive web application
development framework. It requires only a good
knowledge of Delphi or Object Pascal.
 You do not have to use any other programming
languages. All the functionality you need is
encapsulated in components, designed in an
object oriented way using Pascal classes.
Especially you do NOT require any knowledge
of HTML or JavaScript.

You will find that, a web-app created with “TMS
Web” interacts amazingly well with available
frameworks or can be visually enhanced
through traditional web design using HTML,
CSS and other JavaScript frameworks - if you
wish. Designs created by and for enterprises can
be implemented or extended endlessly.

APPLICATION MODEL:

Web applications are based on the (Single SPA

Page Application) paradigm, a very sophisticated
way of application modelling.
(Wiki: A single-page application (SPA) is a web
application or web site that interacts with the user
by dynamically rewriting the current page rather
than loading entire new pages from a server. This
approach avoids interruption of the user experience
between successive pages, making the application
behave more like a desktop application. In an SPA,
either all necessary code – HTML, JavaScript, and
CSS – is retrieved with a single page load, or the
appropriate resources are dynamically loaded and
added to the page as necessary, usually in response
to user actions. The page does not reload at any point
in the process, nor does control transfer to another
page, although the location hash or the HTML5
History API can be used to provide the perception
and navigability of separate logical pages in the
application. Interaction with the single page
application often involves dynamic communication
with the web server behind the scenes.)

The SPA paradigm offers an obvious benefit to
the end user, who starts the application simply
by opening a single document in her HTML

browser.
The principal drawback to the model is the SPA

Fat Client it produces, often with an extremely
high load effort. However, this can be offset by
intelligent modularisation. To do this requires
configuring the generation of the web-server
application appropriately.
So as “ ” used to say: every downside Johan Cruiff

has it’s benefits.

COMPONENTS:

Components are the core ingredients for
development with Delphi and that is why they
are the focus for the development of Web-apps
with . At design time all the components TMS Web

you need are dropped on your form and
configured via the Object Inspector, exactly as
you are used to.
As with the includes components VCL, TMS Web

which are visual (e. g. a label) and non-visual (e. g.
a timer).

DEBUGGING:

You can debug your application through the
Delphi IDE as well as with the Web Browser.
Break points and the evaluation of variables line
by line are supported without any limitations.
This differs markedly from most other web
development tools. Other tools don't usually
support debugging of the running application in
anything other than Javascript, forcing you to
evaluate JavaScript source in the browser. This
may be painful and unfamiliar for Delphi

developers. Simply said it’s essential that this
works as it does in . The uninterrupted TMS Web

use of means that errors are Object Pascal

recognised sooner, and solutions applied more
quickly using Pascal. If you would like to analyse
the ongoing process in the web browser step by
step: it is of course possible without any problem.
This step is of course vital as soon as the
application is tethered to existing JavaScript
solutions.

JAVASCRIPT COMPONENTS:

If you design using existing JavaScript
framework components you own, they will be
shown (without any preview) as frame
placeholders in the form designer. This is
consistent since there is no representation for
them in Delphi. Nevertheless, you can still set
events and properties for these components via
the , and avoid Object Inspector JavaScript

altogether (if you wish). The list of supported
components and frameworks is growing.

JAVASCRIPT FRAMEWORKS:

You can even integrate a JavaScript framework
into your application that has no visual
components at all. For example you can
incorporate design styles by to Bootstrap

Standard components from . TMS Web

The excellent separation between application
logic and web design interface built into TMS Web

is characteristic of the high quality of this new
framework.

Issue Nr 1/2 2018 BPM

8

INSTALLATION

Like all products from TMS Software it will be
shipped with an installation program that comes
with a wizard that will guide you through the
process. You need to know that the TMS Web
framework installs using a two-phase process -
first the basic system and as a second part the
installation which is dependent on the Delphi
Version. So if you want to use several Delphi
versions it will be done separately for all these
versions.

Screenshots in this article:
All the screenshots shown were made using TMS
Web and Embarcadero Rad Studio 10.2.2
Tokyo. The presentation in other Delphi versions
will of course be different, since Embarcadero has
modernized all the IDE icons. So that might seem a
bit strange for seasoned developers who don't use
the very latest Delphi version.

INTEGRATION INTO THE IDE

provides wizards to get you going TMS Web

quickly with app development, along with
numerous dialogs related to the creation, set-up
and configuration of apps. It is also TMS Web

very important to emphasize the seamless
integration with all the existing IDE tools which
write and navigate in the code without any
restriction.
Provided you have the sources you TMS Web

can even extend the framework with third party
libraries with your own components.

BASICS

We want to explain some of the basics of the
framework . But before that we will give you the
system requirements and then explain the
installation.
The most popular browsers are listed below,
showing you which version is supported.

Product Recommended Version
Internet Explorer 11
Google Chrome
Mozilla Firefox
Opera
Apple Safari (only available for Apple
 products)
Microsoft Edge (Windows 10)

So it is wise to use one of the listed browsers to
make sure that there will be no production
issues to try to guarantee the compatibility.
TMS Web applications can be used in any
HTML5- compatible web browser.
But the applications have been tested in all TMS

the browsers listed above.

Note 1:

If you have a version with source code the
source code will be recompiled during the
installation process and integrated in the
IDE(Integrated Development Environment).
If you have a version without source code the
pre-compiled “dcu”forms will be integrated.
If you have a so-called
 “TMS All Access Subscription“ you can make
the installation by simply calling The TMS
Subscription Manager. In that case you are
always provided the latest version.

Figure 1. The opening splash screen.

The suite installs very smoothly. I tried it under
Win7 and Win 10. Simple quick and easy. I did not
need to ask for any help, as can be the case for
installing a component suite.

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 3 / 61

Issue Nr 1/2 2018 BPM

Figure 2: This post-installation screenshot shows
where the new TMS Web Form and Web Application can
be found in the Delphi IDE.

9

THE FIRST PROJECT

Once installed, you have a fully-integrated IDE
extension for generating code for Web
applications. Whenever you start using
something new it’s useful to start with a very
simple basic program that usually shows the text

. The IDE is extended by“Hello World” TMS Web

and you can find that by File Ô New Ô Other

and the wizard will show a list where you find
the category ‘ ’ ‘ ’ . Delphi Projects TMS Web

Just click on (See Figure 2). TMS Web Application

There is nothing else to do. All application
settings will be passed from the basic settings of
TMS Web and you do not need to copy settings
each time you want a new project for the web.
Configurations we will discuss later.

THE PROJECT SETTINGS

The project consists of a form, the in Main Form

the unit and the project file Unit1.pas

Project1.dpr. You will find an additional file:

Project.html. This file is the HTML

document for the web application. This file exists
firstly as a reference for the web app which is
created with . You usually do not need TMS Web

to make many changes to it, however a web
designer may wish to tweak or edit the overall
design using HTML.

 Each consists of three Files:TMS Web Form

the -file – including the code, .pas

the -file - containing the layout for the form .dfm

and a file. Editing this HTML form file lets HTML

you make possibly far-reaching changes to the
form's design.can other frameworks.integrate

The integration of the web design is done
where it belongs: In HTML or CSS.

Note 2:
The TMS Web philosophy places all application
logic in the framework's components.
The integration of the web design is done where
it belongs: In HTML or CSS.
Many Web Frameworks trip themselves up by
trying to integrate HTML or even JavaScript
into the Application Component files. The code
of these files is not easy to locate and maintain
This because there is no clear separation
between the Application logic and the design.

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 4 / 61

Issue Nr 1/2 2018 BPM

10

program ;Project1

uses
 Vcl Forms. ,

 WEBLib Runner. ,

 Unit1 ;in 'Unit1.pas' {Form1: TWebForm} {*.html}

{$R *.res}

begin
 Application Initialize. ;

 Application MainFormOnTaskbar True. := ;

 Application CreateForm TForm1 Form1. (,);

 Application Run. ;

 . (,); TTMSWebRunner Execute tbnDefault'http://localhost:8000/$(ProjectName)'
end.

At first sight there aren’t many differences from a
classic form-based application, except that the
uses clause includes the unit. WebLib.Runner

As usual TApplication will be initialized but a

call is made to the - complete with a WebRunner

URL. The static of the Class Execute Method

TTMSWebRunner opens a Browser

- conditioned by the constant tbnDefault
 for the standard workstation browser,
- with the specified address as the first
parameter.
A place-holder for the name of the project
$(ProjectName) is also used.

Place-holders are all marked by a and begin and $

end with brackets ().

So it is clear now that TMS Web

Apps are actually very normal
applications in Delphi. You will
be running an executable (.exe).
However, the Web app will not
show its main form on your desktop.

Now here is the overview of the of Project File

the App: (project1.dpr)

Figure3: the project group

Code Listing 1

Alternatively can be replaced by tbnDefault

one of the following constants:

If you run the program by pressing Ctrl+Shift+F9

the program will run without Debugging and
your default browser (whatever your default
browser is) will show the app's output.

Constant Web Browser
tbnDefault Standard Web Browser

tbnChrome Google Chrome

tbnFirefox Mozilla Firefox

tbnEdge Microsoft Edge

tbnIExplore Microsoft Internet Explorer

tbnOpera Opera

So you can force Microsoft Edge to run the app by
specifying the constant tbnEdge.

Figure 4 Here Google is the default browser

Figure 5 Microsoft Edge

Figure 6: TMS Web Server

Code Listing 1

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 5 / 61

Issue Nr 1/2 2018 BPM

11

The executable file generated on our development
machine is merely a launcher for the browser,
which starts a and navigates to local Web Server

the address so the application will be started. By
default the internal web server is bound to
localhost with port 8000.

The component overview (see the column to the
right) is now limited to those components that can
be used in conjunction with . This form TMS Web

inherits not from but from TForm, TWebForm.

Many properties have the identical TWebForm

name and functionality that their TForm

counterpart shares. If you ever worked with other
frameworks for the web to create apps you will
appreciate the events of the forms immediately.
 It’s like coming home. With TMS Web you will at
first see no difference from creating a form VCL

application at all. You can instinctively find the
component you need: TWebLabel duplicates

TLabel's functionality.

TWebEdit TEdit. is the equivalent of Every

VCL developer will be able to identify and use
Standard-page components straight away.
You will be pleased to know there are very few
limitations on Web-component properties and
events compared to their VCL analogues.

So far the application has no content so that we
cannot yet verify the last step that the app will be
started. So let’s change that. Open the Main Form
Unit1.pas Form Designer IDE. in the of the

The r looks like a and Form Designe Data Module

is clearly distinct from the or VCL FireMonkey

form. All visual tools for the use of Components

in the designer are now available.

Figure 7: The Form Designer looks like one of the Data Modules

Figure 8: Component Overview

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 6 / 61

Issue Nr 1/2 2018 BPM

12

For example, you can use and to Anchors Align

put your components in place. You also can use
the panel component to group your components.
The adoption of so-called "Responsive Design"
means it is supremely easy to use these
components and set their properties.
Let’s go for the simple „Hello World“ app.
Drop a and a TWebEdit TWebButton

component on the form.

procedure . (:);TForm1 WebButton1Click Sender TObject
begin
 WebEdit1 Text. := ;'Hello World.'
end;

Double-clicking the button generates an
OnClick handler as you would expect,

and you are placed in the editor to
complete the generated code skeleton:

Figure 9: the Object Inspector

Figure 10: the Form and components

Figure 11: the Result after compilation

Code Listing 2

Again: no difference at all between writing a Web

App Desktop VCL or a application.
gets the valueThe WebEdit1's Text property

‘Hello World’.
Of course you could also have renamed the
component through the property Name.
After starting the app we can see the components
are shown. One click on the button provides the
desired result.

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 7 / 61

Issue Nr 1/2 2018 BPM

13

Let's see what files the compiler has generated.
In addition to the there is a new file. .exe .ini

Its contents are as follows:
[]Paths
HtmlPath C tex TMSWebBook demos minimal TMSWeb Debug= :\ \ \ \ \.\ \

HtmlFile Project1 html= .

DefaultURL http= : //localhost:8000/Project1

The ini file contains the information for the app in
the exe file to find the Web app. This is only
meant to start the desired web browser. So where
is the Web Application? By default a "TMS Web"
directory has been created in a subdirectory. You
can of course alter that according to your own
wishes.
The web application consists of the files for HTML

the forms and a Form. JavaScript

Opening the HTML

file on the web
server runs the
corresponding
JavaScript file.
Furthermore the
meta information for the debugger will be
generated in a map file. Where is that found?.

 By default it is
 placed in the
 project's
 TMSWeb\Debug

 directory.
 You can of course
 alter that.

procedure . (:);TForm1 WebButton1Click Sender TObject
begin
 . := ; WebEdit1 Text 'Hello World.'
 . := (); WebEdit2 Text DateTimeToStr Now // <-- new!
end;

We will naively try to use familiar, well-known
Delphi RTL functions. Especially
 Date and Time functions are by using the
 Web a very popular subject for
 discussions which many developers love
 to hate. A click on the Button starts the
 WebApp and indeed shows what we
 expected. So our naivety and hope are
fully successful. Here the strength of is TMS Web

shown: all the functions used in the work RTL VCL

well in web apps thanks to with very TMS Web

few limitations also in a Web App.

LIVE CLOCK

 So lets try the next step: we will create a little
clock that is automatically updated in the
background.

Code Listing 3

 Here the strength of TMS Web is shown:
 all the RTL functions used in the VCL work
well in web apps thanks to TMS Web with

very few limitations also in a Web App.

An further example:

Just to show how true the last words are we’ll
show two further examples. Let’ s expand the
form with another component of type
TWebEdit OnClick and add to the of the

Button as follows:

Note 3:
If you place several apps on the same server,
their overall size can be reduced by creating
separate JavaScript files for each unit. I actually
hardly needed the manual. Compared to using
other web solutions, I quickly found an
enormous improvement in speed and ease of
working using TMS Web. I actually hardly
needed the manual. To create web applications
in this way is To create web applications in this
way is for any developer that knows the VCL
completely intuitive.

Figure 12: Location
 of the . map file

Figure 13: Result

Code Listing 3

We want the correct time to be shown by being
updated continuously. But we also want this to
happen without sending a request to the server.
Our goal is an implementation that is as easy as
possible and that we are used to when we create a
desktop application. We will drop two further
WebButtons and call them btnTimerStart

and btnTimerStop.

The name on the caption should be altered
accordingly. You will find under TMS Web
System a component called TWebTimer, which is
the equivalent of TTimer known from the VCL.
The timer's Interval property defaults to 1000,
equivalent to 1 second.

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 8 / 61

Issue Nr 1/2 2018 BPM

TMS WEB CORE AND RADICAL WEB : INTRODUCTION PAGE 2 /30

14

That's all folks. We now can start the app.
The result is impressive.
A simple click on the start button shows the time
immediately. Each second the clock is updated.
Clicking „Stop“ causes the clock updates to cease.
Anyone who ever tried to implement such a
simple clock by writing a JavaScript

implementation will appreciate what fantastic
results can produce in a fraction of the TMS Web

time.

The events for the buttons to start and stop the
timer are implemented as follows:

procedure . (:);TForm1 btnTimerStartClick Sender TObject
begin
 . := ; WebTimer1 Enabled true
end;

procedure . (:);TForm1 btnTimerStopClick Sender TObject
begin
 . := ; WebTimer1 Enabled false
end;

The event OnTimer should show the actual time

in on one of the edit fields

1 . (:);procedure TForm1 WebTimer1Timer Sender TObject
begin
 WebEdit2 Text TimeToStr Now. := ();

end;

UNIVERSAL CONTROLS FNC for the Web

WEB CONTROLS Standard Controls

COMPONENT FRAMEWORK VCL Components REST Services

jQuery Controls

INTERFACE RTL (RunTimeLibrary)

WEB HTML

JavaScript

JavaScript

FUNCTIONALITY

Now that we've seen TMS Web in action for
the first time, it's time to move on and
explain exactly what happens when Delphi
source code becomes a runnable web
application. You need to understand this so
you can see how the few limitations of TMS
Web arise. Most restrictions result from
restrictions imposed by the target platform
and the web itself, not from design
shortcomings in TMS Web.

ARCHITECTURE
On the basis of the diagram in Figure 3.1, we
can comprehend how the transforming of
the source code of a JavaScript-dominated
web application works. Any application will
be built from several interdependent
abstraction layers that encapsulate the
desired layer functionality. You've already
seen that you can use both (FNC Framework

Neutral Components) standard components,
and elements from You also can use RTL.

visual components from other JavaScript
frameworks. We now map the various
components of a application to the TMS Web

layers and explain how the compiler moves
from layer to layer to build the final
application.

Figure 14: Architecture of TMS Web.

The final product on the web (bottom layer) is
generated step by step.

For this purpose, e.g. (top layer) FNC components

are mapped to components, Web Standard

which in turn map to components. VCL Standard

Finally, the compiler forms the Pascal2JavaScript

necessary components for a Web Application
consisting of and HTML JavaScript.

Code Listing 5

Code Listing 6

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 9 / 61

14Issue Nr 1/2 2018 BPM

15

• The top layer, at the highest level of abstraction,
 uses universal components which are
 independent of any implementing framework.
 The developer doesn’t have to worry whether
 the components are used in a VCL application,
 FireMonkey application or Web Application.
 Even for the target, enabled now via Linux

 or via and the fmxlinux LCL Lazarus, TMS FNC

 controls can be used, no adjustments are
 necessary. The platform is perfectly abstracted.
 TMS has given this type of component the
 name 'FNC': Framework Neutral Components.
 In TMS Web Applications these components are
 shown on the next, deeper abstraction layer.
 This means a framework neutral input field
 (TTMSFNCEdit) will be converted to a

 standard web component input field.

• The web components of TMS Web form the next
 layer. Here you can find the default components
 that start with TWeb.
 Examples are TwebLabel, TWebEdit etc.

 These Web components are broken down to
 components from the VCL. The web component
 abstraction layer ensures that the only properties
 and events available will be those appropriate
 to a web application. Any visual components
 used from other JavaScript frameworks must be
 wrapped as distinct components which can then
 be mapped to VCL equivalents.

• The next layer is the interface between the
 Delphi layer and the web Level.
 It also provides the RTL and JavaScript
 functions.
 That means here you can also find the
 implementation that ensures that the RTL will
 become 'Web - able'.
 Of course, here are also internal JavaScript
 elements to be found for integration in the web
 applications.

• The bottom layer represents the end product: an
 HTML document containing one or more
 JavaScript file(s) with the web application.
 The visual components used are HTML

 elements that at this moment can be interpreted
 and displayed by any -able HTML5

 Web Browser.

In summary it should be noted that TMS Web
using the above 'Transformation chain' for web
applications is an abstract, completely
comprehensible representation of an object-
oriented high-level language implemented
concretely as a web application. How to
implement this? From among the various object
oriented possibilities open to they opted for TMS,

inheritance abstraction.
The abstraction is based on inheritance of the
respective classes from a base class. All VCL

visual components in the upper layers or the FNC

Web standard components thus descend from a
base class in the VCL.

TWebForm

All components are arranged on a form.
The form is represented by the class TWebForm.

This component is found in the standard
components and is thus according to our model is
mapped as a descendant of the VCL
TCustomForm component.

We now want to look at 3 classes as an example,
to consolidate our understanding of the
architecture of the framework.TMS Web

TCustomForm

TCustomWebForm

TWebForm

For example a is converted into an TWebEdit

<input> with parameters that represent the

defined properties and events. Of course wrapped
JavaScript jQuery components, e.g. Components,
are replaced by the corresponding JavaScript

components.

TTMSFNCEdit - an FNC component

Finally, an example of an FNC component.
Analogous to the standard components is also
derived here from VCL components. Important is
the understanding that no web standard
component is stored. It is directly derived from
the VCL - without reference to the web.

TCustomEdit

TWebCustomEdit

TWebEdit

TCustomEdit

TTMSFNCEdit

TWebEdit

The input field is also derived directly TWebEdit

from the corresponding componentsVCL

TCustomEdit forms the base class.

Figure 15

Figure 16

Figure 17

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 10 / 61

Issue Nr 1/2 2018 BPM

16

BUILDING BLOCKS

TMS Web has a modular structure. It consists of a
basic building block designated as the
' . Based on this core, additional TMS Web Core'

components can be used. Which building blocks
are available to the developer depends on the
licensing model chosen, and which blocks that
licence provides.

 overleaf is a graphical representation of Figure 18

the way the different parts morph together and
how modular it is. However, it does not show the
available modules as JavaScript has more things than
are shown in the illustration.

TMS WEB CORE

 is the foundation for all other TMS Web Core

modules. It contains both basic components and
everything needed for full IDE integration,
together with the special transpiler needed for
the web applications this package creates.

TMS FNC FOR THE WEB

- components for the Web. FNC

With this package a variety of components from
the package come available for Web. FNC UI TMS

These types of components are of these
components do not differ in principle from other
Delphi frameworks.
You can use these FNC components on the Web -
just as you might do for or VCL FireMonkey

applications with components normally.FNC

XData Server

The use of external Databases is handled using
the . provides XData Server XData Server REST

Web Services, which are set up automatically by

the engineTMS XData

The final link in the web database app
development chain is provided by TMS Aurelius.
You develop your database structure,
use to connect your database to TMS Aurelius

your application logic and use then to let XData,

the information become available. Your
Graphical User Interface (GUI) on the web
- if developed with - can use this TMS Web

standardized interface to access the data and
even new data, transfer records or changes to the
database.

jQuery COMPONENT

Components from the jQuery JavaScript

framework can be used with help of the
components from this module.
These components are shown as white frames in
the form designer at design time.
WYSIWYG is not supported because the
graphical representation is only available
in JavaScript. also uses the component TMS Web

package to improve the jQWidgets,

interoperability between and jQuery Delphi.

CLOUD SERVICES

Components for direct use of cloud services,
such as . Google Calendar

When using the components, you don't need to
worry about the implementation of the
communication interface between your
application and the cloud.
In particular, aspects such as encryption,
authentication and authorization are handled
automatically in the background.

About the CoAuthor
Dr. Holger Flick studied Informatics at the University of
Dortmund and graduated at the faculty of mechanical
engineering at the Ruhr-University Bochum.
He has been programming in Delphi since 1996, and has
been very active in the wider Delphi community. Since his
student days he has worked freelance on many projects for
Borland, and was able to exchange his knowledge directly
with lots of Delphi- experts from Silicon Valley. He mainly
tested Delphi for the Q&A department, but also
programmed database applications and Web Applications
for the Borland Developer Network. He has also been a
frequent seminar and conference speaker, covering a
variety of Delphi-related topics.
His sincere engagement and his very extensive knowledge
of Delphi and other programming languages C#, Objective-
C) culminated in his being made a Delphi MVP in 2016.
Since 2013 Dr. Holger Flick has been responsible for all the
Software- and Hardware -Architecture at Korfmann
Lufttechnik GmbH in Witten.
In 2017 he became chief evangelist for TMS software,
writing many technical articles, bi-lingual video tutorials
and offering guidance via seminars.
He now writes for Blaise Pascal Magazine, and we welcome
his contribution.

Starting at page 18 of the issue (page
13 of the article) you will find an exact
overview of all the available
components from TMS Web

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 11 / 61

Issue Nr 1/2 2018 BPM

17

TABLE
VIEW

TREE
VIEW

TMS
FNC
FOR

THE WEB

....

GRID

PLANNER

JAVA
SCRIPT

COMPONENTS

JQ
WIDGETS

....

GOOGLE

CLOUD
SERVICES

REST WEB
SERVICES

....

TMS
WEB
CORE

....

Note:

Even if it has only a building block for the jQuery JavaScript Framework, TMS Web can still work
with other JavaScript frameworks, which offer visual components. In particular, it is advisable to
consult with TMS for your interest in special frameworks. Without requests for support for a
particular framework, TMS will not provide the needed supporting module.

Figure 18: TMS Web Core can be extended. The Mind Map shows
various Building blocks that can be purchased from TMS.

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 12 / 61

Issue Nr 1/2 2018 BPM

TMS FNC UI
TTMSFNC*
BitmapContainer PopUp ScrollBar BitmapPicker
BitmapSelector CheckGroupPicker CheckGroup ColorPicker
ColorSelector Edit FontnamePicker FontSizePicker
GridDatabaseAdapter Grid HTMLText Image CheckedListBox
ListEditor NavigationPanel PageControl Panel
PlannerDatabaseAdapter Planner RadioGroupPicker RadioGroup
TabSet/ToolBar ToolBarButton ToolBarSeparator ToolBarFontNamePicker
ToolBarFontSizePicker ToolBarColorPicker ToolBarBitmapPicker ItemPicker/DockPanel
TreeView CheckedTree ViewTaleView

TMS WEB
TWEB*
Label WebButton WebEdit SpinEdit
DateTimePicker ListBox ComboBox ColorPicker
CheckBox RadioButton Memo RadioGroup
PaintBox TrackBar ScollBox Splitter
Panel ImageControl LinkLabel RichEdit
Tabset PageControl TabSheet SpeedButton
ToolBar RichEditToolbar GoogleMaps YouTube
MainMenu GridPanel MessageDlg ToggleButton
BitBtn GroupBox

TMS WEB SYSTEM
TWEB*
Timer GeoLocation MultiMediaPlyer FileUpload
Code Manager

18

Figure 20

Figure 21

Figure 19

Some of the because they are to large.If you are using EXAMPLES ARE SPREAD OVER TWO PAGES

the file, you can change your settings to which gives you a .pdf Acrobat Reader two page view,

better and more complete overview of what is all available: In open Acrobat Reader Preferences

Choose in the left column top . then select at the top .Page Display Two Up

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 13 / 61

Issue Nr 1/2 2018 BPM

TMS WEB DB
TWEB*
DBLabel DBEdit DBCheckBox DBSpinEdit
DBMemo DBDateTimePicker DBRadioGroup DBLinkLabel
DataSource DBNavigator ClientDataSet ClientConnection
ClientDataSource

19

Figure 22

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 14 / 61

Issue Nr 1/2 2018 BPM

TMS WEB DB
TMS Web REST*
HttpRequest RESTClient CloudData GoogleClient
GoogleCalendar

TMS WEB jQuery
TWebJQX*
Calendar ColorPicker ComboBox DateTimeInput
Dropdownlist MaskedInput Menu NumberInput Rating

TMS FNC CHART
TMSFNCChart

20

Figure 23

Figure 24

Figure 25

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 15 / 61

Issue Nr 1/2 2018 BPM

procedure . (:);TForm4 WebButton1Click Sender TObject
begin
 . . (.);WebCombobox1 Items Add WebEdit1 Text
 . := . . - ;WebCombobox1 ItemIndex WebComboBox1 Items Count 1
 . . (.);WebMemo1 Lines Add WebEdit1 Text
end;

procedure . (:);TForm4 WebComboBox1Change Sender TObject
begin
 . := . [.];WebLabel1 Caption WebCombobox1 Items WebCombobox1 ItemIndex
end;

TMSWeb_Simple.dproj

Figure 27

The form designer offers a sophisticated design-
time experience just like a VCL form not designed
for the web. The source code shows how to add
items to a listbox and how to determine the
selected item. Read it and you will see that is looks
just like code for a desktop application with VCL!

Figure 26

Simple „Hello World“ demo with standard web
controls. The Web controls are very similar to
known VCL controls. You will feel familiar right
away.

Code Listing 7

21

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 16 / 61

Issue Nr 1/2 2018 BPM

22Issue Nr 1 2018 BPM

TMSWeb_Align.dproj

Figure 28

Alignment and anchoring of most visual control is
supported. Building responsive web pages becomes
pure joy and requires absolutely no source code at
all. Of course, your design can be decorated with
additional CSS and other styling using JavaScript
frameworks.

Figure 29

Figure 28

Figure 30

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 17 / 61

23

TMSWeb_Anchors.dproj

Figure 31

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 18 / 61

Issue Nr 1/2 2018 BPM

TMSWeb_PaintBox.dproj

procedure string . (: ; : ; :);TForm4 PaintSign Control TWebPaintBox AText Cross boolean
begin
 . . . := ;Control Canvas Pen Width 3
 . . . := ;Control Canvas Pen Color clRed
 . . . := ;Control Canvas Brush Color clYellow
 . . . := ;Control Canvas Brush Style bsSOlid
 . . (, , ,);Control Canvas Rectangle 10 10 200 100

 if thenCross
 begin
 . . (,);Control Canvas MoveTo 10 100
 . . (,);Control Canvas LineTo 200 10
 . . . := ;Control Canvas Font Size 14
 ;end

 . . . := ;Control Canvas Font Name 'Arial'
 . . . := ;Control Canvas Font Size 14
 . . (, ,);Control Canvas TextOut AText20 40
end;

procedure . (:);TForm4 WebPaintBox1Paint Sender TObject
begin
 (, ,);PaintSign WebPaintBox1 true'Native clients only'
end;

procedure . (:);TForm4 WebPaintBox2Paint Sender TObject
begin
 (, ,);PaintSign WebPaintBox2 false'Web + Native clients!'
end;

Figure 34
Paintbox support in web applications! The paintbox
allows you to paint on a canvas just like in any VCL, FMX
or LCL application. The canvas class offers known
methods to draw, paint and output texts. TMS Web will
make sure that the box is rendered correctly in any
browser.

Figure 33

Figure 34

Code Listing 8

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 19 / 61

24Issue Nr 1/2 2018 BPM

25

TMSWeb_Multiform.dproj

Figure 37
Even though TMS Web follows the Single-page application
model, you have the ability to create multiple forms and
navigate between them. Of course, also pop up windows
are possible. The framework offers events and other means
to transfer object instances between the form instances.
Events to implement code when the parent form is created
and closed are available.

Figure 35

Figure 36

Figure 37

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 20 / 61

Issue Nr 1/2 2018 BPM

26

TMSWeb_Multiform.dproj

var
 : ;Form1 TForm1

implementation

{$R *.dfm}

uses
 , . ;unit2 WebLib WebTools

procedure . (:);TForm1 WebButton1Click Sender TObject
var
 : ;newform TForm2

 (:);procedure AfterShowModal AValue TModalResult
 begin
 (+ . .);ShowMessage newform frm2Edit Text'Form 2 closed with new value:'
 . := . . ;WebEdit1 Text newform frm2Edit Text
 ;end

 // async called OnCreate for TForm2
 (:);procedure AfterCreate AForm TObject
 begin
 (). . := . ;AForm TForm2 frm2Edit Text WebEdit1 Textas
 ;end

begin
 := . (@);newform TForm2 CreateNew AfterCreate
 . := . ;newform Popup WebCheckBox1 Checked
 . (@);newform ShowModal AfterShowModal
end;

end.

Figure 38

Code Listing 9

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 21 / 61

Issue Nr 1/2 2018 BPM

27

TMSWeb_Dialogs.dproj

Figure 39

Figure 40

Figure 40

TMS Web offers functions that get their names from the Delphi
RTL to present modal message dialogs to the user. User
responses can be evaluated. Right now all known functions from
the RTL are available, i.e. MessageDlg, Confirm, InputBox etc.

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 22 / 61

Issue Nr 1/2 2018 BPM

28

TMSWeb_Dialogs.dproj

Figure 41

procedure . (:);TForm4 WebButton1Click Sender TObject
 (:);procedure DialogProc AValue TModalResult
 var
 : ;s string
 begin
 = if thenAValue mrOk
 := s 'OK clicked'
 = else if thenAValue mrYes
 := s 'Yes clicked'
 = else if thenAValue mrNo
 := s 'No clicked'
 = else if thenAValue mrAbort
 := s 'Abort clicked'
 = else if thenAValue mrRetry
 := s 'Retry clicked'
 = else if thenAValue mrClose
 := s 'Close clicked'
 = else if thenAValue mrCancel
 := ;s 'Cancelled'

 . := ;WebLabel2 Caption s
 ;end

begin
 . case ofWebListBox2 ItemIndex
 : (. , , [], @);0 MessageDlg WebEdit1 Text mtWarning DialogProc
 : (. , , [], @);1 MessageDlg WebEdit1 Text mtError DialogProc
 : (. , , [], @);2 MessageDlg WebEdit1 Text mtInformation DialogProc
 : (. , , [, ,], @);3 MessageDlg WebEdit1 Text mtConfirmation mbYes mbNo mbCancel DialogProc
 : (. , , [, ,], @);4 MessageDlg WebEdit1 Text mtCustom mbAbort mbRetry mbClose DialogProc
 ;end
end; Code Listing 10

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 23 / 61

Issue Nr 1/2 2018 BPM

29

TMSWeb_GridPanel.dproj

Figure 43

Panels can be used to group components. In order to easily create forms for
user input with responsive web design, even a grid panel is available.

Figure 42

Figure 43

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 24 / 61

Issue Nr 1/2 2018 BPM

30

TMSWeb_HTMLTemplate.dproj

Figure 44

Figure 45

All visual components can be assigned to HTML elements
that are part of a complex web design. Thus, applications
created with TMS Web can easily be integrated into
existing web designs. This example shows that 5
components are included in an existing web design at
completely different locations and design.

procedure . (:);TForm1 WebButton1Click Sender TObject
begin
 . . (.);WebCombobox1 Items Add WebEdit1 Text
 . := . . - ;WebCombobox1 ItemIndex WebComboBox1 Items Count 1
 . . (.);WebMemo1 Lines Add WebEdit1 Text

end;

procedure . (:);TForm1 WebComboBox1Change Sender TObject
begin
 . := WebLabel1 Caption
WebCombobox1 Items WebCombobox1 ItemIndex. [.];

end; Code Listing 11

Figure 45

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 25 / 61

Issue Nr 1/2 2018 BPM

31

TMSWeb_Dataset.dproj

Figure 46

Figure 46

 TMS Web can be used with all sorts of datasources. Its architecture is designed in particular for REST
datasources. Components to consume REST web services are included in Web Core. Furthermore, you can
directly use XData web services with database base components. Using XData makes it easy to implement
web forms that not only display data, but also allow the user to add, edit and delete data. The
communication with the web service is completely handled by the framework. You can concentrate on using
Delphi components on the form and will not have to deal with tricky communication and protocol
implementation scenarios.

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 26 / 61

Issue Nr 1/2 2018 BPM

32

TMSWeb_Dataset.dproj

Figure 47

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 27 / 61

Issue Nr 1/2 2018 BPM

33

TMSWeb_Bootstrap.dproj

Figure 48

Figure 48

Interoperability with other JavaScript frameworks is unrestricted.
You may import any JavaScript framework into your web project.
This demo shows how to use Bootstrap to modify the design of the
standard web controls. Litsbox and combobox get a different style
using Bootstrap. Furthermore, additional styling is applied to the
buttons on the form.

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 28 / 61

Issue Nr 1/2 2018 BPM

34

TMSWeb_RichEditor.dproj

Figure 49

A Rich Edit control with toolbar is available.
The toolbar can be used to format any text.
Of course, formatting can also be applied using
source code.
As the control is part of the FNC component set,
the component offers the very same properties,
methods and events for all the frameworks FNC is
available for. That means, you have to learn only
one time and can use this component for
VCL, FMX, LCL and the web. Also included is a grid
that allows you to specify filters and column-based
styling. The filters are either offered automatically
as drop-down lists or can be specified using a
special expression syntax. Different cell styles are
also supported, most notably checkboxes can be
applied.

Figure 49

CHANGES BACKGROUND COLOR

CHANGES FONT COLOR

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 29 / 61

Issue Nr 1/2 2018 BPM

35

TMSWeb_RichEditor.dproj

Figure 50

Figure 51

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 30 / 61

Issue Nr 1/2 2018 BPM

36

TMSWeb_FNCGrid.dproj

Figure 53
Data can be not only loaded from REST datasources, but
also from local files on the web server. The CSV file
format is natively supported.
Sorting can be applied to single or multiple columns.

Figure 52

Figure 53

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 31 / 61

Issue Nr 1/2 2018 BPM

37

TMSWeb_FNCGrid.dproj

procedure . (:);TForm4 btnFilterClick Sender TObject
var
 : ;fd TTMSFNCGridFilterData
begin
 if not thenfiltered
 begin
 := ;filtered true
 . . ;TMSFNCGrid1 Filter Clear
 := . . ;fd TMSFNCGrid1 Filter Add
 . := ;fd Condition 'B* | M*'
 . := ;fd Column 1
 . := ;fd CaseSensitive false
 . ;TMSFNCGrid1 ApplyFilter
 . := ;btnFilter Caption 'Remove filter'
 end
 else
 begin
 := ;filtered false
 . ;TMSFNCGrid1 RemoveFilter
 . := ;btnFilter Caption 'Filter grid'
 ;end
end; Code Listing 12

procedure . (: ; , : ;TForm4 TMSFNCGrid1SelectCell Sender TObject ACol ARow Integer
 :);var Allow Boolean
var
 , : ;rc rr integer
begin
 := . . ;rc TMSFNCGrid1 FocusedCell Col
 := . . ;rr TMSFNCGrid1 FocusedCell Row
 := . ();rr TMSFNCGrid1 DisplToRealRow rr

 . := . [,];TMSFNCColorPicker1 SelectedColor TMSFNCGrid1 Colors rc rr
 . := . [,];TMSFNCColorPicker2 SelectedColor TMSFNCGrid1 FontColors rc rr
end;

procedure . (:);TForm4 WebFormCreate Sender TObject
begin
 := ;filtered false

 {$IFNDEF WIN32}
 . ();TMSFNCGrid1 LoadFromCSV 'http://www.tmssoftware.biz/tmsweb/cars.csv'
 {$ENDIF}
 . . . := ;TMSFNCGrid1 Options Sorting Mode gsmNormal
 . . . := ;TMSFNCGrid1 Options Filtering DropDown True
 . . . := ;TMSFNCGrid1 Options Selection Mode smRowRange
 . . . := ;TMSFNCGrid1 Options Editing Enabled true
 . . . := ;TMSFNCGrid1 Options ColumnSize Stretch True
 . . . := ;TMSFNCGrid1 Options ColumnSize StretchAll True
end; Code Listing 13

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 32 / 61

Issue Nr 1/2 2018 BPM

38

TMSWeb_FNCTableView.dproj

Figure 54

Figure 54

The table view control allows you to display
information in groups, offers icon support, editing
and reordering. A detail view can easily be provided
when one of the elements in the list is clicked.

Table view demo

TableView for web demo

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 32 / 61

Issue Nr 1/2 2018 BPM

39

TMSWeb_FNCTableView.dproj

Figure 55

Figure 55.

This form shows the table view in the background and the detail view that is shown whenever an
item is selected. A panel hosting all the other visual controls is used as a base component for the
detail view and is directly linked to the table view. The component allows you to specify the data
for the detail view before it is shown. This works completely the same way as it works on the
desktop or mobile platforms.

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 33 / 61

Issue Nr 1/2 2018 BPM

40

TMSWeb_FNCTabSet_PageControl.dproj

Figure 56

Form 56:

A page control with fully customizable tabs is included. The tabs can show icons and badges. The tabs
can host any visual control and thus allows for very complex web forms with very little source code. Of
course, the page controls supports the Anchor and Align property and is thus the perfect choice for
responsive web design.

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 34 / 61

Issue Nr 1/2 2018 BPM

41

TMSWeb_FNCNavigationPanel.dproj

Figure 57

Navigation panel that can group and host any
visual control is part of the FNC framework
available for the web. In this demo, we use it in
conjunction with a tree view, also part of FNC.
The learning curve is extremely low as both
components use the same set of properties,
methods and events on all the available platforms.

Figure 57
7

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 35 / 61

Issue Nr 1/2 2018 BPM

42

TMSWeb_FNCNavigationPanel.dproj

Figure 58

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 36 / 61

Issue Nr 1/2 2018 BPM

43

TMSWeb_FNCListbox.dproj

Figure 59

Figure 60

Figure 60

In addition to the standard listbox component, TMS
Web offers a very much stylable listbox of the FNC
framework. Adding graphical eye candy, like icons
prefixing every item is very easy.

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 37 / 61

Issue Nr 1/2 2018 BPM

44

TMSWeb_FNCChart.dproj

Figure 61

Figure 62

Figure 63

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 38 / 61

Issue Nr 1/2 2018 BPM

45

TMSWeb_FNCChart.dproj

Figure 64

Figure 65

The sine of an angle
is the ratio of the length of
the opposite side to the
lengt of the hypotenuse

The cosine of an angle is
the ratio of the length of
the adjacent side
to the lengt of the
hypotenuse

Figure 66

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 39 / 61

Issue Nr 1/2 2018 BPM

46

TMSWeb_FNCChart.dproj

Figure 67

TMS Web offers extensive charting capabilities! There are almost no limits to the customization
possibilities for charts! The complete charting abilities that you are used to from the desktop are now also
available for the web. All the diagram types with all the customization options are available. Including
user interaction and live charting.

Code Listing 21

Figure 67

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 40 / 61

Issue Nr 1/2 2018 BPM

47Issue Nr 1 2018 BPM

TAKE OUT A SUBSCRIPTION
80 PAGES INFORMATION.

BLAISE PASCAL MAGAZINE

THIS IS AN OFFER
YOU CAN’T REFUSE

https://www.blaisepascalmagzine.eu

TOTALS 800 PAGES PER YEAR
+ CODE AND PROJECTS
DELPHI & LAZARUS.
10 ISSUES DOWNLOAD FOR € 50

FOR ALL NEW SUBCRIPTIONS:
YOU WILL GET THE NEW USBSTICK - 16GB - FOR FREE

48

TMSWeb_FNCPlanner.dproj
TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 41 / 61

Figure 68

Issue Nr 1/2 2018 BPM

49

TMSWeb_FNCPlanner.dproj
TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 42 / 61

Issue Nr 1/2 2018 BPM

50

TMSWeb_FNCPlanner.dproj

Figure 69

Figure 69

The planner component is very flexible and can be used for many purposes. In this demo, a REST service
that provides local TV listings is consumed and the result is being transferred into the planner. This allows
comfortable navigation of the TV programs and gives the user a truly incredible user experience to navigate
the information. You can concentrate on reading the data from the web service and adding items to the
planner. The whole visual part and the user interaction is handled by the frameworks. The best part about
this: The very same source code can be shared for desktop and web!

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 43 / 61

Issue Nr 1/2 2018 BPM

FastReport VCL 6
is officially released!

What’s new in FastReport VCL 6?
Improved report engine expands editing and interactivity abilities. Report
objects can be selected and edited instantly even from the preview
Expressions post processing and new duplicates processing.
Transport input-output filters: now you can save your reports to various
cloud storages: DropBox, OneDrive, Box.com, Google Drive or send it by
email
New report objects:
Table object – for super easy creating and editing of tabular reports
Map object that supports OSM, ESRI and GPX
Gauge object
New barcodes: Aztec, MaxiCode and linear USPS
Improved export filters to PDF, SVG, HTML5 will let you process
complicated objects like RichText, Diagrams, Maps and exports them
directly as vector/text format
And of course report designer couldn’t be left without upgrade:
Improved Guide lines allow to move and resize docked objects.
Extended script debugger
Improved code completion
Copying and pasting of not only report objects, but their content as well
Enabling and disabling the quick editors

Reporting must be Fast!
Fast Reports

52

TVGuide\TMSWeb_TVGuide.dproj

Figure 70

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 44 / 61

Issue Nr 1/2 2018 BPM

53

TVGuide\TMSWeb_TVGuide.dproj
TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 45 / 61

Issue Nr 1/2 2018 BPM

54

TVGuide\TMSWeb_TVGuide.dproj

Figure 711

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 46 / 61

Issue Nr 1/2 2018 BPM

POCKET EDITION
Printed in full color.
A fully indexed PDF book
is included + 52 projects

GET THE BOOK INCLUDING THE NEWEST LIBRARY STICK
INCLUDING 1 YEAR DOWNLOAD OF BLAISE PASCAL MAGAZINE

COMBINATION: 3 FOR 1

€ 100

BOOK INCLUDING THE LIBRARY STICK EXCL. SHIPPING
INCLUDING 1YEAR DOWNLOAD FOR FREE

CREDITCARD LIBRARY STICK 16 GB

https://www.blaisepascal.eu/subscribers/UK/UK_CD_DVD_USB_Department.html

All issues on the USB stick
complete searchable 3600 pages -

fully indexed

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
 for I := 1 9 to do
 beginbegin
 ...
 end
end;

procedure
var
begin
 for I := 1 9 to do
 begin
 ...
 end
end;

Blaise Pascal, MathematicianProf Dr.Wirth, Creator of Pascal Programming language

Editor in Chief: Detlef Overbeek
Edelstenenbaan 21 3402 XA
IJsselstein Netherlands

Prof Dr.Wirth, Creator of Pascal Programming language

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
 for I := 1 9 to do
 beginbegin
 ...
 end
end;

procedure
var
begin
 for I := 1 9 to do
 begin
 ...
 end
end;

Prof Dr.Wirth, Creator of Pascal Programming language Blaise Pascal, Mathematician

A L L I S S U E S I N O N E F I L E

B L A I S E P A S C A L M A G A Z I N E

L I B R A R Y 2 0 1 7

1
2 3 4 5

6 8 9 1110 12

13 15 17 19201816
21

29 31

39

47
54

40

48
55

62 63646566
5657585960 61

49

434241 444546
50515253

33 35 3732 34 36 38
2324 25262728

7

14
22

30

DX

GRAPHICS

TMSWeb_FNCTreeView.dproj

Figure 72

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 47 / 61

56Issue Nr 1/2 2018 BPM

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 48 / 61
TMSWeb_FNCTreeView.dproj

57Issue Nr 1/2 2018 BPM

58

TMSWeb_FNCTreeView.dproj

Code Listing 38

Figure 73

Figure 73

Another excellent example of the incredible possibilities to create an awesome user experience.
A treeview component offers many options to display data in a hierarchical fashion.
Design options include different styles and formats for any cell.
As with all data controls from TMS, there is support for filterting, grouping and sorting.
Data can be imported and exported to different file formats. TMS Web Applications can also easily
interact with the clipboard, which is also demonstrated with this sample.

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 49 / 61

Issue Nr 1/2 2018 BPM

Issue Nr 1 2018 BLAISE PASCAL MAGAZINE

TMSWeb_SimpleService.dproj

Figure 74

Figure 75

Retrieved items: 100

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 50 / 61

59

60

procedure . (:);TForm1 WebButton1Click Sender TObject
begin
 . := WebHttpRequest1 URL
'https://jsonplaceholder.typicode.com/albums';

 . ;WebHttpRequest1 Execute
end;

procedure string . (: ; :);TForm1 WebHttpRequest1Response Sender TObject AResponse
var
 : ;js TJSON
 : ;ja TJSONArray
 : ;jo TJSONObject
 : ;i integer
begin
 := . ;js TJSON Create

 try
 := (. ());ja TJSONArray js Parse AResponse

 (+ (.));ShowMessage inttostr ja Count'Retrieved items:'

 := . - for to doi ja Count0 1
 begin
 := . [];jo ja Items i
 . . (. ());WebListBox1 Items Add jo Get 'title'
 ;end
 finally
 . ;js Free
 ;end
end;

TMSWeb_SimpleService.dproj

Code Listing 14

Figure 76

Consuming web services is easy as a HTTP request
component is available. Data can be processed using
the Delphi RTL JSON classes.

Figure 761

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 51 / 61

Issue Nr 1/2 2018 BPM

61

TMSWeb_google_calendar.dproj

Figure 77:

TMS Web can interact with many Cloud Services and the number of supported Cloud Services is increasing
frequently. This demo shows how to access a Google Calendar without the hassle of thinking about
anything. You simply drop the calendar component and provide you user credentials and the component
offers properties and methods to work with any calendar stored in your profile.

Figure 771

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 52 / 61

Issue Nr 1/2 2018 BPM

62

TMSWeb_google_calendar.dproj

Figure 78

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 53 / 61

Issue Nr 1/2 2018 BPM

63

Figure 91: Support for myCloudData is also already included in the first version.

Figure 79

TMSWeb_myClouddata.dproj
TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 54 / 61

Issue Nr 1/2 2018 BPM

64

TMSWeb_myClouddata.dproj

Figure 801

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 55 / 61

Issue Nr 1/2 2018 BPM

65

TMSWeb_Embedding.dproj

Figure 81

Components for Google Maps and YouTube are
available. This allows for easy integration of these
services into your web applications. Maps can be
accessed in source code to add markers, calculate
and visualize routes etc. The only thing you always
need to provide are your user credentials for the
different services. Mostly, this means you have to
provide an API key.

Figure 81

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 56 / 61

Issue Nr 1/2 2018 BPM

66

procedure . (:);TForm4 WebFormCreate Sender TObject
begin
 . := ; WebGoogleMaps1 APIKey 'AIzaSyAtf_nj105Bqk_KakmimUR7WjrEqCUkHlU'
 // provide your Google maps API key here;
 . := ;WebGoogleMaps1 Align alClient
end;

TMSWeb_Embedding.dproj

Code Listing 15

Figure 82

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 57 / 61

Issue Nr 1/2 2018 BPM

67

TMSWeb_Geolocation.dproj

Figure 83

implementation

{$R *.dfm}

procedure . (:);TForm4 WebButton1Click Sender TObject
begin
 . if thenWebGeoLocation1 HasGeolocation
 . ;WebGeoLocation1 GetGeolocation
end;

procedure . (:);TForm4 WebButton2Click Sender TObject
var
 , : ;lat lon double
begin
 := ;lat 48.8566
 := ;lon 2.3522
 . (,);WebGoogleMaps1 SetCenter lat lon
 . (, ,);WebGoogleMaps1 AddMarker lat lon 'Paris'
end;

procedure . (:);TForm4 WebButton3Click Sender TObject
var
 , : ;lat lon double
begin
 := ;lat 51.5074
 := ;lon 0.1278
 . (,);WebGoogleMaps1 SetCenter lat lon
 . (, ,);WebGoogleMaps1 AddMarker lat lon 'London'
end;

procedure . (:);TForm4 WebButton4Click Sender TObject
begin
 . ;WebGoogleMaps1 ClearMarkers
end;

procedure . (:);TForm4 WebFormCreate Sender TObject
begin
 . := WebGoogleMaps1 APIKey
'AIzaSyAtf_nj105Bqk_KakmimUR7WjrEqCUkHlU';

end;

procedure . (TForm4 WebGeoLocation1Geolocation
Sender TObject Lat Lon: ; , ,

 :);Alt Double
begin
 . (,);WebGoogleMaps1 SetCenter lat lon
 . ();WebGoogleMaps1 SetZoom 11
 . (, ,);WebGoogleMaps1 AddMarker lat lon 'Home'
end;

end.

Code Listing 16

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 58 / 61

Issue Nr 1/2 2018 BPM

68

TMSWeb_jQWidgets.dproj

Figure 84

Figure 84:

Not only can TMS Web integrate JavaScript frameworks that style or make other
design changes to your application, it can also integrate visual controls that are
designed in other JavaScript frameworks. It is not possible to provide design-time
integration for these visual controls, but you will have access to all properties,
methods and events during design-time as well as run-time.
Many visual components of the jQuery framework are being supported using the
jQWidgets framework.

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 59 / 61

Issue Nr 1/2 2018 BPM

69

TMSWeb_jQWidgets.dproj

This demo shows the use of jQuery based controls
like TwebJQXCalendar,TwebJQXMenu
JQXMaskEditInput

Figure 85

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 60 / 61

Issue Nr 1/2 2018 BPM

70

var
 : ;Form2 TForm2

implementation

{$R *.dfm}

procedure . (:);TForm2 WebButton1Click Sender TObject
begin
 . := . ;WebJQXCalendar1 MultiSelect WebJQXCalendar1 MultiSelectnot
end;

procedure . (:);TForm2 WebButton2Click Sender TObject
begin
 . := . ;WebJQXCalendar1 OtherMonthDays WebJQXCalendar1 OtherMonthDaysnot
end;

procedure . (:);TForm2 WebButton3Click Sender TObject
begin
 . := . ;WebJQXCalendar1 WeekNumbers WebJQXCalendar1 WeekNumbersnot
end;

procedure . (:);TForm2 WebButton4Click Sender TObject
begin
 . := . ;WebJQXCalendar1 Enabled WebJQXCalendar1 Enablednot
end;

procedure . (:);TForm2 WebButton5Click Sender TObject
begin
 . := . ;WebJQXComboBox1 MultiSelect WebJQXComboBox1 MultiSelectnot

end;

procedure . (:);TForm2 WebButton6Click Sender TObject
begin
 . := ;WebJQXCalendar1 Date Now
end;

procedure . (:);TForm2 WebFormCreate Sender TObject
var
 : ;I Integer
begin
 := for to doI 1 10
 begin
 . . (+ ());WebJQXComboBox1 Items Add IntToStr I'Item '
 . . (+ ());WebJQXDropDownList1 Items Add IntToStr I'Item '
 ;end

end;

procedure . (: ;TForm2 WebJQXCalendar1DateClick Sender TObject
 :);Event TJQXCalendarEventArgs
begin
 . := (.);WebLabel3 Caption DateTimeToStr Event Date
end;

procedure . (: ;TForm2 WebJQXMenu1ItemClick Sender TObject
 :);Event TJQXMenuEventArgs
begin
 . := + . . + ;WeblabelMenu Caption Event Source Caption'Item: "' '" clicked'
end;

end.

TMSWeb_jQWidgets.dproj

Code Listing 17

TMS WEB CORE AND RADICAL WEB : INTRODUCTION ARTICLE PAGE 61 / 61

Issue Nr 1/2 2018 BPM

71

ABSTRACT

Enumerated Types are a powerful tool to delimit the
possible values for a variable or parameter. They are
simple to understand, and simple to use in your code.
But it becomes a bit more difficult when you want to
expose them to your users in the User Interface. Then
we need some conversion of an enumerated value to
a value a user can understand. This brings the need
for attributes to Enumerated Types. This article
describes a possible implementation using generic
lists of record-like structures, with inheritance
functionality to make this useable for many

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 1/14

THE REQUIREMENT
I will use as an example an Enumerated Type for
the State of a Change Request. The type definition
could look like:
TCRState = (csRegistered, csAnalysis,
csApproved, csDesign, csDevelopment,
csTesting, csReleased, csCancelled,
csRejected);

For each State there are some properties like Name
(the Name to show in the UI), Description (more
detailed definition of the State) and OpenState (is
work still needed or already going on?). This
could lead to following value matrix:

Many more properties could be possible, like
business logic when is it allowed to reach e.g.
crCancelled csReleased, (not from
crRejected, crCancelled, but probably on

all other States), but I will use the set above as a
starter. Name looks a bit curious as it could be
retrieved from the Enumeration, but think of a
different language: in Dutch you still have
csReleased 'Vrijgegeven'. but Name could be

My first implementations used a record structure
like:

These records were stored in an array of records
with associated functionality to find items and to
retrieve the special attribute values.
Over time, the number of similar
implementations grew considerably. The array of
records was replaced by a of records, but TList

each time special were needed, with TLists

specific functionality for GetItems,

Finding, Sorting etc. On the other hand,

there was a great deal of similarity between them,
so I started to look for a more generic approach
using inheritance.

EnumerationNameOpenStateDescription
csRegistered Registered True The CR was registered but needs Analysis
csAnalysis Analysis True The CR is being analyzed
csApproved Approved True The CR is approved, budget available, work can start
csDesign Design True The Design for the CR is going on
csDevelopment Development True The Code Development was started
csTesting Testing True The Code is being Tested
csReleased Released False The Code was Released into Production
csCancelled Cancelled False Work on the CR was stopped
csRejected Rejected False After Analysis, the CR was rejected

TCRStateRecord = RECORD
 : ;CRState TCRState
 : ;Name String
 : ;OpenState Boolean
 : ;Description String
END;

BY PAUL NAUTA

DXexpertstarter

Issue Nr 1/2 2018 BPM

72

TENUMITEM

Records are simple, but they lack inheritance
functionality. So, when you want to have a
common ancestor for records representing an
Enumerated Item, then you need to switch to a
CLASS. This leads to following class definition:

TEnumBasic = CLASS
PRIVATE
 : ;FDescription String
 : ;FEnumName String
 : ;FEnumOrd Integer
 : ;FName String
PUBLIC
 : ;PROPERTY String READ WRITEDescription FDescription FDescription
 : ;PROPERTY String READEnumName FEnumName
 : ;PROPERTY READEnumOrd Integer FEnumOrd
 : ;PROPERTY String READ WRITEName FName FName
END;

You will miss here the Enumerated Type itself as
property. The problem is that the actual
Enumerated Type cannot be known at this
moment. The Construct Generics

TEnumItem ET< > = CLASS

could be a solution for that, but the ET
() is not a class type so Enumerated Type

generic parameter references like

are not possible. You need to specialize them like

As I could not solve this in a straight forward way,
I use the trick of a derived type:

The purpose of and SetEnumOrd

SetEnumName will be discussed later. Via this

inheritance the can be specialized whereas ET

parameter references could be to its ancestor, like:

NewItem TEnumItem ET : < >

TEnumItem ET TEnumBasic< > = ()CLASS
PRIVATE
 : ;FEnumerator ET
PROTECTED
 (:); ;PROCEDURE CONST VIRTUALSetEnumOrd Value Integer
 (:); ;PROCEDURE CONST String VIRTUALSetName Value
PUBLIC
 : ;PROPERTY String READEnumerator FEnumerator
END;

NewItem TEnumBasic : ;

Later we will need some more functionality
on the but let us first see how TEnumItem,

the could TCrState Enumerated Type

be implemented:

NewItem TEnumItem TCrState : < >

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 2 / 14

Issue Nr 1/2 2018 BPM

73

It inherits of course the attributes from its
ancestors and has one additional attribute:
OpenState CrState plus a pseudo attribute:
which is just an easy representation
of the Enumerator. Not really needed but
sometimes very useful.

TENUMLIST
Now it is time to look how we can store the
TEnumItems. Generics By starting for
TEnumItem, it is logical to use Generics for the
list of as well. Also here it came TEnumItems
out that an inheritance trick was needed,
similar to so the basic setup TEnumItem,
looks as follows:

Where in most cases developers would use
T as the class identifier, I use as abbreviation EB
for for clarity. The ancestor class TEnumBasic
is an because compared to a TObjectList
TList it has the capability of automatically
freeing object entries when they are removed
from the list or when the list is freed. Please
notice the constraint which CONSTRUCTOR
implies that the actual type must be a class EB
that defines a default constructor (a public
parameterless constructor). As a result, methods
within may construct TEnumBasicList
instances of using its default constructor, EB
without knowing anything about itself (no EB
minimum base type requirements). To reference
this basic class, we need a NickName as follows:

Basically, it determines the basic classes as the
ultimate ancestors. It is used in the following
derived class definition:

TCrStateItem TEnumItem TCrState = (< >)CLASS
PRIVATE
 : ;FOpenState Boolean
PUBLIC
 : ;PROPERTY READ WRITECrState TCrState FEnumerator FEnumerator
 : ;PROPERTY READ WRITEOpenState Boolean FOpenState FOpenState
END;

TEnumBasicList EB TEnumBasic< : , > = CONSTRUCTOR
CLASS(< >)TObjectList EB
PUBLIC
 ; ;CONSTRUCTOR OVERLOADCreate
END;

TEnumBasicListExt TEnumBasicList TEnumBasic = (< > CLASS

TEnumList ET EI TEnumItem ET TEnumBasicListExt< ; : < >, > = () CONSTRUCTOR CLASS
PRIVATE
 ;PROCEDURE Initialize
 (:) : ;FUNCTION GetEnumItem Value ET EI
 (:) : ;FUNCTION IndexGetItem Integer EI
PUBLIC
 ; ;CONSTRUCTOR OVERLOADCreate
 [:] : ; ;PROPERTY Index READ DEFAULTEnumItems ET EI GetEnumItem
 [:] : ;PROPERTY Index READItems Integer EI GetItem
END

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 3 / 14

Here I use as abbreviation for Enumerated ET
Type (like and for TCrState) EI TEnumItem.
The Class Definition needs both and because they
are of a different type, they must be separated by
a semicolon. For the type is EI
TEnumItem<ET> EnumItem, thus an
specialized for But is no type thus we ET. ET
cannot make that part of the definition constraint,
so at this moment it is still undetermined. It will
only become defined when we define the List for
e.g. the TCrStates:

But let us go back to the definition of the
TEnumList. It is derived from
TEnumBasicListExt which returns Items
typed as We need to perform a EB. GetItems
simple type casting to EI:

FUNCTION Index < , >. (:) : ;TEnumList ET EI GetItem Integer EI
BEGIN
 := ([]);Result EI ItemsINHERITED Index
END;

We want to use the TCrStateList by reference to

an Enumerator instead of an Index, like:

PROCEDURE (:);ShowCrStateDescription Value TCrState
VAR
 : ;AList TCrStateList
BEGIN
 := . ;AList TcrStateList Create
 ([].);ShowMessage AList Value Description
END;

This requires the default EnumItems

property using Before GetEnumItem.

discussing in detail how GetEnumItem

is implemented, let us first look how to
Initialize the list.

 TCrStateList TEnumList TCrState TCrStateItem = (< , >);CLASS

Issue Nr 1/2 2018 BPM

74

This procedure requires some more explanation.
One could expect to use

But the compiler has no notion what really ET

means () so we must E2008: Incompatible types

resolve that during runtime. For this purpose,
the parameter is used which is FEnumInfo

CONSTRUCTOR < , >. ;TEnumList ET EI Create
BEGIN
 ;INHERITED Create
 := ();FEnumInfo TypeInfo ET
 ;Initialize
END;

Via the record we can TypeInfo.TypeData

determine the minimum and maximum
ordinality values. In the Initialize procedure we
set the and the Name properties. But EnumOrd

because uniquely defines each EnumOrd

element, and Enumerator can be EnumName

derived from it. This is the purpose of the
SetEnumOrd TEnumItem: procedure on

PROCEDURE CONST < >. (:);TEnumItem ET SetEnumOrd Value Integer
BEGIN
 := ((),);FEnumName GetEnumName TypeInfo ET Value
 := ;FEnumOrd Value
 := . < >();FEnumerator TRttiEnumerationType GetValue ET FEnumName
END;

PROCEDURE < , >. ;TEnumList ET EI Initialize
VAR iEnumOrd Integer : ;

 : ; : ;rEnumItem EI rEnumType ET
BEGIN
 := . . FOR TOiEnumOrd FEnumInfo TypeData MinValue
FEnumInfo TypeData MaxValue. . DO
 BEGIN
 := . ;rEnumItem EI Create
 . ();rEnumItem SetEnumOrd iEnumOrd
 . (.);rEnumItem SetName rEnumItem FEnumName
 ();INHERITED Add rEnumItem
 ;END
END;

FOR TO DO := () () iEnumOrd Low ET High ET

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 4 / 14

INITIALIZATION
TEnumList TEnumItem. is a list of So, it is
logical to create a for every TEnumItem
Enumerator Enumerated Type. in the
We can create more, but why would you need two
entries with the same Only for a Enumerator?
different Name?
You could think of csDevelopment
having Names like ' ' and Internal Development

' '. But in such case, there Outsourced Development

seems to be a functional difference between them,
so it is better to split into csDevelopment
csDevelopmentInt csDevelopmentExt. and
TEnumList is therefore a list of unique
ordinalities,which is created via:

Issue Nr 1/2 2018 BPM

75

The determinitation of is the FEnumerator

tricky point here because a simple type casting
like:

does not compile (), for E2089: Invalid Typecast

the same reason as given above. But the Run
Time Type Information () contains the RTTI

solution as needed here.
With determined, it is a simple step FEnumName

to give the Name the value of as FEnumName

default value. Later we can always update to
what we really want.
While working on this it becomes more Class,

and more clear that the should have TEnumList

full control over That is also the TEnumItem.

reason that and EnumName, EnumOrd

Enumerator are read-only values on
TEnumItem. These values can only be set via

protected procedures, in this case only from
TEnumList. Once the list is created via

Initialize, Additions Deletes and

should no longer be possible. Therefore, we
override these via:functionalities

Because of this, we must call INHERITED Add

and not just in the Add Initialize

procedure. By making Initialize part of the
constructor, the list is automatically populated
at create of the list.

RETRIEVING AND UPDATING ITEMS

It is now time to discuss the GetEnumItem

function. It looks like:

FUNCTION < , >. (:) : ;TEnumList ET EI GetEnumItem Value ET EI
VAR
 : ;iOrd Integer
 : ;iEnum Integer
BEGIN
 := ();iOrd ConvertEnumToOrd Value
 := - FOR TO DOiEnum Count0 1
 ([]. =)IF THENItems iEnum EnumOrd iOrd
 BEGIN
 := [];Result Items iEnum
 ;Break
 ;END
END;

FUNCTION CONST < , >. (:) : ;TEnumList ET EI Add Value ET Integer
BEGIN
 . ();RAISE Exception Create 'Addition is not allowed'
END;

PROCEDURE Index < , >. (:);TEnumList ET EI Delete Integer
BEGIN
 . ();RAISE Exception Create 'Delete is not allowed'
END;

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 5 / 14

FEnumerator ET FEnumOrd := (;

Issue Nr 1/2 2018 BPM

76

Basically, this is very straight forward, apart from

the ConvertEnumToOrd function. Due to the

same problems as noticed before, following does

not compile:

As workaround I developed ConvertEnumToOrd

which is defined as:

FUNCTION < , >. (:): ;TEnumList ET EI ConvertEnumToOrd Value ET Integer
BEGIN
 . . (())^. CASE OFSystem TypInfo GetTypeData TypeInfo ET OrdType
 , : := (@)^;otUByte otSByte Result PByte Value
 , : := (@)^;otUWord otSWord Result PWord Value
 , : := (@)^;otULong otSLong Result PInteger Value
 ;END
END;

This is not something you easily invent, but it
is a customization of the
TRttiEnumerationType.GetName<T{:

enum}>(AValue: T) function in the Rtti
unit.
With the GetEnumItem functionality it is
possible to set e.g. the Description like:

VAR
 : ;AList TCrStateList
BEGIN
 := . ;AList TcrStateList Create
 []. := ;AList csAnalysis Description 'The CR is being analyzed'

The Name cannot be set in this way because it is

read-only, mainly because you want Name to be

unique. And the List needs to determine if a new

Name value is acceptable. This can be done via:

PROCEDURE String < , >. (: ; : ;TEnumList ET EI ModifyNameDescr Value ET Name
 :);Description String
VAR
 : ;rItem EI
 : ;rExisting EI
BEGIN
 := ();rExisting FindName Name

 (=) IF NIL THENrExisting
 BEGIN
 := ();rItem GetEnumItem Value
 . ();rItem SetName Name
 . := ;rItem Description Description
 END
 ELSE
 . (+ + + .);RAISE Exception Create Name rExisting EnumName'Name ''' ''' is already in use with item '
END;

iOrd Ord Value >= ();

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 6 / 14

Issue Nr 1/2 2018 BPM

77

In this procedure also the Description is set,

because that is what you would like to do in most

of the simple implementations of TEnumList.

To check if the Name already exists, we need the

FindName procedure:

This procedure does a case insensitive check,

which is logical in view of the nature of the Name

field: registered and REGISTERED should mean

the same csRegistered. With this functionality

available, it is now possible to create our

TCrStateList as follows:

CONSTRUCTOR . ;TCrStateList Create

BEGIN
 ;INHERITED Create

 (, ,);ModifyNameDescr csRegistered 'Registered' 'The CR was registered but needs Analysis'
 (, ,);ModifyNameDescr csAnalysis 'Analysis' 'The CR is being analyzed'
 (, , ModifyNameDescr csApproved 'Approved' 'The CR is approved, budget available,
 work can start');

 (, ,);ModifyNameDescr csDesign 'Design' 'The Design for the CR is going on'
 (, ,);ModifyNameDescr csDevelopment 'Development' 'The Code Development was started'
 (, ,);ModifyNameDescr csTesting 'Testing' 'The Code is being Tested'
 (, ,);ModifyNameDescr csReleased 'Released' 'The Code was Released into Production'
 (, ,);ModifyNameDescr csCancelled 'Cancelled' 'Work on the CR was stopped'
 (, ,);ModifyNameDescr csRejected 'Rejected' 'After Analysis, the CR was rejected'

 []. := ;EnumItems csRegistered OpenState True
 []. := ;EnumItems csAnalysis OpenState True
 []. := ;EnumItems csApproved OpenState True
 []. := ;EnumItems csDesign OpenState True
 []. := ;EnumItems csDevelopment OpenState True
 []. := ;EnumItems csTesting OpenState True
END;

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 7 / 14

FUNCTION String < , >. (:) : ;TEnumList ET EI FindName Name EI
VAR
 : ;iEnum Integer
 : ;iCompare Integer
BEGIN
 := ;Result NIL

 := - FOR TO DOiEnum Count0 1
 BEGIN
 := ([]. ,);iCompare AnsiCompareText Items iEnum Name Name

 (=) IF THENiCompare 0
 BEGIN
 := [];Result Items iEnum
 ;Break
 ;END
 ;END
END;

Issue Nr 1/2 2018 BPM

78

Of course, it is not necessary to make these

configurations part of the Creator. You could

also choose to load the information from an Ini File

or from a DataSet but that would require some

extra functionality.

NAME CASING

In most cases you want to control the casing of the

Name, and maybe even switch the casing. This

could look like:

ncNone means no requirements, ncUpper means

we want UpperCase, ncLower means we want

LowerCase while ncFirst means the first

character is UpperCase, the rest is LowerCase

(in fact a nice example to use TEnumList for these

definitions!). To convert a Name to the required

NameCasing, following function was developed:

FUNCTION String String (: ; :) : ;ConvertNameCasing Name Casing TNameCasing
BEGIN
 CASE OFCasing
 : := ();ncUpper Result UpperCase Name
 : := ();ncLower Result LowerCase Name
 : := ((, ,)) + ((, , ()));ncFirst Result UpperCase Copy Name LowerCase Copy Name Length Name1 1 2
 ELSE
 := ;Result Name
 ;END
END

PRIVATE
 : ;FNameCasing TNameCasing
 (:);PROCEDURE SetNameCasing Value TNameCasing
PUBLIC
 : PROPERTY READ WRITENameCasing TNameCasing FNameCasing
SetNameCasing;

where SetNameCasing gets following :implementation
PROCEDURE CONST < >. (: TEnumBasicList EB SetNameCasing Value
TNameCasing);

VAR
 : ;iEnum Integer
BEGIN
 := ;FNameCasing Value
 := - FOR TO DOiEnum Count0 1
 []. ([].);Items iEnum SetName Items iEnum Name
END;

Which NameCasing should be applied, should

be defined on the TEnumList and be propagated

to each of its items. This leads to following
additions to the definition of TEnumBasicList:

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 8 / 14

TNameCasing ncNone ncUpper ncLower ncFirst = (, , ,);

Issue Nr 1/2 2018 BPM

79

In this way all are adapted in the EnumItems

same way when the is changed, to NameCasing

keep the casing uniform across the list. The actual
setting is arranged in the procedure on SetName
TEnumItem:

PROCEDURE CONST String < >. (:);TEnumItem ET SetName Value
BEGIN
 := (, ().);FName ConvertNameCasing Value TEnumBasicListExt FOwner NameCasing
END;

The field is not available on NameCasing

TEnumItem, so we must get it from

TEnumBasicList. Until now we did nothing

to tell that an belongs to a specific TEnumItem

TEnumList. Therefore I introduced on

TEnumBasic FOwner Pointer. the field as a

It must be set when we create the Item, which can
be done in the Initialize procedure via:
 rEnumItem.FOwner := Self;

Because is just a Pointer, it must be type FOwner

casted to Defining TEnumBasicListExt.

FOwner TEnumBasicListExt directly as is

not possible due to several mutual dependent
type definitions.

SORTING

It is a general requirement that lists can be sorted.
The could be sorted on TCrState EnumOrd

(natural ordering) or on Name while several more
possibilities could exist. To use the standard Sort
procedure of you need to provide TObjectList,

the functionality via its Interface to the Comparer

Sort Comparer command. So how should this

look like? Again, I want to be generic, therefore one
compare function should be able to compare on
arbitrary or , case Numeric String Fields

sensitive or not, ascending or descending. The
definition of the therefore becomes:Comparer

TCompareValues EB TEnumBasic TComparer EB< : > = (< >)CLASS
PRIVATE
 : ;FCaseSensitive Boolean
 : ;FSortAscending Boolean
PUBLIC
 ; ;CONSTRUCTOR OVERLOADCreate
 (, :) : ; ;FUNCTION CONST OVERRIDECompare Left Right EB Integer
 : ;PROPERTY READ WRITECaseSensitive Boolean FCaseSensitive FCaseSensitive
 : ;PROPERTY READ WRITESortAscending Boolean FSortAscending FSortAscending
END;

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 9 / 14

Issue Nr 1/2 2018 BPM

80

the sees the context as RTTI TEnumItem<ET>

and not as an item possibly derived from
TEnumItem<ET> TCrStateItem. like

Consequently, all additional properties in derived
items will lead to compiler errors like 'Property
XXXX does not exist', when running this code.
The solution is to determine the ClassType

during runtime, because on that moment
knowledge on the actual type of the items is
available.

For sure you want some further explanation what
is happening here. First, we determine the actual
type of via the TEnumType ClassType.

Second, we determine the property on which we
want to compare, which is specified on the List.
Third, we can determine the value of the
Property. But the procedure causes a GetValue

lot of problems: the result is of which TValue

often leads to errors when used as
TValue.AsString. Following procedure

could resolve that as well:

FUNCTION (: ; : ;ConvertValueToString AProperty TRttiProperty Value TValue
 :) : ;ForSorting Boolean String
VAR
 : ;iAdd Integer
 : ;rPropInfo PTypeInfo
BEGIN
 . . CASE OFAProperty PropertyType TypeKind
 :tkEnumeration
 BEGIN
 := . . ;rPropInfo AProperty PropertyType Handle
 (= . ()) IF THENrPropInfo System TypeInfo Boolean
 (. =) := :=IF THEN ELSEValue AsOrdinal Result Result0 'False' 'True'
 ELSE
 := (, .); ;Result GetEnumName rPropInfo Value AsOrdinal END
 :tkInteger
 BEGIN
 := ;iAdd 0
 := ;IF THENForSorting iAdd 1000000
 := (. + ;Result IntToStr Value AsInteger iAdd END
 ELSE
 := . ;Result Value AsString
 ;END
END;

The curious point here is that have Booleans

TypeKind tkEnumerated = (one would expect

tkBoolean but that does not exist) so GetEnumName

is not useful. is used to avoid compare iAdder

problems like , because the 2 > 11 Comparer

does a straight forward string compare.
ForSorting is a Parameter that was added for

some other purposes. With all these additions we
can do the actual Sort via:

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 10 / 14

Issue Nr 1/2 2018 BPM

81

It has following implementation for the
Compare function:

FUNCTION CONST < >. (, :) : ;TCompareValues EB Compare Left Right EB Integer
BEGIN
 IF THENFCaseSensitive
 := (. , .)Result AnsiCompareStr Left GetCompareValue Right GetCompareValue
 ELSE
 := (. , .);Result AnsiCompareText Left GetCompareValue Right GetCompareValue

 IF NOT THENFSortAscending
 := - ;Result Result
END;

I could not define this comparer for items EI

because of the unknown dependency to ET.

Instead, this function uses Items to compare EB

(in fact, this was one of the reasons to split between
TEnumBasicList TEnumList). and But on

that basic level, only the basic fields are present,
not additional fields like The 'OpenState'.

compiler simply rejects those additional fields.
The trick is to introduce a via a 'calculated field'

special function on GetCompareValue

TEnumItem, FCompareField, using an

defined on TEnumBasicList:

Because the Function will call this Compare

procedure on we need to make TEnumBasic,

GetCompareValue available also on

TEnumBasic. VIRTUAL, ABSTRACT A

function on is sufficient to actually TEnumBasic

use the on GetCompareValue TEnumItem

(provided it is specified with The OVERRIDE).

code snippet above again poses some
implementation challenges because with the first
guess:

sField TEnumBasicListExt FOwner FCompareField := (). ;

 := (,); Result GetPropValue Self sField

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 11 / 14

FUNCTION String < >. : ;TEnumItem ET GetCompareValue
VAR
 : ;rContext TRttiContext
 : ;rType TRttiType
 : ;rProperty TRttiProperty
 : ;oValue TValue
BEGIN
 := . ();rType rContext GetType ClassType
 := . (rProperty rType GetProperty
TEnumBasicListExt FOwner FCompareField().);

 := . ();oValue rProperty GetValue Self
 := (, ,);Result ConvertValueToString rProperty oValue True

Issue Nr 1/2 2018 BPM

82

The is defined as FComparer

and is created in the creator of

TEnumBasicList as :

In normal cases you would define FComparer

as:

because only the interface would be needed, but
in this case, we added and FCaseSensitive

FSortAscending as Fields, which we want to

change on the fly. Therefore, we first need to
create and then set TCompareValues< EB >

the appropriate attributes. We also need to free it
in Destroy. Obviously, such type is not qualified
for automatic freeing by as it is TObjectList,

not a list item.

EXPORT

One of the use cases could be to see the list of
Names in a We can arrange this StringList.

as follows:

PROCEDURE < , >. (: ;TEnumList ET EI PopulateStringList List TStrings
 :);Field String
VAR
 : ;rContext TRttiContext
 : ;rType TRttiType
 : ;rProperty TRttiProperty
 : ;oValue TValue
 : ;iEnum Integer
BEGIN
 . ;List Clear
 := . (());rType rContext GetType TypeInfo EI
 := . ();rProperty rType GetProperty Field
 := - FOR TO DOiEnum Count0 1
 BEGIN
 := . (([])oValue rProperty GetValue TObject Items iEnum
 . ((, ,));List Add ConvertValueToString rProperty oValue False
 ;END
END;

PROCEDURE < >. ;TEnumBasicList EB Sort
BEGIN
 . := ;FComparer FCaseSensitive FCaseSensitive
 . := ;FComparer FSortAscending FSortAscending
 (< >);INHERITED ASSort FComparer IComparer EB
END;

FComparer TCompareValues EB : < >;

FComparer TCompareValues EB Create := < >. ;

FComparer IComparer EB : < >;

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 12 / 14

Issue Nr 1/2 2018 BPM

83

Here we can specify the name of the Field to
export. For the rest, this procedure uses
functionality already discussed earlier.
For our example we will also create a list of
Open States via:

DEMONSTRATION

It is now time for a demonstration. You can
create a Demo Application with a Button and 2
ComboBoxes. The button must have an

OnClick event like:

PROCEDURE . (:);TForm1 ComboBox1DblClick Sender TObject
VAR
 : ;lStates TCrStateList
 : ;sName String
BEGIN
 := . ;lStates TCrStateList Create
 TRY
 := . ;sName ComboBox1 Text
 (<>) IF THENsName ''
 (. ().);ShowMessage FStates FindName sName Description
 FINALLY
 . ;lStates Free
 ;END
END;

PROCEDURE . (:);TCrStateList PopulateOpenStates List TStrings
VAR
 : ;iEnum Integer
BEGIN
 . ;List Clear
 := - FOR TO DOiEnum Count0 1
 []. IF THENItems iEnum OpenState
 . ([].);List Add Items iEnum Name
END;

PROCEDURE . (:);TForm1 Button1Click Sender TObject
VAR
 : ;lStates TCrStateList
BEGIN
 := . ;lStates TCrStateList Create
 TRY
 . (. ,);lStates PopulateStringList ComboBox1 Items 'Name'
 . := ;lStates NameCasing ncUpper
 . := ;lStates CompareField 'Name'
 . := ;lStates SortAscending False
 . ;lStates Sort
 . (.);lStates PopulateOpenStates ComboBox2 Items
 ();ShowMessage 'Done'
 FINALLY
 . ;lStates Free
 ;END
END;

ComboBox1 OnDblClickgets an event like:

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 13 / 14

Issue Nr 1/2 2018 BPM

84

Pressing the button will populate ComboBox1

with the Names in natural order:

ComboBox2 is populated with only the Open States,

in UpperCase and in descending order:

When you double click on the selected item in
ComboBox1, you get a message representing the

Description of the selected item, like:

We see that can be used with TCrStateList

only a few lines of additional coding; almost all
the work is done via the generic and TEnumItem
TEnumList.

CONCLUSION
With Generics, Inheritance and some RTTI
functionality it is possible to develop generic
functionality to maintain Attributes for Enumerated
Types. The meaning of each Enumerator can simply
be defined with the standard Description field.
During development I gathered quite some
knowledge on the functioning of Generics and RTTI
and I needed to use some not obvious tricks. Also,
the code used for Generics is more difficult to
read/understand than 'normal' code. The reward
however is, that the resulting generic functionality
can be tailored easily for case specific needs via
derived types. It will for example be possible to
specify completely the associated business logics.
This can be of great importance because all
relevant settings can be maintained on one place,
in one derived TEnumItem / TEnumList
combination.

ENUMERATED TYPES AND ASSOCIATED ATTRIBUTES PAGE 14 / 14

Issue Nr 1/2 2018 BPM

GETTING FRAMED (THE FRAMEWORK PROJECT) PAGE 1/6
BY DAVID DIRKSE
FUN XY () PAGE 1/5A WYSIWYG MATH EDITOR

BY DAVID DIRKSE

8585

THIS DELPHI-7 PROJECT
RESTS ON FOUR PILLARS

For some years now, I have been working on a
wysiwyg math editor. The main purpose is to supply a
vehicle for easy communication of mathematical
texts.
Such documents include:drawings:
 (lines, circles, planes...)
geometrical constructions :
 (bisectors, regular polygons,
 inscribed- and circumscribed circles....)
equation graphs :
 (also parametric- and implicit functions)
text : (including fractions, roots, powers, indices...)

DavArrayButton

Own component with rows and columns of
buttons. Used in menus to select properties,
elements and operation modes.

XBitmap

Own class. Extension of Tbitmap with clipping
rectangle, improved stretchdraw and floodfill,
dash-dot lines of larger penwidths, lines with
arrows.

Xfont

Own class of scalable fonts with Greek characters
and geometrical symbols.

Xtree

Own class with tree structure for text editing.
Implements UNDO system as well.

These classes are described in my book: “computer
math and games in Pascal”.

GENERAL DATA FLOW.

All data is stored in vectorized form as array of
records.
Drawing is done in three Xbitmaps with size 760 *
1080 (hor * vert) pixels.

DXexpertstarter

Issue Nr 1/2 2018 BPM

8686

Map1: drawings

Supplies background for

Map2: text

Map3: Trial drawings: during the drawing of
lines etc. or geometrical constructions.

Part of a Xbitmap may be erased by copying that
part from the left Xbitmap.
Finally, images are displayed by copying them to
a paintbox.
This paintbox displays part of Xbitmap3, this
part is selectable by a scrollbar.

During editing only modified rectangles of the
Xbitmaps are transferred.
Cursors are painted in the paintbox and are
erased by copying part of map3 to the paintbox.

The general idea is that elements are placed on a
Xbitmap canvas.
Elements occupy rectangular spaces.
There are graphical elements and text elements.
The graphical elements include lines, circles,
arcs etc. This article focusses on text.

Text consists of lines holding characters and
macro's. A macro holds one or more lines.
Some macro's add graphical symbols such as a
root or fraction line.

To give an impression I show the steps in typing
the Newton Binomium:
(look left top – down, than right-top down)
The editor paints empty lines with a yellow
background.

Starting left-top, a (...) macro is added,
on it's line a+b is typed.
After that a power macro is placed, n is typed in
the line.
After the = character a sigma macro is added and
it's lines are filled with k=0, n, and a
(n over k) macro. Etcetera.
The picture shows that the sigma macro
automatically adjusts it's size when the (n over k)
macro was added.

Second example is the constant e, base of the
natural logarithm:

Please note the the (..) macro adjusts it's size
when the fraction macro is added.
Also the power x position is automatically
adjusted.
Macro's are selected by a mouseclick on a
(davarray) button.

Last example: the chord bisector formula:

FUN XY () PAGE 2/5A WYSIWYG MATH EDITOR H
O
W
A
R
D
 P
A
G
E
-C
L
A
R
K

C
O

M
P
U

T
E
R

 &

 I

N

M
A

T
H

G
A

M
E
S

P
A

S
C
A

L

COMPUTER & MATH
 GAMES IN PASCAL

DAVID DIRKSE

D
A

V
ID

 D
IR

K
S

E

presales at
www.blaisepascal.eu/DavidDirkse/ComputerMath_Games.html

procedure ;
 var

begin
for to do := i 1 9
begin

 ;end

;end

Issue Nr 1/2 2018 BPM

8787

Below is the macro elements menu from with the
macro elements were selected:

HOW IS THIS ALL DONE?

Elements that hold other elements within are
called a parent. The elements within the parent
are called children.
Each element type has three procedures which
are element type specific:
 1. creation : add it's properties to a list
 2. calculation of it's contents :
 postion of children, it's own width
 and height
 3. painting it's contents :
 child lines with characters
 + graphics such as root symbols

The position of characters in a line are relative to
the parent line.
The position of lines in a macro are relative to the
parent macro.
So, when moving an element it's children do not
change.
Note that an element never calculates it's own
position,t he parent has to take care of that.

All other procedures such as adding, deleting,
replacing elements are element type independent.
Inserting a character in a line or a line in a textbox
is the same operation however the result is quite
different as the parent recalculates the childrens
positions differently.

When a child changes in size due to add or delete
operations, it informs it's parent which will
recalculate itself.
If it's size changes again, the parent calls it's
parent...etc.
The finally changed element is erased and
repainted on the Xbitmap canvas.
That's all.

The properties of a text element are stored in an
array called element[…]
The parent-child relation is stored in a separate
array callind links[]
The indices to both arrays are the same.
Below is the record structure with links[3] and
element[3] records expanded:

Element[1] is the document itself. All other
elements are the children of element 1.

A parent may have many children.
The parent points to the first child, each child
itself points to the next.
Links[] is a bidirectional linked list.
The elements records have the following
meaning:

eltype: frame , macro, line, character
elCode: element specific property. Character
code for characters. Frame code for frames.
P1: element dependent: font number for
characters, alignment code for lines.
P2: element dependent: top symbol (` , ') for
characters, subcode for macros.
P3: element dependent: base for characters,lines
and macro's.
 For frames: pointer to the first graphic
element in the frame.
X : horizontal position relative to parent.
Y : vertical position relative to parent
width , height: element width and height.

The baseline takes care of vertical text
alignment.
Characters of different font, height and color
may occupy a line side by side.
Below characters are shown with height
80,40,20,10 placed on the base of the line.

FUN XY () PAGE 3/5A WYSIWYG MATH EDITOR H
O
W
A
R
D
 P
A
G
E
-C
L
A
R
K

C
O

M
P
U

T
E
R

 &

 I

N

M
A

T
H

G
A

M
E
S

P
A

S
C
A

L

COMPUTER & MATH
 GAMES IN PASCAL

DAVID DIRKSE

D
A

V
ID

 D
IR

K
S

E

presales at
www.blaisepascal.eu/DavidDirkse/ComputerMath_Games.html

procedure ;
 var

begin
for to do := i 1 9
begin

 ;end

;end

Issue Nr 1/2 2018 BPM

8888

To show a little of the code: below is listed the
procedure which is the core of the automatic
resizing and recalculation scheme:nes rectangles.

ELEMENT (RE)CALCULATION

As an example next I show how a root
macro is (re)calculated.
At creation the start is the selected font height.
The root macro has two choices as shown in the
elements submenu:

There is a normal square root and a root macro
with extra line for 3rd and higher rank roots.
Here are two examples:

The parent of a macro such as root always is a line.
Lines are the children of either other macro's or
frames such as the document itself.

There are two procedures for the calcualtion:
1. recalculateRoot: for the width, height and (x,y)
position of the line children.
 2. calculateRoot: for the calculation of the
root graphic symbol

Calculateroot is only needed when painting the
root, however the data supplied may be helpfull
for recalculateRoot. All macro's in general use
this method, some recalculateXXX use the
calculateXXX, others don't.

The type of root is found in the elements' p2
parameter which is equal to 0 for a simple square
root and 1 for an extra line for higher rank roots.

When calculating the root macro it is important to
remember that the line children's width and
height are known. The goal is to calculate the lines
(x,y) postions and the root macro's own width and
height.

procedure (:);processELchange el dword
//element reports change to it's parent el
//el can be macro,line,column (not char or block)
//purpose is
//1. to call for recalculation of parents
//2. set area to be erased
//3. set element that needs repainting
var , : ;oldw oldh smallInt
 : ;Done boolean
 : ;r1 Trect
begin
 := ;eraseflag false
 := ;spaceflag false
 repeat
 := ;repaintELnr el
 := []. ;oldw element el width
 := []. ;oldh element el height
 := (,);r1 getElementRect pageNr el
 (, ,);updateRect eraseflag eraseRect r1
 ();recalculateElement el
 (<> [].) (<> if oroldw element el width oldh
element el height[].) then
 begin
 (,);getParent el el
 := []. = ;Done element el elType elBlock
 end
 := ;else Done true
 ;until Done
end;

repaintELnr is the element that is finally

repainted.
recalculateElement(el) goes to a big

case statement which in turn calls the proper
recalculation procedure for this element type.
If due to recalculation the elements' width or
height changes, it's parent is called. An elBlock
type element is just a part of the document to hold
lines or graphic symbols.
getParent(el1,el2) supplies the parent

element of el2 in el1. El1,el2 are of type cardinal.
The updateRect procedure combines rectangles.
CURSOR MOVEMENT

This was an unexpected big coding effort
requiring it's own unit (textcontrol_unit).
Eventually a next article might illustrate that.

FUN XY () PAGE 4/5A WYSIWYG MATH EDITOR H
O
W
A
R
D
 P
A
G
E
-C
L
A
R
K

C
O

M
P
U

T
E
R

 &

 I

N

M
A

T
H

G
A

M
E
S

P
A

S
C
A

L

COMPUTER & MATH
 GAMES IN PASCAL

DAVID DIRKSE

D
A

V
ID

 D
IR

K
S

E

presales at
www.blaisepascal.eu/DavidDirkse/ComputerMath_Games.html

procedure ;
 var

begin
for to do := i 1 9
begin

 ;end

;end

Issue Nr 1/2 2018 BPM

8989

type record = Txy
 : ; x smallInt
 : ; y smallInt
 ;end
 = [] ;TXY07 TXYarray of0..7
…..
procedure var (: ; : ; :);calculateRoot rc TXY07 pw byte el dword
//calculate the root symbol coordinates in rc
//pw: penwidth; el:element; lel: child line element
var : ;lel dword
 , , , , , , : ; h w x1 y1 d2 d3 d5 smallInt
 , : ; pw2 pw3 byte
begin

 := shl ; pw2 pw 1 //*2
 := + ; pw3 pw2 pw
 (,); getChild lel el
 [] with doelement lel
 begin
 := ; x1 x
 := ; y1 y
 := ; h height
 := ; w width
 ; end
 := (/); d2 round h 2
 := (/); d3 round h 3
 := (/); d5 round h 5
 []. := - ; rc x x1 pw33
 []. := []. - ; rc x rc x d52 3
 []. := []. - ; rc x rc x d31 2
 []. := + ; rc y y1 h2
 []. := []. - ; rc y rc y d21 2
 []. := - ; rc y y1 pw33
 []. := + + ; rc x x1 w pw24
 []. := []. ; rc y rc y4 3
 []. := []. ; rc x rc x5 4
 []. := []. + ; rc y rc y pw35 4
end;

So above procedures assumes that the position
of the child line has been calculated allready.
This procedure is also called when the macro is
painted.

Below is the recalculateroot procedure:

procedure (:);recalcRoot el dword
//calculate position of children,width,height
var , , , : ; i pw pw2 pw3 byte
 lel rel dword, : ;
 , , , , , , : ; : ; d10 dx w2 h2 yr x2 y2 smallInt rc TXY07
begin
 getChild lel el(,);
 := ([].); pw getMacroPenWidth element lel height

 //---> textpaint unit
 := shl ; pw2 pw 1
 := + ; w3 pw2 pw
 []. := * ; element lel y pw5
 []. := ; element lel x 0
 (, ,); calculateroot rc pw el
 := (* [].); d10 round element lel height0.1
 := - []. + ; dx rc x d101
 := [] := + ; for to do with doi rc i x x dx1 5
 [] := []. + ; with doelement lel x rc x pw33
 [] with do element el
 begin
 := []. + []. ; p3 element lel y element lel p3
 := []. + ; width rc x pw34
 := []. + ; height rc y pw2
 ; end
 []. = if thenelement el p2 1
 begin //if higher rank root
 (,); getNext rel lel
 [] with doelement rel
 begin
 := ; w2 width
 := ; h2 height
 ; end
 := []. + ([]. shr); yr element lel y element lel height 1
 := []. - ; x2 rc x w22
 < if then x2 0
 begin
 []. := []. - ; element lel x element lel x x2
 []. := []. - ; element el width element el width x2
 []. := ; element rel x 0 //d10;
 end
 []. := []. - ; else element rel x rc x w22
 := - - ;y2 yr h2 pw2
 < if then y2 0
 begin
 []. := []. - ; element lel y element lel y y2
 []. := []. - ; element el height element el height y2
 []. := []. - ; element el p3 element el p3 y2
 []. := ; element rel y pw2
 end
 []. := - ;else element rel y yr h2
 ; end
end;

Above structure is very consistent however for
the sigma macro an unexpected inconvenience
showed up, see below

The second sigma blows up it's parents line height and the
first sigma recalculates it's height.
Extra code was needed to recognize this situation.
This is a good moment to conclude this description of my
math editor. Insert , delete, backspace, cursor movement
and UNDO work fine.
Much work has to be done. At present single independent
lines are added to the document pages. There is no
vertical alignment of lines. More frame elements will be
implemented as parents for vertical alignment as well as
horizontal centration.
Also copy-paste has to be implemented and insertion /
deletion of full pages.

FUN XY () PAGE 5/5A WYSIWYG MATH EDITOR H
O
W
A
R
D
 P
A
G
E
-C
L
A
R
K

C
O

M
P
U

T
E
R

 &

 I

N

M
A

T
H

G
A

M
E
S

P
A

S
C
A

L

COMPUTER & MATH
 GAMES IN PASCAL

DAVID DIRKSE

D
A

V
ID

 D
IR

K
S

E

presales at
www.blaisepascal.eu/DavidDirkse/ComputerMath_Games.html

procedure ;
 var

begin
for to do := i 1 9
begin

 ;end

;end

Issue Nr 1/2 2018 BPM

LINQ 1 PAGE 1/5

1

expertstarter
DelphiDX

COMPONENTS
DEVELOPERS4BY KIM MADSEN

COMPONENTS
DEVELOPERS4 90

LINQ… what is LINQ? Well its a term used in
C# which means Language Integrated Query.
 The next version of kbmMW will support our
own variant of LINQ. In reality we can’t make
true C# LINQ functionality, because it requires
the compiler to be aware about the
fundamentals of LINQ, and Delphi is blissfully
unaware about such language integrated
features.
 However, my interpretation of the purpose
of LINQ is that its designed to make certain
programming tasks easier for the programmer.
To get rid of boiler plate code, which is
something that I have focused quite allot on in
kbmMW v5 and continues to focus on.

So what does LINQ do for us?
It allows us to query, filter, order, calculate,
compare, group etc. various types of data in an
easy way using the same syntax regardless of
what type the (supported) source data is.
 Is kbmMW’s LINQ fast? Yes and no. Since it
hides much functionality from us, more CPU
cycles are usually spend than would otherwise
have been needed if you coded an optimized
algorithm yourself. However since it uses
optimized kbmMW features underneath, then
some scenarios will probably perform just as
well as manually written code.
 So the advantage of using kbmMW’s LINQ is
not as such performance, but rather provides
the ability to do quite complex and advanced
things with very simple code.
 To use kbmMW’s LINQ, simply add
kbmMWLinq to the uses clause. It will give you a
global threadsafe object instance, named Linq,
thru which all LINQ functionality originates.

In the following I will show various scenarios
that are possible with kbmMW.

OPERATING A TSTRINGLIST USING LINQ

This is an example of using LINQ with a regular
TStringList.

First we build a string list.

var
 , : ;sl sl2 TStrings
begin
 := . ;sl TStringList Create
 . ();sl Add '1'
 . ();sl Add '2'
 . ();sl Add '3'
 . ();sl Add '4'
 . ();sl Add '5'
 . ();sl Add '6'
 . ();sl Add '7'
 . ();sl Add '8'
 . ();sl Add '9'
 . ();sl Add '20'

Then we use Linq to give us the first 5 of them
sorted descending and returning the result as
a new TStringlist:

sl2 Linq Using sl First Sort AsStrings:= . (). (). (). ;5 'value:D'
...
sl2 Free. ;

Next we show to how make multiple
operations on the same data, without the
overhead of re-parsing the source data. First
we define the initial Linq stage (the one
preparing the source data) as shared, then we
return the last 8 items as a TStringList, looks
for the Max value, and then calculates a SUM.
Since the string list is strings, kbmMW’s LINQ
assumes that Max/Min functions should
operate on a string level, not numeric.
However the SUM function can only work on
numeric data, and thus will always operate as
such:

type
 : ;lq IkbmMWLinqStage
 : ;s string
 : ;d double
...
 := . (). ;lq Linq Using sl Shared
 := . (). ;sl2 lq Last AsStrings8
...
 . ;sl2 Free

 := . ; s lq Max // Returns the string 9

 := . ; d lq Sum // Returns 65

Operating class instances using LINQ
The next example shows how to use Linq on
lists of class instances. For a class to be
“Linqable” it must be tagged with the
kbmMW_Linq attribute as seen below. In
addition the class should be registered as a
kbmMW known type and RTTI must be
enabled for it.

Issue Nr 1/2 2018 BPM

COMPONENTS
DEVELOPERS4

COMPONENTS
DEVELOPERS4 91

[]kbmMW_Linq
 = TMyData class
 private
 : ;FName string
 : ;FAddress string
 : ;FAge integer
 public
 (: ;constructor const stringCreate AName
 : ;const stringAAddress
 :);const AAge integer
 : ;property string read writeName FName FName
 : ;property string read writeAddress FAddress FAddress
 : ;property read writeAge integer FAge FAge
 ;end

Operating JSON documents using LINQ
First lets prepare some data. This time we use
the UsingJSON method. It can take a JSON
string, a stream or you can use UsingJSONFile to
load the JSON document from a file.

sl TStrings: ;

lq IkbmMWLinqStage: ;

begin
 := . (+lq Linq UsingJSON '{"result":['
 +'{"ID":1,"name":"kim","date":"2018-01-05T19:05:00.000+08:00"},'
 +'{"ID":2,"name":"kim","date":"2018-01-05T20:05:30.000+01:00"},'
 +'{"ID":3,"name":"kim","date":"2018-01-05T20:05:45.000+01:00"},'
 +'{"ID":4,"name":"kim","date":"2018-01-05T20:06:15.000+01:00"},'
 +'{"ID":5,"name":"kim","date":"2018-01-05T20:06:30.000+01:00"},'
 +'{"ID":6,"name":"kim","date":"2018-01-05T20:06:45.000+01:00"},'
 +'{"ID":7,"name":"kim","date":"2018-01-05T20:07:15.000+01:00"},'
 +'{"ID":8,"name":"kim","date":"2018-01-05T21:07:30.000+01:00"},'
 +'{"ID":9,"name":"kim","date":"2018-01-05T21:07:45.000+01:00"},'
 ,'{"ID":10,"name":"kim","date":"2018-01-05T21:08:00.000+01:00"}]}'
 ,'/result/.*'
);'ID,date'

UsingJSON takes 2 and optionally 3 arguments,
the JSON data string, a subset pattern match(
‘/result/.*’), and optionally a list of field names
or expressions (‘ID,date’).
 The subset is actually a regular
 expression which is applied to the
 JSON data, to only select the relevant
 data on which the Linq methods
should operate. In this case we have one
property (result) with a sub array, so we use the
expression to accept everything starting (path
wise) with /result/. We have also told kbmMW
that we only want to access the ID and date fields
of the JSON document. If we didn’t specify that,
kbmMW would automatically have figured out
all relevant fields that should be accessible. The
field names can include expressions, so its thus
possible to add fields together or do calculations.

i lq Max:= . ();'ID'
 := . ();i lq Min 'ID'
 := . (). ();sl lq Sort AsStrings'date:D' 'date'

One place to register the class to kbmMW is in the
units initialization section. Notice that both
TMyData and TObjectList are being registered,
since we will use both types.

initialization
 . ([, < >]);TkbmMWRTTI EnableRTTI TMyData TObjectList TMyData
 ([, < >]);kbmMWRegisterKnownClasses TMyData TObjectList TMyData

Lets prepare some data to play with:

var
 : < >;lst TObjectList TMyData
...
 := < >. ;lst TObjectList TMyData Create
 try
 . (. (, ,));lst Add TMyData Create 'Kim' 'Address 1' 49
 . (. (, ,));lst Add TMyData Create 'Hans' 'Address 2' 22
 . (. (, ,));lst Add TMyData Create 'Jens' 'Address 3' 33
 . (. (, ,));lst Add TMyData Create 'Joe' 'Address 3' 77
 . (. (, ,));lst Add TMyData Create 'John' 'Address 4' 33

If we want to locate the maximum age, we write

or the alphabetically smallest name

or we can return a key/value string list of sorted
names with the age

And then we clean up. Also remember to free the
returned (sl) when you don’t TStringList

need it any longer.
 finally
 . ;lst Free
 ;end

i Linq Using lst Max:= . (). ();'Age'

s Linq Using lst Min:= . (). ();'Name' In similar way you can query YAML, BSON and
MessagePack documents.
 Operating XML documents using LINQ
XML documents are structurally more complex
than JSON and YAML documents, in the sense

LINQ 1 PAGE 2/5

Issue Nr 1/2 2018 BPM

COMPONENTS
DEVELOPERS4

COMPONENTS
DEVELOPERS4 92

that each node in the document can have
attributes in addition to child nodes and data.
We must still specify a subset we want to operate
on like above, but if we want access to the
attributes, we must use the XMLAttr function,
that takes two arguments: the node holding the
attribute, and the attribute name itself. Since
attributes by definition are strings, we have the
ability to automatically have the values casted to
some other types, like TEXT(size), INTEGER etc.

kbmMW supports the following casts:
INT/INTEGER, VARCHAR2(n),
VARCHAR(n), CHAR(n), BOOL, BOOLEAN,
AUTOINC, FLOAT, DOUBLE, NUMERIC,
REAL, DATETIME, TIMESTAMP, DATE,
TIME, LARGEINT, INT64, BLOB,
GRAPHIC, CLOB, TEXT(n), CURRENCY,

WORD, MEMO, WIDEMEMO GUID.and

If n is not given the default value is 20.

var
 : ;sl TStrings
 : ;lq IkbmMWLinqStage
begin
 := . (+lq Linq UsingXML '<?xml version="1.0" ?>'
 +'<Dictionary>'
 +' <Parameters>'
 +' <Parameter SymbolName="CoDeviceType"'
 +' ObjectType="VAR"'
 +' Index="0x1000"'
 +' SubIndex="0"'
 +' DataType="UNSIGNED32"'
 +' AccessType="const" />'

 +' <Parameter SymbolName="CoErrorRegister"'
 +' ObjectType="VAR"'
 +' Index="0x1001"'
 +' SubIndex="0"'
 +' DataType="UNSIGNED8"'
 +' AccessType="ro" />'

 +' <Parameter SymbolName="CoClearErrorLog"'
 +' ObjectType="VAR"'
 +' Index="0x1003"'
 +' SubIndex="0"'
 +' DataType="UNSIGNED8"'
 +' AccessType="rw"'
 +' Remarks="Write 0 to clear"/>'
 +' </Parameters>'
 '</Dictionary>'
 ,'/Dictionary/Parameters/.*/'
 , +'XMLAttr(Parameter,"SymbolName") as "SymbolName->TEXT(40)"'
 ,'XMLAttr(Parameter,"SubIndex") as "SubIndex→INTEGER"');

 := . (). (,);sl lq Sort AsStrings'SymbolName' 'SymbolName' 'SubIndex'

LINQ 1 PAGE 3/5

Issue Nr 1/2 2018 BPM

COMPONENTS
DEVELOPERS4

COMPONENTS
DEVELOPERS4 93

sl will now contain a sorted key/value list:

 MORE LINQ FEATURES

KBMMW’S LINQ ALSO SUPPORTS:

• – Returns the number of items in the given Linq stage.Count

• – Returns only items that have unique values Distinct(fieldnames)

 in the fields specified by fieldnames.
• – Returns records grouped by theGroupBy(groupfieldnames,aggregatefieldnames)

 groupfieldnames (required), and optionally aggregated values on the fields specified in
 aggregatefieldnames. You specify aggregation method as a modifier to the field name.
 Eg. , field1:COUNT field2:MAX

The output of aggregated fields will be named

‘originalfieldname_ (eg.)COUNT/AVG/SUM/MIN/MAX/STDDEV’ field1_COUNT

• – Returns the items exposed by the given expressions. Select(fieldexpressions)

 Eg. . Select(‘SIN(fld1) as fld1, fld2|fkd3 as newfield’)

 When expressions are used, the resulting
 field will be named Fn where n is the index in the resulting item starting with 1.
 To ensure that you have full control over the names, you can specifically name them
 using the “as name” method as shown.
• – Returns the first item’s field value as a string.AsString(fieldname)

• – Returns the first item’s field value as an integer.AsInteger(fieldName)

• – Returns the first item’s field value as a double.AsFloat(fieldName)

• – Returns the first item’s field value as a variant.AsVariant(fieldname)

• – Returns the data as a dataset. AsDataset

The ownership of the dataset belongs to the stage. Linq

Thus when the stage goes out of scope, the dataset is also destroyed.Linq

Functions like and can take zero or one field name. Min, Max, Avg, Sum StdDev

If zero field names are given, the first known internal field column is used.
In functions like and which takes multiple fields, Distinct, Sort GroupBy

the fields must be separated by comma (,).
Functions like As…..(fieldname) can take 0 or 1 string argument, or alternatively an integer value.
If no argument is given, the first field is assumed.
If a string argument is given, the field with the given name is returned.
If an integer value is given, the values for the field with the given index (first field is 0) is returned.
Feel free to come with ideas and input for the new look alike features in Linq kbmMW.

Also remember that works with all compilers supported by Linq kbmMW,

so you can go “ ” on and Linq nuts Android, IOS, Linux, OSX, Windows Linux.

CoClearErrorLog=0
CoDeviceType=0
CoErrorRegister=0

LINQ 1 PAGE 4/5

Issue Nr 1/2 2018 BPM

COMPONENTS
DEVELOPERS4

COMPONENTS
DEVELOPERS4 94

procedure const const string . (: ; :);TdmMain MyLog ATime TkbmMWDateTime AMessage
var
 : ;l TMyLog
begin
 try
 := . ;l TMyLog Create
 try
 . := ;l Time ATime
 . := ;l Info AMessage
 . ();ORMLog Persist l
 finally
 . ;l Free
 ;end
 except
 : on doE Exception
 begin
 . (,);SystemLog Error E'LogSystem'
 ;end
 ;end
end;

And at some point before the first time the
database log will be used, the database tables
needs to be prepared:

function . : ;TdmMain PrepareLogDatabase boolean
begin
 := ;Result false

 // Open log database. dbLog is the (in this sample, SQLite) connection pool for the database.
 . ();FORMLog OpenDatabase dbLog

 // Create tables if they are not available.
 // Upgrade them if they exists and needs upgrade.
 . ([]) if not thenFORMLog CreateOrUpgradeTable TMyLog
 begin
 . (+ . +Log Fatal dbLog Database'Unable to create or upgrade log database: ' '.
 Server not started!');

 ;exit
 ;end

 := ;Result true
end;

And finally I define the
TkbmMWVirtualLogManager which in turn calls
the MyLog method whenever there is something
for this logmanager to handle.

Because I want to put timestamp in a separate
field in the database, I redefine the logformatter
of this logmanager to only include a few select
type of information.

LINQ 1 PAGE 5/5

Issue Nr 1/2 2018 BPM

REST EASY WITH KBMMW #10
– LOGGING TO A DATABASE

expertstarter DelphiDX

COMPONENTS
DEVELOPERS4

COMPONENTS
DEVELOPERS4 95

BY KIM MADSEN

n the upcoming release, the logging

Ifeature will have been improved in various
ways. One of the new inclusions is the

TkbmMWVirtualLogManager and its interface
IkbmMWVirtualLogManager.
The virtual log manager can for example be
used for logging select logs to a database,
which this short blog will focus on.
I will in this sample, use kbmMW’s ORM to
handle the database access, however any
traditional database access method could
have been used instead.

10

n the upcoming release, the logging feature will
have been improved in various ways.
One of the new inclusions is the
TkbmMWVirtualLogManager and its interface

IkbmMWVirtualLogManager.

The virtual log manager can for example be used
for logging select logs to a database, which this
short blog will focus on.

I will in this sample, use to handle kbmMW’s ORM

the database access, however any traditional
database access method could have been used
instead.

[kbmMW_Table('name:myLog')]
 = TMyLog class
 private
 : < >;FID kbmMWNullable string

 : ;FTime TkbmMWDateTime
 : < >;FInfo kbmMWNullable string
 : < >;FComments kbmMWNullable string

 public
 [(kbmMW_Field 'name:id, primary:true,
 generator:shortGUID', ,)]ftString 40
 : < > ;property string read writeID kbmMWNullable FID FID

 [(,)]kbmMW_Field ftDateTime'name:time'
 []kbmMW_NotNull
 : ;property read writeTime TkbmMWDateTime FTime FTime

 [(,)]kbmMW_Field ftWideMemo'name:info'
 : < > ;property string read writeInfo kbmMWNullable FInfo FInfo

 [(,)]kbmMW_Field ftWideMemo'name:comments'
 : < >property stringComments kbmMWNullable
 read writeFComments FComments
end;

Since I want to use the ORM for log storage
handling, I need to define a class describing the
storage.

The TSystemLog class needs to be registered:

initialization
 . ([]);TkbmMWRTTI EnableRTTI TMyLog
 ([]);kbmMWRegisterKnownClasses TMyLog

We add a method that we can call to persist the
log entry. Notice that if the method is unable to
persist the log due to some database issue, an
error will be logged on the SystemLog, which is
a standard, always existing, alternative logger in
kbmMW. It will default output to debug view on
Windows, or LogCat on Android.

TdmMain = class(TDataModule)
private
 : ;FDBLogManager IkbmMWVirtualLogManager
 : ;FORMLog TkbmMWORM
public
 : ;property readORMLog TkbmMWORM FORMLog

Issue Nr 1/2 2018 BPM

COMPONENTS
DEVELOPERS4

// Prepare database oriented log manager.
 := . (FDBLogManager TkbmMWVirtualLogManager Create
 (: ; : ; procedure const constAType TkbmMWLogType ALevel TkbmMWLogLevel
 const string const const string : ; : ; :)AOrigin ATime TkbmMWDateTime AString
 begin
 // Specifically do not accept messages comming from kbmMW's internals itself,
 // since those could be generated from the database layers, resulting in deadlock.
 (,)= if thenpos AOrigin'kbmMW' 0
 (,);MyLog ATime AString
 end
);

 // Setup the log formatter to only include a few things in the log string.
 . := . ;FDBLogManager LogFormatter TkbmMWSimpleLogFormatter Create
 . . := [, ,];FDBLogManager LogFormatter Columns mwlfcLogType mwlfcLogString mwlfcLogData
 . := ;Log LogManager FDBLogManager

Now every time you use
Log.Info/Log.Error/Log.Warning/Log.

Fatal or any of the other log methods, the log

will be appended to the myLog table in the
database.

REST EASY WITH KBMMW PART 9 PAGE 1/4

8

expertstarter DelphiDX

COMPONENTS
DEVELOPERS4DATABASE 4 BY KIM MADSEN

 Data augmentation and XML
his blog post will focus on one way of augmenting
data returned from a database using the ORM,
serving this as a wellformed XML result to REST
client’s using as little code as possible.
kbmMW’s ORM is pretty good at fetching data
from a database based on a class.
Sometimes we want to augment the class with
additional data, before returning the data to a
client.
This we can use the virtual table attribute for.

AN EXAMPLE:

We have a class TPerson, which is used by the ORM to persist and retrieve persons
from the person database table. The person might refer to a company, via a companyId
which is a GUID. This is all straight forward.

[()]kbmMW_Table 'name:person'
 = TPerson class
 private
 : & ; & ;;FID kbmMWNullable lt gtstring
 : & ; & ;;FName kbmMWNullable lt gtstring
 : & ; & ;;FCompanyID kbmMWNullable lt gtstring
 public
 [(, ,)]kbmMW_Field ftString'name:id, primary:true, generator:shortGUID' 40
 : & ; & ; ;property string read writeID kbmMWNullable lt gt FID FID

 [(, ,)]kbmMW_Field ftString'name:name' 50
 []kbmMW_NotNull
 : & ; & ; ;property string read writeName kbmMWNullable lt gt FName FName

 [(, ,)]kbmMW_Field ftString'name:companyId' 40
 : & ; & ; ;property string read writeCompanyID kbmMWNullable lt gt FCompanyID FCompanyID
 ;end

WHAT DOES DATA AUGMENTATION MEAN?

Wiki Data augmentation adds value to base data by
adding information derived from internal and
external sources within an enterprise.
Data is one of the core assets for an enterprise,
making data management essential. Data
augmentation can be applied to any form of data, but
may be especially useful for customer data, sales
patterns, product sales, where additional information
can help provide more in-depth insight.
Data augmentation can help reduce the manual
interventation required to developed meaningful
information and insight of business data, as well as
significantly enhance data quality.

REST EASY WITH KBMMW #10
LOGGING TO A DATABASE

COMPONENTS
DEVELOPERS4 96Issue Nr 1/2 2018 BPM

However lets say we want to provide an
augmented REST interface to the persons
information, where we want to add additional
fields, like company name.

[]kbmMW_VirtualTable
 [(,[])]kbmMW_Root mwrfIncludePublic'person'
 = TAugmentedPerson class
 private
 : < >;FID kbmMWNullable string
 : < >;FName kbmMWNullable string
 : < >;FCompanyID kbmMWNullable string
 < > : < >;</ >strong FCompanyName kbmMWNullable strongstring
 public
 [(, ,)]kbmMW_Field ftString'name:id' 40
 : < > ;property string read writeID kbmMWNullable FID FID

 [(, ,)]kbmMW_Field ftString'name:name' 50
 : < > ;property string read writeName kbmMWNullable FName FName

 [(, ,)]kbmMW_Field ftString'name:companyId' 40
 : < > property string readCompanyID kbmMWNullable FCompanyID
 write ;FCompanyID

 < >[(, ,)]strong kbmMW_Field ftString'name:companyName' 50
 : < > property string readCompanyName kbmMWNullable FCompanyName
 ;</ > write FCompanyName strong
 ;end

What you can see is that an additional class is
defined, which purpose primarely is to marshal
augmented TPerson data to REST clients.

We have told that the TAugmentedPerson (which
by outset has no relation to TPerson class wise), is a
virtual table, which means it does in fact not live
in any databases, but it can still be used as the
output for queries.

So lets put together an augmented query:

kbmMW_Service()]'name:REST, flags:[listed]'
[()]kbmMW_Rest 'path:/rest'
TsvcRest TkbmMWCustomHTTPSmartService = ()class
public
 [()]kbmMW_Rest 'method:get, path:persons'
 : & ; & ;;function GetPersons TObjectList lt TAugmentedPerson gt
end;

// Return augmented persons.
function . : & ; & ;TsvcRest GetPersons TObjectList lt TAugmentedPerson gt
begin
 := . . & ; & ;(Result dmMain ORM QueryList lt TAugmentedPerson gt
 'SELECT p.ID as ID,p.Name as Name, '+

 +' CompanyID, c.Name as CompanyName '
 +'FROM uData.TPerson p, uData.TCompany c '
);'WHERE c.ID=p.Company'
end;

REST EASY WITH KBMMW PART 9 PAGE 2/4 COMPONENTS
DEVELOPERS4

COMPONENTS
DEVELOPERS4 97Issue Nr 1/2 2018 BPM

COMPONENTS
DEVELOPERS4

This will make a query, augmenting the person
data with a company name and returning it as a
JSON object to the REST client.
 This is all well and fine.
But lets say that the REST interface wants to
return this list of TAugmentedPerson’s as XML?

This is now easily done in kbmMW by adding a
responseMimeType to the kbmMW_Rest
attribute of the GetPersons method.

his will result in simple XML document
representing the resulting list of
TAugmentedPerson’s. You can ask kbmMW to
add XML declarations, namespaces and types if
you want to by adding the properties
declared:true, typed:true to the kbmMW_Rest
method attribute.

But looking at the XML, it is still not perfect. It’s
outer node is called TObjectList<person>, which
is not a terribly nice tag name for an XML node.
We are missing a way to redefine how kbmMW is
to name the TObjectList<TAugmentedPerson>
class.

Usually one would use the kbmMW_Root
attribute in combination with our own class
definition, to specify any name changes to root
elements when marshalling data into or out from
object instances, similarly to how
TAugmentedPerson was defined.

However since we do not define
TObjectList<TAugmentedPerson> anywhere (it
is implicitely being defined as the result from our
ORM.QueryList call, we have no place to specify
our settings/attributes for that particular class.

Next version of kbmMW provides a new
kbmMW_Alias attribute which handles this
issue.

Basically what it does is to declare any class as an
attribute wise alias to any other class/classes, like
this

[(,[])]kbmMW_Root mwrfIncludePublic'persons'
[]kbmMW_Alias
TAugmentedPersonList TObjectList lt TAugmentedPerson gt = (& ; & ;);class

[()]kbmMW_Service 'name:REST, flags:[listed]'
[()]kbmMW_Rest 'path:/rest'
TsvcRest TkbmMWCustomHTTPSmartService = ()class
public
 [()]kbmMW_Rest 'method:get, path:persons, responseMimeType:application/xml'
 : & ; & ;;function GetPersons TObjectList lt TAugmentedPerson gt
end;

REST EASY WITH KBMMW PART 9 PAGE 3/4

COMPONENTS
DEVELOPERS4 98Issue Nr 1/2 2018 BPM

COMPONENTS
DEVELOPERS4

It will return first found record in the person
table, which matches the person named Kim and
return that as a TAugmentedPerson instance.

Only fields matching will be filled. Hence in this
case the CompanyName value is null since we
did not provide any value for it via the query.

But we are getting an object instance which
allows us to add our own value for
CompanyName, thus in practice augmenting the
TPerson look alike object with additional
information.

The kbmMW_Alias can have zero or one
argument. If an argument is given, it can be a
class reference, or an array of class references.
If no argument is given, kbmMW
automaticallyh defines
TAugmentedPersonList to be an alias to
TObjectList<TAugmentedPerson> due to the
class inheritance.

As we never define
TObjectList<TAugmentedPerson> anywhere,
we can not refer to it as a class reference, why
we use kbmMW’s way to implicitely
determine the class by not providing any
arguments for the kbmMW_Alias attribute.

In reality we will usually never instantiate any
TAugmentedPersonList instances. It is only
being used as a “placeholder” for defining
attributes (on the class level) on types we don’t
directly declare ourselves, like the
TObjectList<TAughmentedPerson>.

Now the xml will look pretty, with the outer
node named <persons> containing a number
of inner nodes named <person> which each of
them includes the companyName in addition
to other TPerson related data.

As a side note, the [kbmMW_VirtualTable]
attribute can now also take an argument,
namely the actual database class for which this
class is a virtual class for.

It would be possible to define
[kbmMW_VirtualTable(TPerson)]

It informs kbmMW about that any queries
made for TAugmentedPerson (which is not
really a table found in the database), where the
ORM can not deduce from any kbmMW SQL
query statement, where to pickup data from,
then it should use TPerson as the goto data
table.

So this is now legal:

var
 : ;ap TAugmentedPerson
begin
 := . & ; & ;([],[]);ap ORM Query lt TAugmentedPerson gt 'Name' 'Kim'
end;

REST EASY WITH KBMMW PART 9 PAGE 4/4

COMPONENTS
DEVELOPERS4 99Issue Nr 1/2 2018 BPM

EESB, SOA,MoM, EAI TOOLS FOR INTELLIGENT SOLUTIONS. kbmMW IS THE PREMIERE N-TIER PRODUCT FOR DELPHI /
C++BUILDER BDS DEVELOPMENT FRAMEWORK FOR WIN 32 / 64, .NET AND LINUX WITH CLIENTS RESIDING ON WIN32 / 64, .NET, LINUX, UNIX
MAINFRAMES, MINIS, EMBEDDED DEVICES, SMART PHONES AND TABLETS.

kbmMemTable is the fastest and most feature rich in
memory table for Embarcadero products.
- Easily supports large datasets with millions of records
- Easy data streaming support
- Optional to use native SQL engine
- Supports nested transactions and undo
- Native and fast build in M/D, aggregation /grouping,
 range selection features
- Advanced indexing features for e xtreme p erformance

- RAD Studio 10.2 Tokyo support including Linux support
 (in beta).
- Huge number of new features and improvements!
- New Smart services and clients for very easy
 publication of functionality and use from clients
 and REST aware systems without any boilerplate code.
- New ORM OPF (Object Relational Model Object
 Persistence Framework) to easy storage and retrieval
 of objects from/to databases.
- New high quality random functions.
- New high quality pronouncable password
 generators.
- New support for YAML, BSON, Messagepack
 in addition to JSON and XML.
- New Object Notation framework which JSON, YAML,
 BSON and Messagepack is directly based on,
 making very easy conversion between these formats and
 also XML which now also supports the object notation
 framework.
- Lots of new object marshalling improvements,
 including support for marshalling native Delphi objects
 to and from YAML, BSON and Messagepack in addition to
 JSON and XML.
- New LogFormatter support making it possible to
 customize actual logoutput format.
- CORS support in REST/HTML services.
- High performance HTTPSys transport for Windows.
- Focus on central performance improvements.
- Pre XE2 compilers no longer officially supported.
- Bug fixes
- Multimonitor remote desktop V5 (VCL and FMX)
- RAD Studio and Delphi XE2 to 10.2 Tokyo support
- Win32, Win64, Linux64, Android, IOS 32, IOS 64
 and OSX client and server support!
- Native PHP, Java, OCX, ANSI C, C#,
 Apache Flex client support!
- High performance LZ4 and Jpeg compression
- Native high performance 100% developer defined app
 server with support for loadbalancing and failover

- Native improved XSD importer
 for generating marshal
 able Delphi objects from XML schemas.
- High speed, unified database access
 (35+ supported database APIs) with connection
 pooling, metadata and data caching on all tiers
- Multi head access to the application server,
 via REST/AJAX, native binary, Publish/Subscribe, SOAP,
 XML, RTMP from web browsers, embedded devices,
 linked application servers, PCs, mobile devices, Java
 systems and many more clients
- Full FastCGI hosting support.
 Host PHP/Ruby/Perl/Python applications in kbmMW!
- Native AMQP support (Advanced Message Queuing
 Protocol) with AMQP 0.91 client side gateway
 support and sample.
- Fully end 2 end secure brandable Remote Desktop
 with near REALTIME HD video, 8 monitor support,
 texture detection, compression and clipboard sharing.
- Bundled kbmMemTable Professional
 which is the fastest and most feature rich in
 memory table for Embarcadero products.

COMPONENTS
DEVELOPERS4

KBMMW PROFESSIONAL AND ENTERPRISE EDITION
V. RELEASED! 5.05.10

DX

Quantum Computation possible with Majorana Fermions
NEW! TKBMMWISAPIRESTSERVERTRANSPORT REST
CAPABLE ISAPI SERVER SIDE TRANSPORT.

New quantum dot could make quantum communications possible : http://www.extremetech.com/

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100

