
1Blaise Pascal Magazine 117 2024

BLAISE PASCAL MAGAZINE 117

Blaise Pascal

Multiplatform / Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js
Databases / CSS Styles / Progressive WebApps

Android / IOS / Mac Windows & Linux

Coming Technology: Glass Cores (CPU) from Intel

Controlling the browser using webassembly
Accessing the Browser APIs from Webassembly.

Database Workbench 6.5 added support for SQL LITE
The Swiss army knife for database development

The Lazarus Debugger – An introduction and tutorial
Part 7: Change happens – Waiting for it

PUTS: Pascal User Tips & Solutions
Delphi: create your own Components

A delay component and a Time lapse component

PUTS: Pascal User Tips & Solution
The component Treeview

IT FINALLY HAPPENS:
WITH FRESNEL YOU CAN CREATE

A UNIVERSAL GRAPHICAL APPLICATION
RUNNING ON ALL NATIVE PLATFORMS AND IN THE BROWSER

Fresnel: the new alternative lcl for lazarus

15/2/1934 † 1/1/2024

2Blaise Pascal Magazine 116 2023

Publisher: PRO PASCAL FOUNDATION in collaboration
© Stichting Ondersteuning Programmeertaal Pascal

Niklaus Wirth

ADVERTISING

ARTICLES

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & LinuxCONTENT

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /
BLAISE PASCAL MAGAZINE 117

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

Blaise PascalBlaise Pascal

From your Editor Page 4
From our Technical Advisor, Jerry King Page 5

PUTS: Pascal User Tips & Solutions Page 7 / By Detlef Overbeek
Delphi: create your own Components
A delay component and a Time lapse component

PUTS: Pascal User Tips & Solutions Page 17 / By Detlef Overbeek
The component Treeview

Database Workbench 6.5 added support for SQL LITE Page 19
The Swiss army knife for database development / By Detlef Overbeek

Coming Technology: Glass Cores (CPU) from Intel Page 53
By Detlef Overbeek

The Lazarus Debugger – An introduction and tutorial Page 71
Part 7: Change happens – Waiting for it
By Martin Friebe

Controlling the browser using webassembly Page 76
Accessing the Browser APIs from Webassembly.
By Michael van Canneyt

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE
IT FINALLY HAPPENS: Page 92
WITH FRESNEL YOU CAN CREATE
A UNIVERSAL GRAPHICAL APPLICATION
RUNNING ON ALL NATIVE PLATFORMS
AND IN THE BROWSER By Michael van Canneyt
Fresnel: the new alternative LCL for lazarus

ARTICLES

LAZARUS HANDBOOK Page 6
David Dirkse Book Computer /Graphs / Games & Math Page 16
SUPERPACK Page 52/54
LIBRARY Stick including USB Card Page 58LAZARUS HANDBOOK + SUBSCRIPTION Page 29
DELPHI SUMMIT Announcement Page 62
Blaise Pascal Magazine We are at the summit Page 63
DELPHI SUMMIT Barnsten Page 64
DELPHI SUMMIT Sale Page 65/66
DELPHI SUMMIT Agenda Page 67/68/69
Database Workbench / Upscene Page 75
FASTREPORT Page 90
FRESNEL Page 91
LAZARUS HANDBOOK + SUBSCRIPTION Page 60/61/110
Ukraine Special Offer Page 111
Components4Developers Page 112

Pascal is an imperative and procedural programming language, which Niklaus
Wirth designed (left below) in 1968–69 an published in 1970, as a small,
efficient language intended to encourage good programming practices using
structured programming and data structuring. A derivative known as Object
Pascal designed for object-oriented programming was developed in 1985. The
language name was chosen to honour the Mathematician, Inventor of the first
calculator: Blaise Pascal (see top right).

Subscriptions can be taken out online at www.blaisepascalmagazine.eu or by written order, or by sending an email to
office @ blaisepascal.eu. Subscriptions can start at any date. All issues published in the calendar year of the subscription will be
sent as well. Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
Subscriptions can be paid by sending the payment to: ABN AMRO Bank Account no. 44 19 60 863 or by credit card or PayPal
Name: Pro Pascal Foundation (Stichting Ondersteuning Programeertaal Pascal) IBAN: NL82 ABNA 0441960863 BICABNANL2A
VAT/NL814254147B01
Subscription department Edelstenenbaan 21 / 3402 XA Ĳsselstein, Netherlands + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

3Blaise Pascal Magazine 117 2024 3

SUBSCRIPTIONS (2023 prices) TOTAL

€ 348Printed Issue (8 per year) ±60 pages :
Electronic Download Issue (8 per year) ±60 pages :

Member and donor of

COPYRIGHT NOTICE
All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless
otherwise noted and may not be copied, distributed or republished without written permission. Authors agree that code
associated with their articles will be made available to subscribers after publication by placing it on the website of the
PGG for download, and that articles and code will be placed on distributive data storage media. Use of program listings
by subscribers for research and study purposes is allowed, but not for commercial purposes. Commercial use of
program listings and code is prohibited without the written permission of the author.

Member of the Royal Dutch Library KONINKLĲKE BIBLIOTHEEK

CONTRIBUTORS

Stephen Ball
http://delphiaball.co.uk
DelphiABall

Dmitry Boyarintsev
dmitry.living @ gmail.com

Michaël Van Canneyt
,michael @ freepascal.org

Marco Cantù
www.marcocantu.com
marco.cantu @ gmail.com

David Dirkse
www.davdata.nl
mail: David @ davdata.nl

Benno Evers
b.evers @
everscustomtechnology.nl

Holger Flick
holger @ flixments.com

Mattias Gärtnernc-
gaertnma@netcologne.de

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

John Kuiper
john_kuiper @ kpnmail.nl

Wagner R. Landgraf
wagner @ tmssoftware.com

Vsevolod Leonov
vsevolod.leonov@mail.ru

Andrea Magni
www.andreamagni.eu andrea.
magni @ gmail.com
www.andreamagni.eu/wp

Helmut Elsner
Korrektor der Deutschen
Ausgabe
helmut.elsner@live.com

Ian Barker
EMBARCADERO DEVELOPER
ADVOCATE

Paul Nauta PLM Solution
Architect CyberNautics
paul.nauta @ cybernautics.nl

Kim Madsen
www.component4developers.com
kbmMW

Anton Vogelaar
ajv @ vogelaar-electronics.com

Boian Mitov
mitov @ mitov.com

Siegfried Zuhr
siegfried @ zuhr.nl

WIKIPEDIA
Internat. excl. VAT

€ 200
€ 64,22

Internat. incl. 9% VAT

€ 218
€ 70

Shipment

€ 130

Detlef Overbeek

www.blaisepascal.eu
editor @ blaisepascal.eu

Danny Wind
dwind @ delphicompany.nl

Jos Wegman
Corrector / Analyst

Jeremy North
jeremy.north @ gmail.com

Editor - in - chief
Detlef D. Overbeek, Netherlands Tel.: Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavor to ensure that what is published in the magazine is correct, we cannot
accept responsibility for any errors or omissions.
If you notice something which may be incorrect, please contact the Editor and we will publish a
correction where relevant.

Hello dear readers,
I have a very important announcement to make:
FRESNEL is here.
Ill try to explain in short what it means.
Fresnel is the new LCL.
We have talked about that before and at the summit in Amsterdam we will show some results of it,
and in October at the University of Cologne (Köln) Germany we will show the achievements we
made.
Mattias Gärtner and Michael van Canneyt have been partners in crime.
They finally did it:
drag Lazarus into the Future…
Since ever we had discussions about the way Lazarus looked and handled the graphical
environment
for all of the Os’s. Far to difficult etc. I asked Michael and Mattias and also Martin what could be
done about that and they came up with the new Framework FRESNEL.

So they started working on it and here is final proof. It works.
At page 92 you’ll find an explanation of the many details there are.
The achievement is enormous:
We can now work with totally new designed components on the basis of the complete component
set that Lazarus and FPC has. These components are custom-drawn components that we use for
the LCL and now for FRESNEL.
What makes it very special is that we added CSS Style to these components and we are very busy
creating the new components and we can use help if you dare to.
So for now we have a platform running on all native platforms and in the browser,
wit the help of WebAssembly we can create apps that can run on the desktop and the web.
Michael created even a filesystem for this.
For the future we will implement Android as well.
All this using a single codebase,
and running at native speed.
And obviously,
all this using your favourite Programming language: Object Pascal.

Have lots of fun reading the articles…

4Blaise Pascal Magazine 117 2024

From your editor

5Blaise Pascal Magazine 117 2024

From our technical Advisor, Jerry King

6Blaise Pascal Magazine 117 2024 6Blaise Pascal Magazine 110 2023

PRICE: € 40,00POCKET PACKAGE (2BOOKS) EXCLUDING VAT AND SHIPPING

https://www.blaisepascalmagazine.eu/product-category/books/

LAZARUS HANDBOOK

7Blaise Pascal Magazine 117 2024

ARTICLE PAGE 1 / 9PUTS:
PASCAL USERS
TIPS & SOLUTIONS
CREATING TWO SIMPLE COMPONENTS
FOR DELPHI
Rewritten and converted by Detlef Overbeek, inspired by an old Dutch
article of Paul J Gellings Blaise 34 page 169.

This article covers the creation of two very simple Delphi
components.

It has two purposes:
Show how to create a component from scratch and create
something useful. For those for whom this is entirely new,
the entire procedure is followed step by step.

The first component makes it possible to set a wait time even in
Delphi (delay) in Delphi, for example to be able to view screen
output or intermediate results or something similar and is
especially useful during the development of a program.
The ancient Borland Pascal possessed the built-in Delay
procedure, but Delphi doesn't have it.

The second component is intended to measure times,
for example the time needed for a certain calculation or for
some other task performed by Delphi and with an accuracy of
milliseconds. The components can then be placed directly
from the component palette on a Form and thus included in
an application and in doing so, the unit name associated with
the component is automatically included in the uses clause.
Much more could be said about components, of course
but for the purposes of this article we must leave it at that.

The source code of the two components discussed is contained
in the units UDelay.pas and UClock.pas.
For the icons to be placed on the component palette,
we will handle that in a separate article.

Since Delphi constantly changes handling of menus,
the user interface etc we simply have to repeat certain things
since they are not always very logical ordered
A simple test program for these two components is the
TestTime.dpr with the corresponding unit UTestTime.
pas. The code of these files will be made available for our
readers at https://www.blaisepascalmagazine.eu/en/
your-downloads/ see image at the bottom.

CREATING A NEW COMPONENT
We start with the step-by-step description of the
component which we call TDelayer and which can be
used to set a delay set. This component is itself derived
from TComponent the highest class on the tree - the
most general component, with which TDelayer also
automatically inherits the methods associated with
TComponent.

To create a new component, (this action is to show how
component code looks like) we first choose from the top
listing: (See page 3 of this article) ��Component � New
Component � VCL for Delphi Win32.

A new widow appears: Ancestor Component.
Since we have only the highest class to use: (there is nothing in
between) we select TComponent. If you choose in the next
window TComponent it will become the name of the unit:
Component1. The number is for auto increment, if you want to
do more. At this point again a wizard pops up that will create the
component text. Click finish.
(See page 4 of article for the code listing).

Figure 1 Downloads

8Blaise Pascal Magazine 117 2024

ARTICLE PAGE 2 / 9PUTS:
PASCAL USERS
TIPS & SOLUTIONS

LISTING ❶.
The basic component unit as created by Delphi
Of interest is the division into private, protected, public and published sections.

The following important rules apply to this:

● the private section is for internal use in a component only,
 can only be used in the class unit and cannot be applied directly by the user of a component;

● what is declared in the protected section can be seen within the component's class unit
 and in any new class derived from it;

● the public section is used for the runtime interface and everything declared in this section
can be seen and used by all components of the application and in it are placed those properties

 and methods that the user of a component during the running of the application;

● the published section is analogous to the public section but however, the properties declared in
 this section are visible in the the Object Inspector and can therefore be modified there
 to the user's requirements.

In the present case, only one method is needed in the unit which can be seen in Listing 2 of the
unit UDelay and with it the delay is set.
It is included under the Public declarations because it must, of course, be able to be called from
the program in which a delay is needed, it should be callable.

This call, when the component in the relevant program is included with the name Delayer, it takes
the form: Delayer.Delay(2000)where the number is the desired delay time in milliseconds, i.e.

For the required time measurement use the function GetTickCount which gives the number of
milliseconds since Windows last started. The quantity (GetTickCount - FirstTick) thus gives
the number of milliseconds that elapsed after the time FirstTick.
The result of GetTickCount becomes zero again after Windows has been running for about 49.7
days of continuous running.
That is about 2^32 milliseconds, so the result of this function is apparently an "unsigned integer".

WHAT IS A COMPONENT AND WHAT IS ITS USEFULNESS
Delphi is an application development environment that is based is based on the use of
components. This means that developing an application with Delphi is done at least partly by
placing components from the component palette on a Form.

Such a component then contains data and functionality and the user
(of course as opposed to the creator of a component) does not have to worry about its
implementation.
Among the components we distinguish visual and non-visual ones.
The former include buttons, dialogs and so on.
The second kind includes TTimer, TDataSet, and so on.

There can be all kinds of reasons for developing a component.
Two of the most important of which are:

● something is needed that can be easily reused;
● there is no existing component for that purpose.

In addition, it could just be play, whereby someone, by making a couple of components gets a
better understanding of the "Visual Component Library (VCL)" and its use in creating Delphi
applications.

In this article, the creation of two non-visual components is discussed.
In principle these could also be created and used as separate units, but it has several advantages to
create them as components. They can then be placed directly from the component palette on a
Form and thus incorporated into an application and in doing so, the unit name associated with the
component is automatically included in the uses clause.

9Blaise Pascal Magazine 117 2024

ARTICLE PAGE 3 / 9PUTS:
PASCAL USERS
TIPS & SOLUTIONS

Once you want to create the delay component listing
there is a code example on page 4/x of this article.
If you want to rename the unit you created because it
has the wrong name, then you have to start the
process again, or create the form manually without
the wizard that sets it all up for you.
Just copy the code you already have or created and
paste it in the form you saved with the correct name.
Save again.

Figure 3 search for the Ancestor

Figure 2: New component

Figure 4 Create the unit of the component

Figure 1 Downloads

Listing 1

Listing 2

10Blaise Pascal Magazine 117 2024

ARTICLE PAGE 4 / 9PUTS:
PASCAL USERS
TIPS & SOLUTIONS

unit Component1;

interface

uses
System.SysUtils, System.Classes;

type
TComponent1 = class(TComponent)
private

{ Private declarations }
protected

{ Protected declarations }
public

{ Public declarations }
published

{ Published declarations }
end;

procedure Register;

implementation

procedure Register;
begin
RegisterComponents('Samples', [TComponent1]);

end;

end.

unit UDelay;

interface

uses
System.SysUtils, System.Classes, Windows, Messages, Graphics, Controls, Forms, Dialogs;

type
TDelayer = class(TComponent)
private

{ Private declarations }
FInterval : Integer;
FActive : Boolean;

protected
{ Protected declarations }

public
{ Public declarations }
Procedure Delay(Interval : Integer);

published
{ Published declarations }
property Interval: Integer read FInterval write FInterval;
property Active : Boolean read FActive write FActive default False;

end;

procedure Register;

implementation

procedure Register;
begin
RegisterComponents('Samples', [TDelayer]);

end;

Procedure TDelayer.Delay(Interval : Integer);
Var
FirstTick : Integer;

Begin
If Active Then ShowMessage('Already running delay')
Else
Begin
Active := True;
FirstTick := GetTickCount;

Repeat
Application.ProcessMessages;

Until
 (GetTickCount - FirstTick) >= Interval;

Active := False;
End;

End;

END.

11Blaise Pascal Magazine 117 2024

ARTICLE PAGE 5 / 9PUTS:
PASCAL USERS
TIPS & SOLUTIONS

Now we can start the installing of the
component in the Delphi IDE.

Go to:
Component > choose the next step:
Install Component. Again a window
appears: See figure 5.
By choosing the three dotted button
(Ellipsis) the file system pops up and
then go to where you saved your
UDelay.pas (or whatever name you
have given it).
Select � Install to a new package.
Click Next.
The search path appears
(See figure 7.) and below that you can
enter the package name.
The description should of course be
some meaningful text. Click � Finish.

Its not all done yet:
Delphi wants to know what the
framework will be:
See figure 8. There is little choice,
so click OK and now the window (See
figure 9) will appear. Package
...Delay.bpl has been installed.

Now you can check if the component
really is available:
Start creating a new VCL program and
take a look in the
Palette � Sample � TDelayer

Figure 5 Install component

Figure 6 Unit File name

Figure 7: search path

Figure 8: framework VCL Figure 9: final install worked

12Blaise Pascal Magazine 117 2024

ARTICLE PAGE 6 / 9PUTS:
PASCAL USERS
TIPS & SOLUTIONS

Furthermore, two fields: FInterval and
FActive are defined of which the properties
Interval and Active are included.
The property Active is intended to prevent a
new delay from being started during delay, which
is obviously not desirable and the correct interval
not being used again!
Usually there is something wrong with the logic of
a program. It is important for the writer of the
program that an error message appears if such a
thing is the case. If it is ok, the end-user of a
program never gets this message to be seen.
Next, the unit is then saved with File|Save as
choosing a more meaningful name, in my case
Udelay.pas.
This is placed in a separate folder for components.
I chose c:\Components\TimeDelay\.
Make your own choice

Normally in the IDE is a palette which becomes
available if you have started a new VCL Project.
See image xxx where you have filled in the
component you search for. If you open the
Samples Tab you will find your installed
component.

UNINSTALLING
What you still need to know is how to uninstall
the component.
It’s rather strange organized.
You need to do it like this:
go to � Components chose � Install Packages.
The next window will appear. Scroll through the
list and then select the component and click
remove. That's all.

Figure 10:
the installed component

Figure 11:
uninstall is also
important

13Blaise Pascal Magazine 117 2024

ARTICLE PAGE 7 / 9PUTS:
PASCAL USERS
TIPS & SOLUTIONS

Listing 3. Source code of the unit UClock.
Here again we see the use of the GetTickCount function. The GetStart function is used to set
the start time, while at the end of the period whose duration is to be measured, the function
TClock.Time is called, which as a result at once gives the string for the elapsed time.

To also be able to determine intermediate times, e.g. in addition to the total time taken by a
calculation, also that of intermediate operations, the array the array st[0..3] is used to record
the individual start times in it. In the constructor Create its initial value is set to 0.

Including the component on the component palette, including compiling proceeds exactly as
described for the previous component. In this case, given the purpose of this component,
there is no need for the presence of an adjustable property.
Although here you could therefore also use a unit instead of a component, inclusion in an
application is, as already mentioned above, easier for a component than for a unit.

ANOTHER COMPONENT
We now describe, without explicitly repeating all the steps mentioned in the previous section
mentioned, a second component:
TClock, which, like the previous one, is derived from TComponent and placed on the Sample
page of the component palette. This component gets two functions and one property, and the
entire unit is shown in Listing 3:

TEST PROGRAM
To test the components discussed above, we created a small program called DelayTesting with one
unit: UDelay.pas. In it, we define the form TestForm and on it we place on a panel (TestPanel)
the two components, six labels, two Buttons and an Edit field as shown in Figure 6.
At the heart of the program are the procedures TestBtnClick and CalcButtonClick which are
shown in Listing 4, see next page. Furthermore, we see the TestMemo in which the results of the
ArithmeticButtonClick procedure are shown.

Listing 4. The procedures FormCreate, TestBtnClick and
CalculateButtonClick from the unit UTestTime. (See page 8 of this article)
In the FormCreate procedure, the default value of the Interval in the IntervalEdit window.
This or a modified value of this number is used as the interval for the Delay.
After expiration of that interval, the DelayLabel field displays the elapsed time.

When everything works correctly, the result is equal to the set delay. In most cases, this is correct
within a few milliseconds and so that is apparently the accuracy of the time measurement.

In the ArithmeticButtonClick procedure is both - the total time measured - as well as the
time for each calculation separately. This latter can be important, when between individual
calculations intermediate operations take place and one also wants to determine their influence.
In this case a delay as an example.

Figure
Delphi offers a special
way of showing the
graphical possibilities:

Go to ��Project
��Options ��Application
��Appearance

14Blaise Pascal Magazine 117 2024

ARTICLE PAGE 8 / 9PUTS:
PASCAL USERS
TIPS & SOLUTIONS

Unit UClock;

Interface

Uses
System.SysUtils, System.Classes, Windows, Messages;

Type
TDelayClock = class(TComponent)

Private { Private declarations }
FStart : Integer;
nPartTime: Integer;
st : Array[0..3] OF Integer;

Protected { Protected declarations }
Public { Public declarations }
Constructor Create(AOwner : TComponent); override;

Function GetStart : Integer;
Function Time : STRING;

Property Start : Integer read GetStart;

Published
{ Published declarations }

End;

Procedure Register;

Implementation

Procedure Register;
begin
RegisterComponents('Samples', [TDelayClock]);

end;

Constructor TDelayClock.Create (AOwner : TComponent);
Begin
Inherited Create(AOwner);
nPartTime := 0;

End;

Function TDelayClock.GetStart : Integer;
Begin
If nPartTime < 3 Then inc(nPartTime);
st[nPartTime] := GetTickCount;

End;

Function TDelayClock.Time : String;
Var
iExpireTime : Integer;
hour, min : Word;
sec : extended;
tmp : String;

Begin
iExpireTime := GetTickCount - st[nPartTime];
hour := iExpireTime DIV 3600000;
iExpireTime := iExpireTime MOD 3600000;
min := iExpireTime DIV 60000;
iExpireTime := iExpireTime MOD 60000;
sec := 0.001 * iExpireTime ;

If hour > 0
Then tmp := tmp + Format('%2.1d u %2.1d m %5.3f s', [hour, min, sec])
Else
If min > 0
Then tmp := tmp + Format('%2.1d m %5.3f s', [min, sec])
Else tmp := tmp + Format('%5.3f s', [sec]);

Result := tmp;
dec(nPartTime);

End;

end.

Listing 3

15Blaise Pascal Magazine 117 2024

ARTICLE PAGE 9 / 9PUTS:
PASCAL USERS
TIPS & SOLUTIONS

unit DelayTest;

interface

uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System.Classes,
 Vcl.Graphics, Vcl.Controls, Vcl.Forms, Vcl.Dialogs, Vcl.ExtCtrls, Vcl.StdCtrls,
 UClock, UDelay;

type
TTestForm = class(TForm)
DelayClock: TDelayClock;
TestPanel: TPanel;
TestBtn: TButton;
CalcButton: TButton;
Tiklabel: TLabel;
NowLabel: TLabel;
DelayLabel: TLabel;
Delayer: TDelayer;
IntervalEdit: TEdit;
CalcMemo: TMemo;
procedure FormCreate(Sender: TObject);
procedure TestBtnClick(Sender: TObject);
procedure CalcButtonClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
TestForm: TTestForm;

implementation

{$R *.dfm}

Procedure TTestForm.FormCreate(Sender: TObject);
Begin
IntervalEdit.Text := IntToStr(Delayer.Interval);

End;

Procedure TTestForm.TestBtnClick(Sender: TObject);
Begin
NowLabel.Caption := DateTimeToStr(Now);
TikLabel.Caption := IntToStr(GetTickCount);
DelayLabel.Caption := '';
Delayer.Interval := StrToInt(IntervalEdit.Text);
DelayClock.GetStart;
Delayer.Delay(Delayer.Interval);
DelayLabel.Caption := 'Total amount of time used: ' + DelayClock.Time;

End;

Procedure TTestForm.CalcButtonClick(Sender: TObject);
Var i, j : Integer; Sum : extended;
Begin
DelayClock.GetStart;
For i := 1 TO 5 DO
Begin
sum := 0.0;
DelayClock.GetStart;

FOR j := 1 TO 10000 DO
sum := sum + i / (i + j) / (i + j);

CalcMemo.Lines.Add('i = ' + IntToStr(i) + ' sum = ' + FloatToStr(sum));
CalcMemo.Lines.Add('Total amount of time used: ' + DelayClock.Time);
Delayer.Delay(Delayer.Interval);

End;
CalcMemo.Lines.Add('Total amount of time used: ' + DelayClock.Time);
CalcMemo.Lines.Add('Finished calculation');

End;

end.

Listing 4

Figure 13:
the running project

Figure 14: the error message

16Blaise Pascal Magazine 116 2023

ADVERTISEMENT

https://www.blaisepascalmagazine.eu/product-category/books/

David Dirkse’s website: davdata.nl/math

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

Pocket
€ 50
ex Shipping

PDF
€ 35

Some weeks ago I had a reaction from Ettore Cicinelli from Italy
and he asked for a solution .He had a problem with a project from the book Learning to program using Lazarus: a
very nice example, very useful but not yet checked with the latest version of Lazarus 3.2.
It did not compile in the right manner, so I asked Ignace Peeters from Belgium if he could take a look at it.
Ignace solved the problem and here it is:

There was an error in the code:
In the StringList, an object is added (descending from TStrings) via AddObject.
When this object is requested afterwards, it is already an object, it does not need to be converted to TObject.
The Pointer conversion that used to be there: TObject(Pointer(Length(APPI^.name)))
has been replaced by TObject(PtrUint(Length(....))) which is clearer and easier because this is an unsigned
object. If you then do the reverse operation via PtrUnt afterwards when excavating, everything works.

procedure TForm1.DisplayComponentProperties;
var
 aPPI: PPropInfo;
 aPTI: PTypeInfo;

aPTD: PTypeData;
aPropList: PPropList;
sortSL: TStringList;
i: integer;
s: string;

begin
seViewer.Lines.Add(''); inc(lineNo);
aPTI := PTypeInfo(compClass.ClassInfo);
aPTD := GetTypeData(aPTI);
s := Format(' %s has %d published properties:',[aPTI^.Name, aPTD^.PropCount]);
hiliter.AddToken(lineNo, 1, tkText); hiliter.AddToken(lineNo, Length(s), atrBD);
seViewer.Lines.Add(s); inc(lineNo);

if (aPTD^.PropCount = 0)
then seViewer.Lines.Add(' (no published properties)')

else
begin
Getmem(aPropList, SizeOf(PPropInfo)* aPTD^.PropCount);
sortSL := TStringList.Create;
sortSL.Sorted:= true;

try
GetPropInfos(aPTI, aPropList);
for i := 0 to aPTD^.PropCount - 1 do
begin
aPPI := aPropList^[i];
sortSL.AddObject(Format(' %s: %s', [aPPI^.Name, aPPI^.PropType^.Name]),

 Commented // TObject(Pointer(Length(aPPI^.Name))));
TObject(PtrUInt(Length(aPPI^.Name))));

end;

for i := 0 to sortSL.Count - 1 do
begin
seViewer.Lines.Add(sortSL[i]);

Comm/ // hiliter.AddToken(lineNo, Succ(Integer(sortSL.Objects[i])), atrBD);
hiliter.AddToken(lineNo, Succ(PtrUInt(sortSL.Objects[i])), atrBD);
hiliter.AddToken(lineNo, Length(sortSL[i]), tkText);
inc(lineNo);

end;
finally
Freemem(aPropList, SizeOf(PPropInfo)* aPTD^.PropCount);
sortSL.Free;

end;

end;
end;

17Blaise Pascal Magazine 117 2024

ARTICLE PAGE 1 / 2PUTS:
PASCAL USERS TIPS & SOLUTIONS

18Blaise Pascal Magazine 117 2024

ARTICLE PAGE 2 / 2PUTS:
PASCAL USERS TIPS & SOLUTIONS

This is a very nice example that
shows how to work with

Treeviews and and how to use
pointers.

19Blaise Pascal Magazine 117 2024

DATABASE WORKBENCH 6.5

Starter Expert

The Swiss army knife for database development

PAGE 1 / 33

INTRODUCTION:
We introduced Database Workbench 6 back in 2022, a lot has changed since then.
But now, first things first:

WHAT IS DATABASE WORKBENCH?
A complete database development tool with native support for Oracle, SQL Server, MySQL,MariaDB,
PostgreSQL, Firebird, NexusDB, InterBase and SQLite.
Database Workbench offers a well-ordered, clear and consistent user interface for different
database systems and provides access to database system specific features. It is very user friendly
and the GUI is made in away that people can understand most of it with simply using your
expectations and logic. Which is worth a great compliment.

You can use this application for your database development from start to finish:
start with designing graphically, end with testing queries and debugging stored procedures.

And somewhere in between, you can create schema objects like tables, indices, constraints, generate
data or import data from legacy systems for testing purposes, and document your database with
printing or maintain your database with to-do lists and version control.

Figure 1:
Database Workbench
main window / a larger

EDITIONS, MODULES, LICENSING AND SUPPORT
Database Workbench comes in 3 editions: Basic, Pro and Enterprise.
The license itself is not time limited, updates are included for the first year.
You can purchase a subscription beyond your first year for additional updates for the current major
version. Each license has to include at least 1 module for a specific database system.

20Blaise Pascal Magazine 117 2024

DATABASE WORKBENCH 6.5 PAGE 2 / 33

The latest version of the Pro edition also allows you to open SQLite databases in meta data read
only mode without licensing the SQLite module, there's full SQLite support with the module added
to your license.
More features for the Pro Edition: transfer data to and from ADO or ODBC data sources, print
schema objects, create custom reports that can be used for multiple databases, support for
roaming Windows profiles and Windows Terminal Server, and additional productivity features like
favorite databases, integrated To-Do lists and SQL/Code Catalogs.

The Enterprise edition is created for development teams:
adding a central repository or registered servers and databases, specific multi-user features and a
built-in Version Control System for database objects.
Modular licensing in combination with the different editions with different prices makes sure there's
a suitable option for everyone.

Such a module provides native access to a database system and includes functionality to design,
create and modify databases. Additional modules can be added at a later time.
The Basic edition covers the needs for most developers, but doesn't include visual database design,
although you can reverse engineer an existing database for documentation purposes.
With the Pro edition, you can design your database with logical and physical models.
It adds the ability to debug stored procedures and triggers, and open any ADO or ODBC data
source (in meta data read only mode) or convert from those to supported database systems.

Figure 2:
Feature matrix with
detailed edition
differences

A detailed feature matrix is available here:
https://www.upscene.com/database_workbench/editions

21Blaise Pascal Magazine 117 2024

CONCEPTUAL AND PHYSICAL DATABASE DESIGN
A data modeling tool can be useful during the database design phase and Database Workbench
includes a diagram editor with which you can create 2 types of model, a "logical model" and a
"physical model".

Figure3
New Diagram menu

The physical model is the actual database, it contains tables, views and their relationships via
foreign key constraints. You can visually design a database this way or reverse engineer an existing
database, for example for documentation purposes.

DATABASE WORKBENCH 6.5 PAGE 3 / 33

Figure 4:
A physical data model in
the Diagram Editor.

22Blaise Pascal Magazine 117 2024

The physical model (the database) is an implementation of certain business logic, eg in a webshop
database, each "customer" can have orders. Each "order" record should point to an existing
"customers" record.
This logic is physically implemented by a CUSTOMERS table, an ORDERS table and a foreign
key constraints between those tables with a CUSTOMERID column in the ORDERS table.

The "logical model" is database agnostic, more abstract and it does not care about actual
implementation, you're only modeling the business logic.
A logical model can then be used to generate the physical model: the actual database.
Logical data models consist of entities and their relationships, a so-called entity-relationship model
(ER-model). A "customer" is an entity which has a relation to the "order" entity.

As you can see here, you don't have a reference to the CUSTOMER entity in the ORDER entity, but
there is only a logical relationship between the two. This makes for a cleaner model with the focus
on the actual logic instead of how to implement such a relationship in your database.

DATABASE WORKBENCH 6.5 PAGE 4 / 33

Figure 5:
A physical model
foreign key constraint
from ORDERS to
CUSTOMERS

Figure 6:
A logical model
relationship

23Blaise Pascal Magazine 117 2024

Figure 7:
Relationship
properties in a logical
model

There are different types of relationships in an ER-model and these relationships have different
implementations in a database.
A relationship can be "identifying" or "non-identifying" and it has cardinality,
with the number ratio expressed in symbols, like one-to-one or one-to-many. An identifying
relationship means the dependent entity can only be identified when also using the owner entity
identifier. When generating the physical model, the identity identifier becomes the primary key and
for an identifying relationship, the primary key of the parent will be part of the primary key of the
childtable.

With a non-identifying relationship the child entity can be identified without using the owner
entity. When generating the physical model, the primary key of the owner will be referred to in
the child, but the child will have its own primary key.

Figure 8: Differences
between implementation
of identifying vs non-
identifying

DATABASE WORKBENCH 6.5 PAGE 5 / 33

24Blaise Pascal Magazine 117 2024

Additionally, a non-identifying relationship can be mandatory or optional, resulting in a child table
with either a non-null column for the parent identifier, or a nullable column.
This optionality is also an aspect of cardinality, as it possibly defines "one-or-zero"-to-many
relationships, for example. When you generate the physical model, columns for the relationship will
be added to the table automatically.

Figure 9:
A logical relationship
translates to a foreign
key constraint

A zero-to-more relationship is easy, but a many-to-many
relationship is physically implemented with an in-between-table.

This adds an extra table to the physical model with
constraints "pointing" both ways.

Figure 10:
A logical many-to-
many relationship ends
up creating an
additional table

DATABASE WORKBENCH 6.5 PAGE 6 / 33

25Blaise Pascal Magazine 117 2024

DATABASE WORKBENCH 6.5 PAGE 7 / 33

Figure 11: You can add colors

26Blaise Pascal Magazine 117 2024

DATABASE WORKBENCH 6.5 PAGE 8 / 33

Figure: 12 If you open the pdf file with an opposite page you will see the whole picture over two pages

27Blaise Pascal Magazine 117 2024

DATABASE WORKBENCH 6.5 PAGE 9 / 33

28Blaise Pascal Magazine 117 2024

Figure 13:
The logical data types get
converted to physical,
database system
dependent types

Right:
Focusing on modeling the business
logic first, is easier than trying to
implement a database right
away and gives you more visual
information about the relationships
compared to visualized foreign
key constraints. See the next page
for the other half op the picture.

DATABASE WORKBENCH 6.5 PAGE 10 / 33

CREATING AND MODIFYING
DATABASES
You can create a new tables using the modeling
tools or by hand. Changes and additional schema
objects like indices or triggers can be done using the
different object editors.
Object editors can be reached from the Database
Navigator using double click or the context menu,
via the buttons in the toolbar or the main menu.

Figure 14:
Different ways of
opening object editors

29Blaise Pascal Magazine 117 2024

DATABASE WORKBENCH 6.5 PAGE 11 / 33

Figure: 12 If you open the pdf file with an opposite page you will see the whole picture over two pages

30Blaise Pascal Magazine 117 2024

Each type of object has a different editor available. And although different database systems have different
features for each object type, the user interface shows you consistent object editors for each system.

Figure 15:
Several types of object
editors

Figure 16:
Table Editor with
additional Data tab

DATABASE WORKBENCH 6.5 PAGE 12 / 33

From each object editor, you can create new objects or modify existing objects. Depending on the
type of object, additional tabs can be available that show, for example, the data for tables.

31Blaise Pascal Magazine 117 2024

DATABASE WORKBENCH 6.5 PAGE 13 / 33

Different database systems all use a slightly different syntax for these statements, from within the
editors, you can easily modify the object properties and Database Workbench will generate system
specific Data Definition Language (DDL) statements for you.

Figure 17:
Trigger Editor for
MySQL and Firebird,
similar interface, small
differences

The user interface shows you the different possible data types, options for indices, triggers and
constraints. It allows you to create complex objects using mouse and keyboard, all without having
to know the exact DDL syntax or available options. It's fast and easy.

SQLITE WITH DATABASE WORKBENCH
The SQLite module was recently added to Database Workbench, it fully supports all SQLite
features include third party extensions.
Although SQLite is not server-based, it fits neatly into the application, instead of registering a
server, you register the SQLite library and optional extensions. After that, you can register your
databases. You can register multiple versions of the library or with different sets of extensions
depending on your requirements.

32Blaise Pascal Magazine 117 2024

Figure 18:
Registering an
SQLite library with
an extension

Registering or creating a database is as easy as selecting an existing file or
entering a new filename. You can now open the database and view or
create the meta data and data.

Figure 19:
 The "Northwind" SQLite
database

The Database Navigator displays the tree with schema objects and several
"Management & Maintenance" options for commonly used database
information and tasks.
Although SQLite is easy to use, you'll notice that during development you
can run into problems.

For example, SQLite does not support adding or removing constraints for
existing tables. There's a number of steps to take:

❶ Create a new table with the constraints
❷ Transfer the data from the old table to the new
❸ Drop views that rely on the old table
❹ Rename the new table
❺ Recreate the triggers on the table
❻ Recreate the views

Database Workbench has this all automated for you.

In the Table Editor you can add or drop constraints
and the application will generate the required SQL statements for you.
This makes modifying your SQLite database much easier.
On the next page of this article (12 /33) is an example,
no views or triggers available.

DATABASE WORKBENCH 6.5 PAGE 14 / 33

33Blaise Pascal Magazine 117 2024

DATABASE WORKBENCH 6.5 PAGE 15 / 33

Figure 20:
The statements after
modifying a foreign key
constraint for a table

SQLite database properties, or so-called PRAGMAS, can be easily modified in Database Workbench as
well: it displays the available options, just click and select and use OK to finish the job.

Figure 21:
Editing database
properties for SQLite

TOOLS FOR WRITING QUERIES
Writing SQL queries is part of day-to-day database development. Database Workbench offers
several tools to make this easier for you.
The SQL Insight tool can help you when writing queries by hand. As is the case for other text
editors for programming, this tools parses what you've written so far and offers suggestions in a
drop down box. This helps you to quickly select tables, columns and write JOINs.

34Blaise Pascal Magazine 117 2024

SQL Insight understands table aliases when selecting columns, parses definition of temporary
views and uses foreign key constraints available in the database for JOIN-completion.
Additionally, Parameter Insight shows the parameter names and data types when trying to execute
stored procedures from SQL or when calling built-in DBMS functions.

Figure 22: SQL
Insight with Join
Completion

Figure 23:
Parameter Insight for a
Stored Procedure

Another query writing tool is the ability to drag and drop object names, like tables and columns.
You can drag lists of columns as well. You can drag from the Database Navigator or the Describe
Companion, the latter supports selecting multiple items from the list of available columns.
These 3 tools are available in all code editors as well.

Figure 24:
SQL drag-n-drop

DATABASE WORKBENCH 6.5 PAGE 16 / 33

35Blaise Pascal Magazine 117 2024

Alternatively, using the context menu on a table allows you to quickly create an SQL statement for
SELECT, INSERT, UPDATE or DELETE. Just fill in the blanks and execute!

Figure 25:
The "More DML" context
menu item offers quick
SQL

The Visual Query Builder offers another environment to write your SQL queries.
If you open the tool with a query available, the query is parsed and displayed in the builder.
If not, you'll start with an empty canvas.
Double click tables or views in the tree to add them or drag them onto the canvas.
It will automatically add JOINs if foreign keys are available in the database.
You can also drag from one column to another to create a JOIN.
Use the context menu on the line to display the join options.

DATABASE WORKBENCH 6.5 PAGE 17 / 33

36Blaise Pascal Magazine 117 2024

Simply checking a colum adds it to the output, additional options can be modified in the grid.
WITH THIS TOOL YOU CAN WRITE SQL QUERIES WITHOUT KNOWLEDGE OF SQL.

So for example, it's ideal for people writing ad-hoc reports (more on that later).
Queries can be complex, you can go beyond a single SELECT and also add UNIONs, or add a
Common Table Expression (CTE), all these will show up in the query tree outline and selecting a
particular query or CTE in the tree will display it on the canvas.

Figure 26:
Visual Query Builder with
several visualized joins

DATABASE WORKBENCH 6.5 PAGE 18 / 33

37Blaise Pascal Magazine 117 2024

Figure 27:
Visual Query Builder with
a CTE on a seperate tab

Figure 28:
Options for database
migration

Data types and other options will be automatically converted.
For example, while MySQL uses VARCHAR for character data, Oracle uses VARCHAR2.
Firebird uses BLOB SUB_TYPE TEXT, while SQL Server uses TEXT. Some systems use AUTOINC as a
data type, while others use it as an attribute to any INTEGER-based column. No need to remember
these differences, Database Workbench does it all for you. Migrating an existing database like this
help speed up your cross-database development efforts a lot. Very helpful.

DATABASE WORKBENCH 6.5 PAGE 19 / 33

CROSS DATABASE DEVELOPMENT:
MIGRATING, COMPARING AND DATA-TRANSFER.
As Database Workbench supports multiple database systems, it also features special cross database
development tools. With the Database Migration tools you can convert tables, views, indices and
constraints from one database system to another.

38Blaise Pascal Magazine 117 2024

Figure 29:
Migration report with
detailed warnings and
error messages

If you want to check meta data of one database against another,
you can use the Database Compare Tool.
Useful for detecting changes between development and production database,
or checking database versions for deployment.
It can even compare databases between different database systems,
using the same data type conversions as the Database Migration Tool.

DATABASE WORKBENCH 6.5 PAGE 20 / 33

39Blaise Pascal Magazine 117 2024

Figure 30:
Compare result, you can
define what action to take

The results are shown after comparing and Database Workbench can generate a change script you
can execute on the destination database to modify the schema objects.

To move data between databases, the DataPump tool can be used.
It supports transferring all data, even large binary data, as fast as possible.
After selecting both a source and destination database, the tables can automatically be arranged
in the correct order as per the foreign key constraints in the database.
For example, an ORDER record can only exist for a particular CUSTOMER record, so
the data in table CUSTOMER needs to be moved first.

DATABASE WORKBENCH 6.5 PAGE 21 / 33

40Blaise Pascal Magazine 117 2024

Figure 31:
DataPump with linked
transfers

Figure 32:
SQL based source to
transfer data to
destination table

The DataPump can disable triggers in the destination databases to avoid business logic coded into
the destination database being executed. It can also disable indices and enabled them afterwards,
to increase data transfer speed.

DATABASE WORKBENCH 6.5 PAGE 22 / 33

You can either simply transfer data from one table to another, or modify how the DataPump
fetches the data from the source table:
this can be done by setting a WHERE-clause for the source, or even more complex,
by using a completely self-written SQL statement to fetch data.
This can be useful if the data for the target table needs to come from multiple source tables,
for example, or from a selectable stored procedure.

41Blaise Pascal Magazine 117 2024

TESTING & DEBUGGING
If you haven't got existing data, the Test Data Generator tool can help you to create fake data for
testing purposes. You need data to test your performance, reporting, user interface and so on,
never test with a (near) empty database.

Figure 33:
Test Data Generator with
example options

In order to fill the database with real-life-like data, it can generate fake e-mail addresses, street
names, first and last names, postal codes, it can use existing images, generate large pieces of text,
and more.

DATABASE WORKBENCH 6.5 PAGE 23 / 33

42Blaise Pascal Magazine 117 2024

Figure 34:
Result of the above
settings for data
generation

Alternatively, a much more feature rich application to generate fake test data,
named Advanced Data Generator is available as well,
see https://www.upscene.com/advanced_data_generator/
If you use code on the database itself, triggers, stored procedures, stored functions or packages,
Database Workbench offers a debugger for this code. While Oracle and PostgreSQL provide a debugging
interface, InterBase, Firebird and MySQL do not. In order to debug code for those database systems,
Database Workbench emulates the code as if it were executed on the database, step by step, line by line.

Figure 35:
Result of the
above settings for
data generation

DATABASE WORKBENCH 6.5 PAGE 24 / 33

43Blaise Pascal Magazine 117 2024

Figure 36:
Stored Procedure
debugger, with
breakpoint set

When you start a stored routine, the debugger will prompt you for input values.
If it's a trigger, you can browse the table for values.
Continue to start the actual routine. From here going forward, you're able to execute the stored
routine statement by statement, just like with Delphi or Lazarus. You can modify variable or
parameter values or execute SQL statements to check the current state of data.

Figure 37:
Evaluate/Modify dialog
to modify values of
parameters and
variables

After the routine has finished, you can use the Debugger SQL Editor to rollback or commit the
transaction.

DATABASE WORKBENCH 6.5 PAGE 25 / 33

44Blaise Pascal Magazine 117 2024

Figure 34:
Different methods to create a new report

In order to create and test
your query, the Visual Query
Builder is opened.
After composing your
query, click OK and you'll
see the Report Editor.

Figure 38:
Report Editor

You can preview the results from within the Report Editor,
just click the tab Preview and the report will fetch the data
and display it.

DATABASE WORKBENCH 6.5 PAGE 26 / 33

 AD-HOC REPORTING
With the reporting tool, you can create your own reports

 based on any database query. You can start creating a report
 from the Workspace tab of the Database Navigator,
or from the Report Manager
under the Tools menu item.
While reports in the
Workspace are saved for that
particular database
configuration, a report in the
Report Manager has the
added benefit of possibly
being used for multiple
databases if these include the
same tables used as a source
for data.

45Blaise Pascal Magazine 117 2024

Figure 39:
Report Preview DATABASE DOCUMENTATION

And there's another printing feature. A visual overview of your database and relations between
tables can be created using the modeling tools, either reverse-engineer an existing database or
create the database from a model.

PAGE 27 / 33DATABASE WORKBENCH 6.5

46Blaise Pascal Magazine 117 2024

Figure 40:
Print preview
of a reverse
engineered
database

But there's more: indices, triggers, stored procedures.
Detailed documentation for tables inside the database using table and column descriptions is
supported by nearly all database systems. But you need a way to use it.

This is where meta data printing comes in.
With this tool you can print (or print-to-PDF) schema objects like tables, views, triggers, indices and
so on.

Object descriptions, source code or DDL is optional.
You can print all, or a selection of items. Also useful when you want to give a third party
documentation, for example, for a set of database View's that can be used for export data or
custom reporting functionality.

PAGE 28 / 33DATABASE WORKBENCH 6.5

47Blaise Pascal Magazine 117 2024

PAGE 29 / 33

OTHER VALUABLE TOOLS
There's not enough room here to show you all the tools, but let's highlight two more. The Database
Meta Data Search tool let's you search for objects inside your database. It can search for object
names, but also searches inside the source code of views, triggers and stored routines.

Figure 42:
Database search can
search for objects and in
source code

DATABASE WORKBENCH 6.5

Figure 41:
Database schema
object printing

48Blaise Pascal Magazine 117 2024

Figure 43:
Database search can
also search for data
types and column
defaults

Besides the fore mentioned Meta Data Compare, there's also a Data Compare tool. Especially
useful for data analysis, checking of logging functionality or simply to compare one state of a
database to another. Just as with the DataPump tool, you link tables in a source and destination
database together. If the columns are different in name, you can link those manually as well.

DATABASE WORKBENCH 6.5 PAGE 30 / 33

Figure 44:
Data Compare with
linked tables

For columns, it can even search for appearances in column defaults or data types (either a raw
data type or domain/user defined data type name).
As not all database systems support dependency tracking or don't support it at the same detail
level, using the Database Search tool can help you to keep track of objects, occurrences in different
places or use in code or default definitions.

49Blaise Pascal Magazine 117 2024

A database contains more than just text or numbers, it can also contain images, HTML or
documents like PDFs. You can view these with the BLOB Editor, either found under the Tools menu
item, or directly embedded in the SQL Editor.

Figure 45:
BLOB Editor, shown with
PDF, document and
image

When you browse data, the BLOB Editor will attempt to automatically detect the type of data, if it's
an image, it will display the image, if it's a PDF, it will display the PDF.
 If it can't determine the type of the content, it will display a hex-editor. The BLOB Editor supports
and detects the following formats: DOC, DOCX, RTF, PDF, HTML, XML, ICO, SGI, PCX,
PSD, BMP, GIF, TIFF, PSP, PNG, EPS, WMF and JPG.

ENTERPRISE EDITION & TEAMSERVER
Database Workbench requires you to register servers and possibly databases so you can use those
with the application. These are stored in configuration files in your Windows profile.
But if you're working with a team of developers, it might be easier to store these in a central
repository. Database Workbench TeamServer offers this for the Enterprise edition in addition to your
local repository.

When a TeamServer registered databases is opened, the Workspace can contain shared items as
well: notes, folders, reports, TO-DO items.
The TeamServer Console allows you to create groups of privileges for users and administer the
privileges for each user and group. For example, allow users to create public notes in the
workspace, register a shared server or database.
You can also control which team members are allowed to create or drop databases for a server,
create backups and so on.
TeamServer also offers a Version Control System (VCS) for shared databases. After adding a
database to the VCS, you can add individual objects. Once added, Database Workbench will no
longer allow you to modify or drop the object, you first need to lock it for editing.

DATABASE WORKBENCH 6.5 PAGE 31 / 33

50Blaise Pascal Magazine 117 2024

You can lock, unlock or check in the
objects via the context menu in the
Database Navigator or via the
toolbar button in each object editor.

DATABASE WORKBENCH 6.5 PAGE 32 / 33

Figure 47:
Objects in the VCS show a status indicator, editors have VCS related functionality

Figure 46:
TeamServer console to
administer users and privileges

51Blaise Pascal Magazine 117 2024

If you modify an object, Database Workbench automatically saves the generated DDL statements to
the VCS, as to keep a record of all changes. You can check for changes against the VCS or compare
between object revisions.

Figure : 48
You can compare the
current database to
revisions in the VCS

Each TeamServer user or group can have different privileges for the VCS, allowing each user to
lock objects or not, break an existing lock and so on.

CONCLUSION

DATABASE WORKBENCH 6.5 PAGE 33 / 33

this is an exceptional tool for database developers. Its incredible possibilities makes me very
enthusiast. Even for simple small databases its is very helpful. I haven't seen for a long time a
developer that makes such a good and incredible tool. I think he deserves an award.
It does what I like so much:
The user interface is logically structured and senses where the questions or expectations are for use..

52Blaise Pascal Magazine 117 2024

LE
AR

N
TO

PR
O

GR
AM

U
SI

N
G

LA
ZA

RU
S

H
O
W

AR
D

PA
G
E
-C

LA
R
KLAZARUS

HANDBOOK
FOR PROGRAMMING WITH F PASCAL AND LAZARUSREE

934 PAGES

LAZARUS
HANDBOOK

SUPER
 PACK

7 ITEMS

3

4 6 7
1. One year Subscription
2. Internet Viewing of the Magazine
3. The newest LIB Stick
 - All issues 1-111
 - On Credit Card
4. Lazarus Handbook Pocket
5. LH PDF including Code
6. Book Learn To Program
 - using Lazarus PDF including
 19 lessons and projects
7. Book Computer Graphics
 Math & Games
 - PDF including ±50 projects

PRICE € 120
NORMAL PRICE € 275

ADVERTISEMENT

POCKET
Edition
+shipment

LAZARUS
HANDBOOK
PDF

Coming Technology: Glass Cores (CPU) from Intel

Controlling the browser using webassembly
Accessing the Browser APIs from Webassembly.

Fresnel the new alternative LCL for Lazarus
Adding color and graphics (skia)

Database Workbench 6.5 added support for SQL LITE
The Swiss army knife for database development

News from FastReport

The new version of kbmMW - Components4Developer

 How to use Visual Studio code for Delphi

PUTS: Pascal User Tips & Solutions

BLAISE PASCAL MAGAZINE 117
Multiplatform / Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js

Databases / CSS Styles / Progressive WebApps
Android / IOS / Mac Windows & Linux

Blaise Pascal

Coming Technology: Glass Cores (CPU) from Intel

Controlling the browser using webassembly
Accessing the Browser APIs from Webassembly.

Fresnel the new alternative LCL for Lazarus
Adding color and graphics (skia)

Database Workbench 6.5 added support for SQL LITE
The Swiss army knife for database development

News from FastReport

The new version of kbmMW - Components4Developer

 How to use Visual Studio code for Delphi

PUTS: Pascal User Tips & Solutions

BLAISE PASCAL MAGAZINE 117
Multiplatform / Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js

Databases / CSS Styles / Progressive WebApps
Android / IOS / Mac Windows & Linux

Blaise Pascal

Delphi ATHENS (12) introduction
DEBUGGING A 64-BIT-BOX

testing numbers
Installation of latest version of Fast Reports

Math That Goes On Forever but Never Repeats
Overview of PascalScript feature in Syncovery

Is Passkey (authentication) the solution for the future
Test insight

Add text layer to PDF files

5

21

53Blaise Pascal Magazine 117 2024

INTEL SEES A FUTURE AS CLEAR AS GLASS ARTICLE PAGE 1/ 5

Inside Intel's Chip Factory there is a possible view in to the future:
It looks and is simply ordinary glass.
Intel is transitioning its CPU's to a new architecture in order to meet the rapidly increasing demand
for more powerful computing capabilities.
Computer processors are very intricate technological machines. Engineers selectively extract
precise combinations of atoms from the periodic table to create materials capable of directing
streams of electrons through intricately patterned circuits at extremely fast rates.
However, the next significant advancement in enhancing the efficiency of our laptops and
increasing the strength of artificial intelligence may originate from conventional glass.

Intel has provided a comprehensive explanation of the glass technology during its Innovation event
in San Jose, California. At a large, technologically advanced structure located in the hot desert
landscape of the Phoenix area, Intel converts small tabletop-sized sheets of glass into rectangular
sandwiches of circuitry, similar to the procedures used in building processors.
Intel has initiated a lengthy process of transitioning to a new technology that involves placing chips
on a glass substrate instead of the current organic resin that resembles epoxy. The newly developed
glass foundation, referred to as a substrate, provides the essential speed, power, and space
required for the chip industry's transition to a new technology that involves assembling several
"chiplets" into a single, larger processor.

Essentially, this implies a novel method to uphold Moore's Law, which measures advancements in
packing additional transistor circuitry elements into a CPU.
The A17 Pro CPU in Apple's new iPhone 15 Pro boasts a staggering 19 billion transistors.
The Ponte Vecchio supercomputing processor developed by Intel has a processing capacity
exceeding 100 billion. Intel anticipates that by the end of the decade, computers will have a
staggering one trillion transistors.
Intel adopted the chiplet strategy to narrow the gap with competitors who had better capabilities in
CPU manufacture.
According to Creative Strategies analyst Ben Bajarin, Intel can now utilise this technology to exceed
its competitors in a time when there is a high need for increased processing power that the industry
is struggling to meet. Intel's glass substrate technology showcases their expertise in packaging.

The original article can be found here: https://www.cnet.com/pictures/take-an-early-look-at-intels-glass-packaging-tech-for-faster-chips/

https://www.cnet.com/pictures/take-an-early-look-at-intels-glass-packaging-tech-for-faster-chips/

54Blaise Pascal Magazine 117 2024

INTEL SEES A FUTURE AS CLEAR AS GLASS ARTICLE PAGE 2/ 5

In the future, you can expect more advanced computers and AI technologies that are significantly
more intelligent than the ones currently available. The semiconductor industry will transition to
glass substrates due to many reasons. The whole chip industry, particularly high-end CPUs, will
undergo the glass transition in order to address the problems of chipmaking, (with Intel leading?)

Through extensive collaboration with academics and rigorous testing of innovative techniques over
a period of more than ten years, a team of 600 employees based in Chandler has successfully
transformed research and development into an operational manufacturing process. "The innovation
is complete," stated Ann Kelleher, the executive vice president overseeing technology development
at Intel. The utilisation of glass substrate technology provides us with the capability to achieve
superior performance for our products in the long run.
These are confident statements from a business that is currently in the middle of a four-year
endeavour to regain the dominance it lost to Taiwan Semiconductor Manufacturing Co. and
Samsung, who are chip "foundries" responsible for manufacturing processors for several electronics companies.
Intel's production progress saw a significant slowdown for a period of several years, beginning almost ten years
ago. As a result, it relinquished its previously dominant position to the two chipmakers from Asia.

The glass technology integrated beneath a processor is expected to be introduced in the latter half
of the decade. Initially, it will be implemented in the largest and most energy-intensive chips,
which are utilised in numerous servers housed in data centres operated by major hyperscale
companies such as Google, Amazon, Microsoft, and Meta.

The new substrate has the capacity to handle tenfold the power and data connections compared to
current organic substrates, enabling a higher volume of data transfer to and from a chip.
Minimising warping is crucial for ensuring that processors remain flat and effectively link to the
external environment, allowing for the use of chip packages that are 50% larger.
It effectively transfers power, allowing semiconductors to operate at higher speeds or with greater
efficiency.
Furthermore, it has the capability to operate at elevated temperatures, and when it undergoes
thermal expansion, it maintains a consistent rate of expansion with silicon to prevent any potential
mechanical malfunctions.

55Blaise Pascal Magazine 117 2024

ARTICLE PAGE 3 / 5

Glass will facilitate the development of next-generation server and data centre processors, which
will replace large processors such as Intel Xeons. These processors will be capable of running cloud
computing services, such as email and online banking, as well as Nvidia's highly sought-after
artificial intelligence processors, which have gained immense popularity due to the widespread
adoption of generative AI.

However, if glass substrates reach a more advanced stage of development and become more
affordable, this technology will extend beyond data centres to personal computers. It is evident that
Intel anticipates this technology being integrated into client applications. referring to personal
computers.

The chipmaking industry is expected to experience a comeback with the development of five nodes
within a span of four years. Intel, under the guidance of Chief Executive Pat Gelsinger, who
returned to the company in 2021, is making efforts to regain its position at the forefront of the
industry. During each press conference and quarterly earnings call, Intel executives repeatedly
emphasise the goal of achieving "five nodes in four years."
This refers to the ambitious plan to rapidly progress through five significant chip manufacturing
advancements in order to catch up with and ultimately surpass TSMC and Samsung by 2025.
Kelleher, who is leading the project, states that two of the processes have been finished and the
remaining steps are progressing according to the planned timeline.

AN ALL-INCLUSIVE BUNDLE
Even if Intel manages to regain its advantage in the lithography production process, which involves imprinting
transistors into a silicon surface, the business and its competitors still confront a significant challenge:
constructing the housing that connects these chips to a circuit board. Packaging and glass
substrates play a crucial role in this context.
The Intel 8086 chip, which was developed in 1978, served as the foundation for all subsequent PC
and server processors manufactured by Intel. It consisted of a flat square of silicon with 29,000
transistors. In order to safeguard and connect it to a circuit board, the device was enclosed in a
packaging that resembled a flat caterpillar. The device was powered and received data by forty
metal legs.

INTEL SEES A FUTURE AS CLEAR AS GLASS

56Blaise Pascal Magazine 117 2024

ARTICLE PAGE 4 / 5

THE HIDDEN DEPTHS
Transitioning from current organic substrates to glass presents many problems. Glass is fragile,
hence it necessitates cautious handling, for instance.
In order to facilitate the transition, Intel is modifying glass-handling equipment obtained from
professionals in the display industry, who possess the knowledge and expertise to handle glass
without causing any damage. The display sector is responsible for manufacturing a wide range of
products, including small wristwatch screens and large flat-panel TVs. In addition, they are required
to engrave circuitry onto glass and have successfully created numerous essential ultrapure
materials and meticulous handling procedures.

CHALLENGES RELATED TO MICROCHIPS
❶ Intel's strategy to recover its chip manufacturing capabilities might potentially revive the
 United States' manufacturing strength.
❷ The practice of stacking chips in a layered manner, similar to pancakes, has the potential to
 reduce the cost of laptops.
❸ Intel gained valuable insights when one of its supercomputer chips was damaged by an
 elevator collision.

Intel is planning to build a 'Megafab' that may potentially become the largest chip manufacturing
plant in the world. The project is estimated to cost around $100 billion.
However, there are distinctions.

Flat-panel displays use electronic components that are sensitive and located exclusively on one
side, allowing glass to smoothly move through factories using rollers. Intel constructs a structure
consisting of various materials and circuitry, known as redistribution layers, on both surfaces of the glass.
Consequently, their computers are required to securely grip the glass solely at its edges.
Every panel is meticulously removed from the container, inserted into the machine, rotated into a
vertical position, and then inserted further to allow for additional layers to be added to the
sandwich.

Subsequently, there has been a significant advancement in CPU packaging. The distinction between
chipmaking and packaging, which used to be quite basic, is now becoming less clear. Currently,
packaging methods employ lithography equipment to engrave their own circuitry, but with less
precision compared to CPUs.
Over time, processors have evolved from having caterpillar-like legs to having hundreds of pins
resembling a small bed of nails that cover the bottom of the processor. However, in the end, that
method proved to be insufficient in providing an adequate number of electrical connections to the
circuit board.
Today's packages are equipped with flat metal contact patches located on the bottom of the
package. The chip is affixed to the circuit board with significant pressure, amounting to hundreds of
pounds, during installation.
A metallic cap positioned on top of a processor effectively dissipates excess heat that would
otherwise cause a computer to malfunction. Below the processor lies a substrate featuring a
progressively intricate, three-dimensional network of power and data connections that serve to
connect the chip to the external environment.

INTEL SEES A FUTURE AS CLEAR AS GLASS

57Blaise Pascal Magazine 117 2024

ARTICLE PAGE 5 / 5

Like all other products at Intel, it is specifically built for large-scale production rather than small-
scale research and development initiatives.

INTEL FOUNDRY SERVICES IS ENHANCED BY PACKAGING.
The utilisation of Intel packaging technology is expected to be beneficial for its proprietary data
centre processors. It is crucial for Intel's planned corporate restructuring to include becoming a
chip foundry, similar to TSMC and Samsung, where it manufactures processors for other firms
under its Intel Foundry Services subsidiary.
Intel can offer packaging services, regardless of whether it manufactures the chips and chiplets that
are included in the box. However, this can subsequently result in a more extensive customer
agreement, wherein Intel fabrication facilities, sometimes known as "fabs," are responsible for
constructing both the silicon processor chips and chiplets.
"At IFS, Mark Gardner, the senior director in charge of the Foundry Advanced Packaging group,
stated that we possess both competitiveness and capacity." According to him, it is relatively simpler
to get a packaging customer compared to a chipmaking customer, as there are fewer technological
complexities and shorter timeframes for completion.
However, when it comes to customer agreements for packaging, it can result in a more profound
partnership that extends beyond chipmaking. Specifically, Intel anticipates that its 18A chipmaking
process will overtake TSMC and Samsung by 2024.
"It represents an opportunity to establish a connection or gain entry," Gardner stated. "The
trajectory of packaging first and advanced packaging then 18A is working well for a specific
customer."

The M2 Ultra, which marks the culmination of Apple's two-year shift away from Intel CPUs, is
accompanied by two M2 Max chips that have a high-speed interconnect. AMD has increased its
market share at the expense of Intel by utilising TSMC and Samsung to manufacture its designs,
particularly server chips that incorporate several chiplets.
The extent to which the processor business will transition from "monolithic," single-die designs to
chiplet designs remains uncertain. There are still benefits in terms of cost and simplicity when one
chooses to eschew complex packaging. However, it is evident that the most significant processors,
specifically the server and artificial intelligence (AI) processors located in data centres, will evolve
into extensive networks of interconnected chiplets.
Glass substrates are useful in providing chip designers with ample space, communication linkages,
and power delivery capabilities, allowing for future expansion.

INTEL SEES A FUTURE AS CLEAR AS GLASS

Blaise Pascal Magazine 117 2024

LIB-STICK ON USB CREDIT CARD
BLAISE PASCAL MAGAZINE
LIB-STICK USB-CARD: ALL ISSUES / CODE INCLUDED. SAME INTERFACE AS THE
INTERNET LIBRARY € 100

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /

BLAISE PASCAL MAGAZINE 112
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

Coming Technology: Glass Cores (CPU) from Intel

Controlling the browser using webassembly
Accessing the Browser APIs from Webassembly.

Fresnel the new alternative LCL for Lazarus
Adding color and graphics (skia)

Database Workbench 6.5 added support for SQL LITE
The Swiss army knife for database development

News from FastReport

The new version of kbmMW - Components4Developer

 How to use Visual Studio code for Delphi

PUTS: Pascal User Tips & Solutions

BLAISE PASCAL MAGAZINE 117
Multiplatform / Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js

Databases / CSS Styles / Progressive WebApps
Android / IOS / Mac Windows & Linux

Blaise Pascal

With highlighting
the result
on search

59Blaise Pascal Magazine 117 2024

LIB-STICK BLAISE PASCAL MAGAZINE

LIB-STICK USB-CARD: ALL ISSUES / CODE INCLUDED. SAME INTERFACE AS THE
INTERNET LIBRARY € 89 SPECIAL OFFER

Higlight
With

 Higlight
the result
on search

Blaise Pascal Magazine 107/108 2022 60Blaise Pascal Magazine 117 2024

SPECIAL OFFER € 75

● Lazarus Handbook
● Printed in black and white
● PDF Index for keywords
● Almost 1000 Pages
● Including 40 Examples
● Blaise Pascal Magazine
● English and German
● Free Lazarus PDF Kit Indexer
● 8 Issues per year
● minimal 60 pages
● Including example
 projects and code

ADVERTISEMENT

LAZARUS HANDBOOK (PDF)
+SUBSCRIPTION 1 YEAR

Blaise Pascal Magazine 107/108 2022 61Blaise Pascal Magazine 117 2024

● Lazarus Handbook Printed
● Printed in black and white
● PDF Index for keywords
● Almost 1000 Pages
● Including 40 Examples
● Blaise Pascal Magazine
● English and German
● Free Lazarus PDF Kit Indexer
● 8 Issues per year
● minimal 60 pages
● Including example
 projects and code

ADVERTISEMENT

LAZARUS HANDBOOK PRINTED
+SUBSCRIPTION 1 YEAR

SPECIAL OFFER € 75
 +SHIPPING

62Blaise Pascal Magazine 117 2024

JUN 13-14 2024 | AMSTERDAM

Delphi Summit

Spinnekop 3, 1444 GN Purmerend, the Netherlands

https://delphisummit.com/

WE ARE
AT THE
SUMMIT.
COME TO
SEE THE
EXCITEMENT.

64Blaise Pascal Magazine 117 2024

JUN 13-14 2024 | AMSTERDAM

GOLD
SPONSOR

AT

Delphi Summit

Barnsten proudly announces its gold sponsorship at this
year's Delphi Summit, where the world's top Delphi
developers gather for inspiration, knowledge exchange,
and networking.

We're thrilled to connect with Delphi enthusiasts from
around the globe, eager to share their stories of success
and overcome challenges.
As Embarcadero software vendors for over 25 years,
our expertise is at your service. Whether you seek advice
or solutions for your development needs, our dedicated
Barnsten team is here to empower your projects.

Visit our booth to explore exclusive offers and discounts
from renowned component vendors like Fast Reports,
Steema TeeChart, Gnostice, TMS, Devart, Woll2Woll,
and more!

Let's make this summit an unforgettable experience
together!

Warm regards,
The Barnsten Team

65Blaise Pascal Magazine 117 2024

66Blaise Pascal Magazine 117 2024

67Blaise Pascal Magazine 117 2024

Day 1: Thursday 13th
09:00 Registration

Main stage
10:00 Welcome and opening – Kees de Kraker and Marco Geuze
10:15 Keynote – Jim McKeeth and Ian Barker
11:00 Coffee Break & Network

Stage Sydney Stage Alexandria Stage Rio
11:30 Cary Jensen - Selected Advanced FireDAC

Technologies

FireDAC supports a wide range of powerful
and useful operations. This session will
discuss and demonstrate four of the more
interesting ones, including caching
updates, batch move operations, using
FireDAC built-in functions, and Local SQL.

Fabrizio Bitti - Creating a real-life
Blockchain with Delphi

Demonstrate how a blockchain
works and what it is used for. All
with Delphi in a multithread
environment to mine the blocks.

Steffen Nyeland - I can, therefore IAM

Changing your application login process to
an IAM (Identity and Access Management)
controlled process

12:30 Lunch, Network & Gaming
13:30 Marco Cantu - Building FireMonkey Apps

with Style

Unlike VCL, styles in FireMonkey don't only
determine the graphical elements of a UI
control, but also its architecture. In this
session, we'll explore how styles work, how
to customize controls at runtime, how to
build new styled FMXcomponents, and
how this all helps building a single-source
multi-device UI.

Richard Hatherall – Test driven
development with WebMocks

Serge Pilko – How to replace DataBase
components with Rest API calls in Delphi

An introduction to REST and creating a cross-
platform RESTClient application, using
Embarcadero's REST Client library to replace
database access components.

14:30 Jim McKeeth - Evidence Based Delphi
Engineering

Why do you write code that way? Chances
are it is “the way you’ve always done it.”
Learn how to gather the evidence you need
to know the right way.

Frank Lauter - MVVM - The Delphi
Way!

A waste of time or a way to keep
the source code maintainable?
Frank Lauter will present his view
on the MVVM pattern and explain
which steps are necessary for
new and legacy applications.

Primož Gabrĳelčič - Defensive programming

Learn from someone with 35 years of
experience how to write code that will be
easy to understand now, and in the future.
Dive into some of my own ,laughable, terrible
code examples with me and get easy-to-
reuse advice on how to improve

15:30 Break & Network
16:00 Marco Geuze – Delphi and AI

Large language models (LLMs) provide
significant help for development. Learn
how to use a private LLM in Delphi without
giving away your privacy and source code.

Bob Swart - REST with
WebBroker in Delphi

Conrad Vermeulen - From monoliths to
microservices

In this session, we'll explore the concepts
and challenges of monoliths and
microservices for web system development.
We'll present a new approach using Delphi to
create web apps and services that integrate
with existing enterprise solutions, enhancing
productivity and leveraging team skills. This
method supports building decomposable
applications at runtime, aligning with modern
deployment practices.

17:00 Network & Gaming
18:00 Day 1 ends

Delphi Summit 2024
Agenda Amsterdam. June 13-14, 2024

Day 2: Friday 14th
09:00 Registration

Mainstage
10:00 Welcome and opening – Kees de Kraker and Marco Geuze
10:15 Panel discussion with Jim McKeeth, Marco Cantu, Ian Barker and MVPs
11:00 Coffee Break & Network

Stage Sydney Stage Alexandria Stage Rio
11:30 Ray Konopka - Component Building:

Fundamentals This session focuses
on the fundamental techniques
required for building robust Delphi
components. We build a custom
component, showing the key classes
from which all components descend,
followed by an analysis of the
anatomy of a component. We
conclude with a discussion on the
proper way to distribute custom
components through runtime and
design packages.

Patrick Quist – Linux Delphi
Services

A journey through the
Cloud(s)

Stefan Glienke – Spring4D

Some goodies from the
Spring4D collections.

12:30 Lunch, Network & Gaming
13:30 Olaf Monien - REST Easy

Connecting to REST APIs and
visualizing data on desktop
and mobile devices.

Christoph Schneider –
Firestone Cloud

For the Firestore Cloud
database, the FB4D open-
source library contains
everything you need to access
it from VCL/FMX applications.
In this session, the author will
show you how easy it is to
write and read a document and
to be notified of changes in the
database with the new object-
to-document wrapper.

Patrick Prémartin – Synchronize
your databases

Our users want to access their data
from anywhere, on any type of
device, with or without an Internet
connection. Some also want to work
together offline or online, remotely
or on-site, on desktops, laptops,
smartphones or tablets. Here's an
easy-to-implement solution in
Delphi to transform any local
database into a synchronized one

14:30 Carlos Agnes - The Best of Delphi
Underground

A set of small Delphi secrets and
how they work under the hood. IDE
and debugging tips, historical issues
like why the base date for TDateTime
is 12/30/1899, Exceptions stacks,
interface tricks, and the dictionary of
secrets.

Andrea Raimondi -
Algorithmic password
hardening

From the forgotten lessons of
Enigma to generating salts and
scrambling passwords, Andrea
will guide you through the best
ways to keep everything safe.

Bruno Fierens – Build a full-stack
application within an hour

In this session, you'll discover how
to leverage a new and innovative
approach to build web client
applications using TMS WEB Core as
well as native Delphi applications on
desktop or mobile platforms that
work with backend data.

15:30 Break & Network
15:45 Barnsten - License Management,

support and subscription
Barnsten will inform you about
the different Embarcadero licence
types that are available. The
subscription is also discussed.
What is covered by the contract
and how can Barnsten help you
with your licensing questions.
Such as: licence transfer to
another user, what about
previous versions, how to log a
feature request., bug or support
case etc. And there will be room
for questions after the
presentation.

NexusDB - Implementing NP-C
and NP-Hard Algorithms In this
session, we'll delve into the
complexities of designing
algorithms for NP-Complete
and NP-Hard problems. Using
the Eternity II puzzle and
commercial scheduling
software as case studies, we'll
discuss why these problems
remain unsolved, explore
practical algorithmic solutions,
and highlight the role of
modern hardware and Delphi as
the IDE. Gain insights into the
impact and practical handling
of these problems in real-world

programming.
Mainstage

16:15 Ian Barker - What to do if you're old, ugly, and everything is annoying

Join Ian for this session where he applies his uniquely lively style of presentation to the subject of software
development in an age where everyone wants your apps to be free, have a name like ZZxQFlmbl, and be
'monetized' by a YouTube influencer with green hair, a pierced fingernail, and their own brand of hair removal
creme.

16:45 Door prize giveaway
17:00 Closing talk with Jim McKeeth, Kees de Kraker and Marco Geuze
17:15 Network & Gaming
18:00 Conference ends

Now fpc/lazarus using fresnel
Has three working backends,
A css-driven layout,
Multiple platforms,
A powerful event mechanism.
We now can:

CREATE A UNIVERSAL
GRAPHICAL APPLICATION
RUNNING ON
ALL NATIVE PLATFORMS
AND IN THE BROWSER.
All this using a single codebase,
and running at native speed.
And obviously,
all this using your favourite Programming language:

OBJECT PASCAL.

FPC/LAZARUS
FRESNEL

70Blaise Pascal Magazine 117 2024

BY MARTIN FRIEBE

Starter Expert

THE LAZARUS DEBUGGER
PART 7: Change happens – Waiting for it

ARTICLE PAGE 1 / 5

FOLLOW THE DATA, RATHER THAN THE CODE
So far all our debugging methods had one thing in common. We would pause the app and single
step or run to the next breakpoint. And on each pause we would check if our data matched our
expectations. The more code our application has, the more stepping we may have to do. In some
cases, it can even be hard to tell where to pause for the single stepping.
Now we will have a look, how the debugger can help us finding the right spot. Of course in the
scope of this article we can’t have a sample project so big that we actually couldn’t solve it by
stepping. We’ll just have to pretend, and also the feature in question works well with any size of
app.

1. program project1;
2. {$Mode objfpc}{$H+}
3.
4. uses SysUtils;
5.
6. function ChangeQuotes(const ASource: String; var ADest: String): Boolean;
7. var
8. Len: SizeInt;
9. Src, Dst: PChar;
10. begin
11. Result := False;
12. Len := Length(ASource);
13. SetLength(ADest, Len);
14. Src := PChar(ASource);
15. Dst := PChar(ADest);
16. while Len > 0 do begin
17. Dst^ := Src^;
18. if Dst^ ='"' then begin
19. Src^ := '''';
20. Result := True;
21. end;
22. inc(Src);
23. inc(Dst);
24. dec(Len);
25. end;
26. end;
27.
28.
29. var
30. s1, s2: String;
31. begin
32. s1 := 'This "'+IntToStr(Random(99))+'" is a random number';
33. writeln('Initial value: ', s1);
34. if ChangeQuotes(s1,s2) then begin
35. writeln('With double quotes: ', s1);
36. writeln('With single quotes: ', s2);
37. end
38. else
39. WriteLn('Nothing changed');
40. end.

The code is simple enough. We have a text containing double quotes, the function replaces them
with single quotes, and returns true. The 2 versions of the text will be printed.
And as in previous articles the output does not match what we expect:
Initial value: This "54" is a random number
With double quotes: This '54' is a random number
With single quotes: This "54" is a random number

71Blaise Pascal Magazine 117 2024

THE LAZARUS DEBUGGER
PART 7: Change happens – Waiting for it

ARTICLE PAGE 2 / 5

Of the 2 last lines, each line has the quotes that should be in the other line.
Well, we need to start the app, and so we need to run to a breakpoint. Let’s make that on line 33.
We know from the writeln that the value of s1 is ok on that line.

As you can see, I also added “s1[6]” to the list of watches. This is one of the double quotes in
the initial string. That double quote is not supposed to change, yet from the 2nd line of output we
already know it does get changed.
From here we will ask the debugger to do the work, and find the code that makes this change.
The command that does this can be found in the context menu on the watch “s1[6]”.

“Create Data/Watch Breakpoint” will open a new dialog. That dialog is also available from the “Run”
menu “Add Breakpoint” � “Data/Watch Breakpoint” and from the breakpoint dialogs “Add”
button’s dropdown.

72Blaise Pascal Magazine 117 2024

THE LAZARUS DEBUGGER
PART 7: Change happens – Waiting for it

ARTICLE PAGE 3 / 5

In this case all the options have been pre-filled, and we can keep them as they are.
We want the debugger to keep track of changes (“write” action) to the value “s1[6]”.
And when the value changes the debugger should pause the app and tell us which line it happened.

We will go through the other details, once we have seen the feature in action.

Pressing “OK” will create a “Watchpoint” or “Data-breakpoint”. Watchpoints are listed with other
breakpoints in the breakpoint window.

73Blaise Pascal Magazine 117 2024

THE LAZARUS DEBUGGER
PART 7: Change happens – Waiting for it

ARTICLE PAGE 4 / 5

All that remains for us to do is to run (F9) the application. And as we do, the debugger will right
away inform us:

The debugger will show us the project paused on line 20
 Result := True;
We have to keep in mind, that in order to know the statement that changed the value, the
debugger must have executed it already. So it will show us the next statement below the one that
made the change.
The offending statement therefore is at line 19
 Src^ := '''';

And indeed that clearly is a mistake. We shouldn’t assign a value to the source.

Instead of
 if Dst^ ='"' then begin
 Src^ := '''';
it should be
 if Src^ ='"' then begin
 Dst^ := '''';

As promised the debugger has found the offending line for us. We can fix the bug, and our project
correctly outputs:
Initial value: This "54" is a random number
With double quotes: This "54" is a random number
With single quotes: This '54' is a random number

FINE TUNING – THE SETTINGS
For the above debug session we have just filled in the watched expression and left all settings at
their defaults. Most of the settings, are the same as for breakpoints and those have been described
in the last article.

However we do have “Watch action” with the options “Read”, “Write” and “Read/Write”. “Write” is
by far the most common action. It tells the debugger to react only if the application writes data to
the memory of the variable. That is any data written, even if the new data is identical to the existing
data, which means the value does not change.
“Read” on the other hand tells us when the application reads the memory. That may be useful if we
have a variable that the app is not supposed to use, but maybe does access via a pointer.
Then the app may not write, but just use the value. And “Read” will catch that. In most cases like
this it would be better to use the “Read/Write” option. Since if the app shouldn’t access the value,
then it should do neither read, nor write.
The other option that we need to look at is “Watch Scope”. This is currently not supported by all
debuggers. The GDB backend does support this, but the FpDebug backend does not.
This can be of use, if a watchpoint is set on a local variable. Once the procedure owning the
variable returns, the memory is no longer reserved for the variable, and another procedure will
eventually put a different variable there. Since watchpoints work on the memory where the
variable is/was, they will then be triggered by changes or access to the new variable using the
same memory. Setting “Scope” to “Local” means the GDB based debugger will notice when the
procedure is exited, tell you about it and clear the watchpoint.

74Blaise Pascal Magazine 117 2024

THE LAZARUS DEBUGGER
PART 7: Change happens – Waiting for it

ARTICLE PAGE 5 / 5

FINE-PRINT – ABOUT “THE DATA”
So here we go, there are a few caveats. To start with, what watchpoints can and can’t do is
actually determined by your hardware. The following applies to what you get, if you have a modern
Intel or AMD CPU. With FpDebug you are currently limited to those anyway, with GDB you can
debug code for other target CPUs, but then may get different availability of watchpoints.
There are a maximum of 4 watchpoints available, and each of them can cover up to a pointer-
size area of memory. Actually, that is 1, 2 or 4 bytes on 32bit machines, and 1, 2, 4 or 8 on 64bit
machines.
For that reason in the above example we could not have watched the entire text of the string.
Its length exceeded the 8 bytes by far. Instead we picked a single character. However, there is a
2nd caveat hidden here. It is possible to add a string (Ansistring) as watchpoint.
Ansistrings internally have a pointer to the text. And a watchpoint would then act on that
pointer. Predicting what a watchpoint would react to in this case, requires some knowledge of
the internal workings of Ansistrings.
Similar traps lay ahead with objects. Here too, variables contain a pointer to the instance. And so
the same rules apply. However, in some cases this may be useful, namely if we want to know when
a variable is changed to point to a different instance: “MyVar := SomeOtherObj;”. This
assignment changes the pointer in “MyVar”.
Watchpoints can be used for ordinal types such as numbers, booleans, enums. And they
can be used for small sets too. And while it is often not possible to monitor an entire object or
record, individual fields can be monitored, just like individual chars in a string can be.

FINE LINE – WHERE EXACTLY DOES THE APP PAUSE
One small note to end the article. Watchpoints aren’t always exact. Well they are in terms of
assembler. They will always stop at the asm instruction right after the one that makes the change.
That is to say, when they stop, the change has just been made.
In the Pascal source that does not always mean the next line of Pascal code. The change could
happen in the middle of the asm instructions belonging to a line of Pascal code, and then the
debugger shows you the line that makes the change. If however it happens at the very end of the
asm belonging to that line, then the debugger will show you the next line of Pascal code. So you
may have to look one line further up.
Watchpoints are only valid during the debug session in which they were created. When you start
the debugger the next time, addresses may have changed, and the debugger will not activate any
existing watchpoints. You will need to delete them and create them again.

75Blaise Pascal Magazine 117 2024

maXboxmaXbox

the Swiss army knife for database development

Database Workbench 6.5
Now with SQLite support

76Blaise Pascal Magazine 117 2024

ARTICLE PAGE 1 / 14

BY MICHAEL VAN CANNEYT

Starter Expert

CONTROLLING THE BROWSER USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

ABSTRACT
WebAssembly modules have no access to the world outside the webassembly virtual machine,
except through the APIs that are made available from the host environment. The Browser has lots
of APIs, and in this article we show how to make use of all possible Browser APIs in WebAssembly.
Moreover we will show that you can use these APIs as if you were programming Javascript directly.

Figure 1: Import and export of functions from and to a webassembly module

❶ INTRODUCTION
The WebAssembly support of FreePascal has been introduced in some previous articles:
FreePascal can compile your pascal code to WebAssembly, and the resulting webassembly file can be
run in any hosting environment.
The most used hosting environment is still the browser. Still, many efforts are underway to make
webasssembly usable in dedicated containers: this offers the possibility to create safe sandboxed
environments for your programs.
Your programs will be safe and sandboxed, because a webassembly can only communicate
with the world outside the webassembly through the APIs that are made available by the hosting
environment.
The webassembly standard does not specify what APIs a hosting environment needs
to expose, it only describes how these APIs can be exposed.
In order for a FreePascal program to run, it requires the host environment to expose the WASI API to
the webassembly. This API is managed separately by the WebAssembly committee, and offers some
limited services: file access, getting the time and so on.
It provides just the calls that allow the FPC team to implement the SysUtils unit, which provides
these basic services to your pascal program.
Inversely, a webassembly module can export some functions, which can be called from the hosting
environment.
This situation is shown for the browser in figure 1 on page 2 of this article: the Javascript in a web
page can load a webassembly module. The webassembly module imports some routines made
available by the Javascript (the blue arrow), and exports some functions which can be called from
Javascript (the green arrow).
In the browser, calling a webassembly function suspends the javascript execution flow:
the Javascript waits for the called webassembly function to finish, before it resumes execution.
It also means no event handlers will be executed while the Webassembly is executing.

Running a complete program in WebAssembly simply means calling the main function
of the application, which must of course be exported from the webassembly;
In pascal this means the program begin..end block will be executed.

BROWSER

77Blaise Pascal Magazine 117 2024

ARTICLE PAGE 2 / 14CONTROLLING THE BROWSER
USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

❷ THE JOB FRAMEWORK
The browser has hundreds of APIs available in Javascript, these APIs are standardized and described in the
form of interfaces. For a webassembly program running in the browser, it would be interesting to have
access to the full browser API: This would allow the Webassembly program to do everything that can be
done in Javascript, with the additional advantages that no-one can read the code, and that for
computationally intensive tasks, the webassembly executes faster than Javascript.
Free Pascal now offers a way to access the APIs of the browser: The Javascript Object Bridge or JOB for short.
This development was sponsored by Tixeo, a company interested in porting their software to the browser.
The JOB mechanism (or API) offers a way to create a proxy interface or class in WebAssembly, for any
Javascript API. This means that for every class available in Javascript, you can create a class in
WebAssembly that will have the same declaration as its counterpart in Javascript.
Whenever you create an instance of a proxy class in WebAssembly, this will automatically create its
counterpart in Javascript. When you call a method or set a property on the proxy class, this will call the
method or set the property on the Javascript counterpart of the proxy class. All this is transparent for the
webassembly programmer: to the webassembly, it is as if he is creating and using browser Javascript
classes in WebAssembly. Schematically, this looks like figure 2 on page 3 of this article. JOB does the
following things to make this possible:
● You can create a Javascript object, and get a reference to this new object.
● You can get a reference to an existing Javascript object.
● Using this reference, you can call the methods of the object or set its properties as if you were manipulating
 a native Pascal object. To illustrate this, in Javascript you can set the caption of a button as follows:

Type
// The API we want to use.
ĲSDocument = interface(ĲSNode)
 function getElementById(const aElementId: UnicodeString): ĲSElement;
end;

// A class that implements this API.
TJSDocument = class(TJSNode)
 function getElementById(const aElementId: UnicodeString): ĲSElement;
end;

var
 JSDocument : ĲSDocument;
initialization
 JSDocument:=TJSDocument.JOBCreateGlobal(’document’);
end.

document.getElementById("mybutton").innerText="Press me";
when using JOB, in your webassembly Pascal program you can write

document.getElementById(’mybutton’).innerText:=’Press me’;
Which is of course a one-to-one translation of the Javascript code. To understand what happens, let
us analyse this code. First of all, the ’document’ variable is used. The document is exposed in the
browser. using JOB, we can define an interface and instantiate a variable:

Figure 2: Webassembly
proxy classes for
Javascript classes

78Blaise Pascal Magazine 117 2024

ARTICLE PAGE 3 / 14CONTROLLING THE BROWSER
USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

The InvokeJSObjectResult method call is part of the JOB API, and it executes a method in Javascript:
the name of the method to call must be specified, as well as any arguments that the method needs.

Since the result will be an object, the Javascript side of JOB will return simply a reference to the resulting
object in Javascript (internally, this is an integer). To convert this reference to an actual class instance,
the class of the object is specified (TJSElement):
An instance of this class will be created, passing it the reference returned by the Javascript side of JOB.
When the getElementById call returns, the result is a ĲSElement interface.
On this result, the innerHTML property can be set. This is also handled by JOB:
All properties of a Javascript object can be represented by JOB as native pascal properties:

The JOBCreateGlobal call will retrieve a reference to the document instance in Javascript,
and uses it to create an instance of the TJSDocument proxy for the Document class.
The getElementById method is implemented as follows:

function TJSDocument.getElementById(const aElementId: UnicodeString): ĲSElement;
begin
 Result:=InvokeJSObjectResult(’getElementById’,
 [aElementId],

TJSElement) as ĲSElement;
end;

Type
 ĲSElement = interface(ĲSNode)
 function _GetinnerHTML: UnicodeString;
 procedure _SetinnerHTML(const aValue: UnicodeString);
 property innerHTML: UnicodeString read _GetinnerHTML write _SetinnerHTML;
 end;

 TJSElement = class(TJSNode)
 function _GetinnerHTML: UnicodeString;
 procedure _SetinnerHTML(const aValue: UnicodeString);
 property innerHTML: UnicodeString read _GetinnerHTML write _SetinnerHTML;
 end;

The implementation of the Read/Write accessors is quite simple:

function TJSElement._GetinnerHTML: UnicodeString;
begin
 Result:=ReadJSPropertyUnicodeString(’innerHTML’);
end;

procedure TJSElement._SetinnerHTML(const aValue : UnicodeString);
begin
 WriteJSPropertyUnicodeString(’innerHTML’,aValue);
end;

The use of interfaces make sure that when an (intermediate) object is no longer needed, the object
also released on the Javascript side. To make all this possible, on the Javascript side, the JOB API
consists of (currently) 11 API methods. When these 11 methods are implemented, the webassembly
can use proxy classes to execute any method on any object in the browser.
A default Javascript implementation for JOB has been developed using PAS2JS (naturally), but one
could write this API in plain Javascript as well. The JOB technology is implemented in 2 units:

Job.js for the webassembly program: it implements the various JOB calls that handle encoding a
 call to the Javascript side of things, sends the call description to the Javascript environment
 and when the call returns, it retrieves the result and converts it, if needed, to an object instance.
Job Browser for the PAS2 program. This implements the decoding of a call, executes the call on the

Javascript object, and when the call returns, it encodes the result and sends it back to the
WebAssembly.

There is a third (shared) unit which contains some common constants and types that make up the JOB API.

79Blaise Pascal Magazine 117 2024

ARTICLE PAGE 4 / 14CONTROLLING THE BROWSER
USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

❸ WEBIDL2PAS REVISITED
In the above code examples, we showed how to access arbitrary methods and properties of some
Javascript objects. The examples made use of an interface and a class that implements this
interface. It makes clear that for every method you wish to call and for every property you wish to
get or set, a small piece of ’glue’ code needs to be created: a proxy object for every Javascript
object. If all classes and APIs of the browser must be encoded like this, this is a lot of work.
You could call the JOB methods directly, in that case no classes and no glue code needs to be
produced. The disadvantage of that approach is that there is no type safety, and no code
completion if you want to code in the IDE. You also will need to manage the lifetime of the objects
explicitly.
Luckily, there is no need to code all these proxy classes. This task can be automated. All browser
APIs are standardized by the W3C committees using a IDL (Interface Definition Language) called
WebIDL. All browser creators use these IDL files to implement their Javascript APIs.
The Mozilla foundation maintains these files, they are available at:

https://hg.mozilla.org/mozilla-central/file/tip/dom/webidl

or on:

https://github.com/mozilla/gecko-dev.git

There are some really minor differences between these archives, most likely due to the time it takes
to synchronize. As you can see in these archives, there are more than 700 files, representing all the
APIs made available by the browser.
In a previous article on Pas2js, the webidl2pas tool that comes with Free Pascal and
PAS2JS was discussed. This tool can transform a .webidl file to a Pascal external class definition that
can be used by Pas2JS. The tool has been adapted so it can now also create the proxy classes to
access all the browser APIs from webassembly.
By downloading and concatenating all .webidl files from the above sources and applying some
small patches (the files are not perfect, and one or two constructs are not possible in Pascal),
a pascal unit can be produced that describes all these APIs.
Such a file has been committed to the FPC git repository: job web (the file is located in packages/
wasm-job/examples). The file is huge. The interface section is about 80.000 lines long and contains
roughly 1600 interface declarations, and a similar amount of classes.
This represents all the available browser APIs:

Figure 3: The various layers used in webassembly to use the browser APIS

80Blaise Pascal Magazine 117 2024

ARTICLE PAGE 5 / 14CONTROLLING THE BROWSER
USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

by using this file in your webassembly program, you have direct access to all possible browser APIs.
Diagrammatic, the architecture of a web application wishing to use the Javascript
and DOM APIs using JOB looks like figure 3 on page 6.

<!doctype html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Video capture still - Javascript</title>
 <link rel="stylesheet" href="css/bulma.min.css">
 <link rel="stylesheet" href="css/camera.css">
 <script src="camera.js" type="application/javascript"></script>
 </head>
 <body>
 <div class="container">
 <h1 class="title is-1">Capture still from video</h1>
 <div class="columns">
 <div class="camera column">
 <video id="video">Video stream not available.</video>
 </div>
 <div class=" column">
 <canvas id="canvas" ></canvas>
 </div>a
 </div>
 <div class="box columns is-centered">
 <div class="column is-3">
 <button id="start" class="button is-info"></button>
 <button id="still" class="button is-link"></button>
 </div>
 </div>
 </div>
 </body>
</html>

As usual we use some Bulma CSS classes to format the page.
There are 4 elements which are important, so they have an id attribute:

video a video element, which will show the camera feed.
canvas a canvas element, which will show the still.
start a button to start the camera feed. When pressed, this will ask for permission to use the
 camera. Note that this button does not show a caption, it will be set in code.
stil a button to create a still (photo) from the camera feed.
 Similarly, the caption for the button will be set in code.

The id attribute is used to get a reference to the elements when the page is loaded,
in the camera.js javascript program:

❹ A JAVASCRIPT CAMERA APPLICATION
To make all this a little more understandable, we’ll create an example: a web page where we have a
video element, connected to the camera, and a canvas where we can create a picture (a still) of
what the camera is showing. Basically, a camera application as you would have it on your
smartphone.
We will make this application first in Javascript, then in PAS2JS and lastly we’ll make it using a
webassembly program. We’ll show how the code is similar at each stage.
The HTML for this webpage will be the same in all 3 cases.
The actual program will be in the camera.js javascript file:

81Blaise Pascal Magazine 117 2024

ARTICLE PAGE 6 / 14CONTROLLING THE BROWSER
USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

var video = null;
var canvas = null;
var context = null;
var photo = null;
var startbutton = null;
var stillbutton = null;

function startup() {
 video = document.getElementById(’video’);
 canvas = document.getElementById(’canvas’);
 context = canvas.getContext(’2d’);

 startbutton = document.getElementById(’start’);
 startbutton.innerText = ’Start video’;
 startbutton.addEventListener(’click’, start video);

 stillbutton = document.getElementById(’still’);
 stillbutton.innerText = ’Create still’;
 stillbutton.addEventListener(’click’, createstill);
}

window.addEventListener(’load’, startup);

NOTE how a reference to each of the 4 elements is stored in a variable.
We also store context for the canvas, this context is used later to draw on the canvas.
The startvideo event handler is called when the user clicks the ’start’ button:

function startvideo(ev) {
 navigator.mediaDevices.getUserMedia({
 video: true,
 audio: false
 })
 .then(function(stream) {
 video.srcObject = stream;
 video.play();
 })
 .catch(function(err) {
 console.log("An error occurred: " + err);
 });
}

The getUserMedia call will ask for permission to use the camera. This function
returns a promise, and when the promise resolves, the stream is coupled to the video element.
Lastly, the ’click’ handler for the ’still’ button draws the current video frame on the canvas:

function createstill(ev) {
canvas.width = video.clientWidth;
canvas.height = video.clientHeight;
context.drawImage(video, 0, 0, video.clientWidth, video.
clientHeight);
}

And that’s all there is to creating a camera program using the browser. You can
load this page from a webserver using the browser, or you can open it by double clicking
the file in the file explorer: your default browser will open and show the
application. In both cases, the program will function.

JAVASCRIPT CODE

JAVASCRIPT CODE

JAVASCRIPT CODE

82Blaise Pascal Magazine 117 2024

ARTICLE PAGE 7 / 14CONTROLLING THE BROWSER
USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

❺ THE CAMERA APPLICATION IN PAS2JS
In a first step, we will code the camera application in PAS2JS.
This will allow us to transform the Javascript to PASCAL, without concerning ourselves with the
details of using WEBASSEMBLY.
The first thing to do is to add the mandatory script tag for running a PAS2JS application to the HTML:
<script>
 window.addEventListener(’load’, rtl.run);
</script>

Then we translate our program piece by piece. We will put all code in a class,
it will become apparent in the next example why this is necessary.

TCameraApp = class
video : TJSHTMLVideoElement;

 canvas : TJSHTMLCanvasElement;
 context : TJSCanvasRenderingContext2D;
 startbutton : TJSHTMLElement;
 stillbutton : TJSHTMLElement;
 function StartStream (JS : JSValue) : JSValue;
 function DoError (JS : JSValue) : JSValue;
 Procedure StartVideo (Event : TJSEvent);
 Procedure CreateStill (Event : TJSEvent);
 procedure Run;
end;

This class declares the same variables and functions as our Javascript code.
The main difference is of course that Pascal is a strongly typed language, and we must specify the
types of all variables, method arguments and function results.
The main program simply creates an instance of this class and calls the Run method:

With TCameraApp.Create do
Run;

The run method looks suspiciously familiar:

Procedure TCameraApp.Run;
begin
 video :=TJSHTMLVideoElement(document.getElementById(’video’));
 canvas :=TJSHTMLCanvasElement(document.getElementById(’canvas’));
 context :=TJSCanvasRenderingContext2D(canvas.getContext(’2d’));

 startbutton:=TJSHTMLElement(document.getElementById(’start’));
 startbutton.innerText:=’Start video’;
 startbutton.addEventListener(’click’, @startvideo);

 stillbutton:=TJSHTMLElement(document.getElementById(’still’));
 stillbutton.innerText:=’Create still’;
 stillbutton.addEventListener(’click’, @createstill);
end;

As you can see, this method is an almost copy-and-paste of the main javascript method.
The biggest difference is the typecasts, which are of course needed to keep
the Pascal compiler happy.

The StartVideo callback is slightly different. PAS2JS’ Web unit contains a typed defintion of the
constraints argument to the getUserMedia call.
Using an instance of this class allows us to make sure that the correct elements are specified.
We also don’t use anonymous methods (although this would be possible),
but use named functions to handle the various possible outcomes of the promise:

Pascal Code

Pascal Code

Pascal Code

83Blaise Pascal Magazine 117 2024

ARTICLE PAGE 8 / 14CONTROLLING THE BROWSER
USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

Procedure TCameraApp.StartVideo(Event: TJSEvent);
var
 constraints : TJSMediaConstraints;
begin
 constraints:=TJSMediaConstraints.new;
 constraints.video:=True;
 constraints.audio:=False;
 Window.navigator.mediaDevices.getUserMedia(constraints)

 ._then(@StartStream)
 .catch(@DoError)

end;

The StartStream method is executed when the promise resolves correctly. The promise resolved
result (JS) must be typecast to the correct class before we can assign it to the srcObject property of
the video element:

Function TCameraApp.StartStream(JS : JSValue) : JSValue;
begin
 Result:=Undefined;
 video.srcObject:=TJSHTMLMediaStream(JS);
 video.play();
end;

Other than that, the code is identical to the Javascript implementation. The same
is true for the DoError method:

Function TCameraApp.DoError(JS : JSValue) : JSValue;
begin
 Result:=Undefined;
 console.log(’An error occurred: ’ + String(JS));
end;

Lastly, the ’click’ event handler of the still button is again almost a copy and
paste of the corresponding Javascript code.

Procedure TCameraApp.CreateStill(Event: TJSEvent);
begin
 canvas.width:=video.clientWidth;
 canvas.height:=video.clientHeight;
 context.drawImage(video, 0, 0, video.clientWidth, video. clientHeight);
end;
And with this the demo application is translated to pascal.
The workings of this application are no different from the pure Javascript version,
and the Pascal code is - disregarding its Pascal nature - the same as the Javascript code.

6 THE CAMERA APPLICATION IN WEBASSEMBLY
Lastly, we come to the part that is the focus of this article: the webassembly program.
To make this application using webassembly, we need to create actually 2 applications:
the webassembly loader program, and the webassembly program itself.

The former is a small boilerplate application, created with PAS2JS. It is a generic program that can
be used to load any webassembly program that uses JOB to communicate with the browser APIs.

The webassembly program is actually a library:
in the initialization, the necessary callbacks are set up and then it needs to return control to the
browser in order for the Javascript event loop to be run. The program logic is implemented in
TMyApplication. This class is a descendant of TBrowserWASIHostApplication.
The TBrowserWASIHostApplication class, in turn, is a TCustomApplication descendant which
allows you to start a WebAssembly module written in Free Pascal: it has been introduced in an
earlier article on FPC Webassembly support. The class needs very little methods: a constructor,
the DoRun method, and an OnBeforeStart method. Note the JOB Browser unit in the uses clause:
this unit contains the TJSObjectBridge class, which is the implementation of the JOB mechanism:

Pascal Code

84Blaise Pascal Magazine 117 2024

ARTICLE PAGE 9 / 14CONTROLLING THE BROWSER
USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

Program camera;
{$mode objfpc}

uses
 JS, Classes, SysUtils, Web, WasiEnv, WasiHostApp, JOB_Browser, JOB_Shared;

Type

 TMyApplication = class(TBrowserWASIHostApplication)
 Private
 FJOB: TJSObjectBridge;
 function OnBeforeStart(Sender: TObject;
 aDescriptor: TWebAssemblyStartDescriptor): Boolean;
 Public
 constructor Create(aOwner : TComponent); override;
 procedure DoRun; override;
end;
The TJSObjectBridge is the class that registers the needed JOB functions in the webassembly.
Under normal circumstances, only 1 property of this class needs to be set in order for it to do its
work: the WasiExports property.
Other than that it performs its work completely in the background.
So, we create an instance of TJSObjectBridge, pass it the WasiEnvironment so it can register
itself with the Webassembly modules that are loaded later on, and store a reference to it in FJOB:

Procedure TMyApplication.DoRun;

var
 wasm : String;

begin
 Terminate;
 // Allow to load file specified in hash: index.html#mywasmfile.wasm
 Wasm:=ParamStr(1);
 if Wasm=’’ then
 Wasm:=’wasmcamera.wasm’;
 StartWebAssembly(Wasm,true,@OnBeforeStart);
end;

The ParamStr(1) retrieves the first name after the hash sign in the URL.
If set, then it is interpreted as the name of the webassembly file to load. If not set, we use
’wasmcamera.wasm’ as the name.
The StartWebAssembly function will load the requested webassembly and executes
the run entry function. (in our case, _initialize). The last parameter is an event which is
executed right before calling the run entry function:
this allows the caller to do extra initialization after the webassembly module was loaded,
but before the start function is called.
The event handler sets the WasiExports property of the TJSObjectBridge instance
to the list of exported functions from the webassembly:

Constructor TMyApplication.Create(aOwner: TComponent);
begin
 inherited Create(aOwner);
 FJOB:=TJSObjectBridge.Create(WasiEnvironment);
 RunEntryFunction:=’_initialize’;
end;

The last line in this function sets RunEntryFunction to _initialize.
This must be done because our webassembly module is a library:
The default run entry point (used for programs) is _start.
For a library, only the initialization of the library must be performed,
and the exported function that handles this initialization is called _initialize.
In the DoRun method, we simply call StartWebAssembly, passing it the name of the
created webassembly function

Pascal Code

85Blaise Pascal Magazine 117 2024

ARTICLE PAGE 10 / 14CONTROLLING THE BROWSER
USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

Function TMyApplication.OnBeforeStart(Sender: TObject;
 aDescriptor: TWebAssemblyStartDescriptor): Boolean;
begin
 FJOB.WasiExports:=aDescriptor.Exported;
 Result:=true;
end;
The JOB framework needs a single exported function which it uses to call callback functions (event
handlers) in webassembly. It searches this function in the list in WasiExports.
All that is left to do is to create and initialize an instance of our application class and call the Run
method, the usual code needed when using the application class:
var
 Application : TMyApplication;
begin
 Application:=TMyApplication.Create(nil);
 Application.Initialize;
 Application.Run;
end.
With this, the loader for our webassembly module is finished. NOTE that there is no code specific to
our camera application: this is completely generic code that can be used to load any webassembly
module which needs the JOB framework. So now we turn to the code for our webassembly module,
which is implemented as a library. It starts out in the usual way:

library wasmcamera;
{$mode objfpc}
{$h+}
{$codepage UTF8}

uses SysUtils, Variants, Job.Js, JOB_Web;
Note that it uses the Job.Js unit with the implementation of the webassembly side of the JOB
mechanism, and the JOB WEB unit, which was generated by the webidl2pas tool. Then it defines
the TCameraApp class:

As you can see, this class is virtually identical to the class for the PAS2JS program. The only thing
that changes are some types: Instead of classes (using prefix TJS) we use interfaces (using prefix
ĲS). The PAS2JS JSValue is replaced with Variant:
both correspond to the any type in the IDL descriptions of the APIs. The Run method,
which actually will initialize our application, is almost a copy of the pas2js code:

type
 TCameraApp = class
 Video: ĲSHTMLVideoElement;
 Canvas: ĲSHTMLCanvasElement;
 StartButton: ĲSHTMLButtonElement;
 StillButton: ĲSHTMLButtonElement;
 Context: ĲSCanvasRenderingContext2D;
 function StartStream(const Res : Variant) : Variant;
 function DoError(const Res : Variant) : Variant;
 procedure StartVideo(Event: ĲSEvent);
 procedure CreateStill(Event: ĲSEvent);
 procedure Run;
end;

Procedure TCameraApp.Run;
begin
 Video:=TJSHTMLVideoElement.Cast(JSDocument.getElementById(’video’));
 Canvas:=TJSHTMLCanvasElement.Cast(JSDocument.getElementById(’canvas’));
 Context:=TJSCanvasRenderingContext2D.Cast(Canvas.getContext(’2d’));
 StartButton:=TJSHTMLButtonElement.Cast(JSDocument.getElementById(’start’));
 StartButton.InnerHTML:=’Start video’;
 StartButton.addEventListener(’click’, @StartVideo);
 StillButton:=TJSHTMLButtonElement.Cast(JSDocument.getElementById(’still’));
 StillButton.InnerHTML:=’Create still’;
 StillButton.addEventListener(’click’, @CreateStill);
end;

Pascal Code

86Blaise Pascal Magazine 117 2024

ARTICLE PAGE 11 / 14CONTROLLING THE BROWSER
USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

NOTE the calls to the Cast class method in order to do a typecast from one interface type
(in this case ĲSElement) to another interface type.
This is needed in order to be able to do some reference count housekeeping. A regular typecast
would result in wrong reference counts and could lead to objects being destroyed in Javascript
when they’re still used in the webassembly.
Other than that, the code is identical to the PAS2JS code or the Javascript code:
no trickery is needed to set the callbacks, a real pascal event handler can be used.
It should be noted that all event handlers are declared with ’of object’, meaning that only
methods of classes can be used as callback handlers, plain routines cannot be used.
The StartVideo callback handler also looks surpisingly familiar:

Procedure TCameraApp.StartVideo(Event: ĲSEvent);
var
 constraints : TJSMediaStreamConstraints;
begin
 constraints:=TJSMediaStreamConstraints.Create;
 constraints.video:=True;
 constraints.audio:=False;
 JSWindow.navigator.mediaDevices.getUserMedia(Constraints)
 ._then(@StartStream)
 .catch(@DoError)
end;
Except for a constructor that is named Create, as opposed to the customary New in PAS2JS, the code
is identical.
The getUserMedia returns a promise, and when this is resolved StartStream is called,
which is again a copy of the PAS2JS method:
function TCameraApp.StartStream(const Res : Variant) : Variant;
var
 Stream : ĲSMediaStream;
begin
 Stream:=ĲSMediaStream(Res);
 Video.srcObject := Stream;
 Video.play();
end;

In case of an error, doError is called. Again, no change in code:

Function TCameraApp.DoError(const Res : Variant) : Variant;
begin
 writeln(’Error accessing the webcam: ’+string(Res));
end;

Figure 4: The webassembly camera program at work

Pascal Code

87Blaise Pascal Magazine 117 2024

ARTICLE PAGE 12 / 14CONTROLLING THE BROWSER
USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

The code for the CreateStill method, is also unchanged:

Procedure TCameraApp.CreateStill(Event: ĲSEvent);
begin
 Canvas.width:=Video.clientWidth;
 Canvas.height:=Video.clientHeight;
 Context.drawImage(Video,0,0,Video.ClientWidth,Video.ClientHeight);
end;

All that is left to do is to export a callback function which the JOB framework needs
(JOBCallBack, implemented in the Job.Js unit), and to create an instance of
our camera application class:
Exports
 JOBCallback;

begin
 With TCameraApp.Create do
 Run;
end.

For all practical purposes, the webassembly program can be coded as the javascript version or PAS2JS
version would be coded. The result of all this work is shown in figure 4 on page 11 of this article.

❼ USING CUSTOM OBJECTS
JOB is used to give access to all the browser APIs. However, is it also possible to use custom objects
created in PAS2JS or any other Javascript API from any Javascript framework?
The answer is ’Yes, of course’. You can perfectly code a webassembly proxy for a PAS2JS pascal
class or a Javascript class. If a .webidl exists for the Javascript class, the proxy code could be
generated by the webidl2pas tool.

Javascript classes have a function that serves as the constructor.
If this is a globally registered function, the JOB framework will find the function:
it looks for the constructor function in the global (window) scope.
All that is needed is to declare the name of this function in the webassembly proxy class.

For PAS2JS classes, you can specify a constructing function in the host environment.
Given the following class implemented in PAS2JS:

TMyObject = Class(TObject)
private
 fa: String; external name ’a’;
public
 Constructor Create(aValue : string);
 Property a : String Read fa write fa;
end;

constructor TMyObject.Create(aValue: string);
begin
 fa:=aValue;
end;

You can create a constructor function to create a Javascript instance of this function.
The constructor function accepts the name of the requested object, and the parameters for the
constructor which are provided in an array of JSValue (variants, for all practical purposes).

In the host application presented earlier, this would mean adding a method as follows:

Function TMyApplication.CreateMyObject(const aName: String;
aArgs: TJSValueDynArray): TObject;

begin
 Result:=TMyObject.Create(String(aArgs[0]));
end;

Pascal Code

88Blaise Pascal Magazine 117 2024

ARTICLE PAGE 13 / 14CONTROLLING THE BROWSER
USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

NOTE that because the aName parameter contains the requested class name, you can use a single
constructor function to construct many classes.

Registering the constructor function with the JOB framework is done using the
RegisterObjectFactory call of the TJSObjectBridge class:

FJOB.RegisterObjectFactory(’MyObject’,@CreateMyObject);
You can do this call right after creating the TJSObjectBridge class.
If some Javascript class does not register itself in the global scope, then the JOB implementation
will not find it without help. You can register a function that creates a regular Javascript object in a
similar manner as for a Pascal class:

function TMyApplication.CreateBrowserObject(const aName: String;
aArgs: TJSValueDynArray): TJSObject;

begin
 Result:=TJSObject.New;
 Result[’Aloha’]:=String(aArgs[0]);
end;

In the above example, a plain Javascript ’Object’ instance is created,
but in fact any Javascript object can be returned.
This constructor function must also be registered with the RegisterJSObjectFactory call:

FJOB.RegisterJSObjectFactory(’MyBrowserObject’,@CreateBrowserObject);
The reason that two different calls are needed is that, from an Object Pascal point of view,
the Javascript TJSObject inheritance tree is distinct from the Object Pascal TObject inheritance tree.

After these calls, when the webassembly part of JOB needs to create an instance of MyObject or a
MyBrowserObject, the correct registered function will be called to create an instance.
The necessary housekeeping will be done as it is done for Browser-provided objects: associate an
ID with the object, and return that ID to the webassembly.

The webassembly proxy interface and class for the TMyObject class look as follows:

ĲSTestObj = Interface (ĲSObject)
 [’{DE03E9A4-3960-4090-A3FA-387B61E8AEA9}’]
 function GetStringAttr : UnicodeString;
 procedure SetStringAttr(const aValue : UnicodeString);
 property StringAttr : Unicodestring Read GetStringAttr

Write SetStringAttr;
end;

TMyTestObj = Class(TJSObject,ĲSTestObj)
 constructor Create(a: String);
 class function JSClassName: UnicodeString; override;
 function GetStringAttr : UnicodeString;
 procedure SetStringAttr(const aValue : UnicodeString);
 property StringAttr : Unicodestring Read GetStringAttr

Write SetStringAttr;
end;

The implementation of the proxy class is simple. The JOBCreate method of TJSObject can be
used to construct a new object. In order to do its work, it needs to know the class name of the
Javascript class.
It expects the JSClassName class function to return the correct class name,
so we override that function and let it return the name we used to register our
constructor function:

Pascal Code

89Blaise Pascal Magazine 117 2024

ARTICLE PAGE 14 / 14 CONTROLLING THE BROWSER
USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

class function TMyTestObj.JSClassName: UnicodeString;
begin
 Result:=’MyObject’;
end;

constructor TMyTestObj.Create(a: String);
begin
 Inherited JobCreate([a]);
end;

function TMyTestObj.GetStringAttr: UnicodeString;
begin
 Result:=ReadJSPropertyUnicodeString(’a’);
end;

procedure TMyTestObj.SetStringAttr(const aValue: UnicodeString);
begin
 WriteJSPropertyUnicodeString(’a’,aValue);
end;

The JOBCreate method accepts parameters as an array of const, which are encoded and sent to
the browser side. The implementation of the property getters and setters are simple:

Similarly named ReadJSProperty* and WriteJSProperty* calls exist for all simple Pascal types,
you must choose the function that corresponds to the type of the property in your Javascript class.

NOTE that the name of the field is given as ’a’: this is the Javascript name of the field in the Pascal
class: it was forced to ’a’ using the external name ’a’ modifier in the class declaration.
Without this modifier, ’fa’ would need to be used.

If a property must be set using a setter/getter, then you must adapt the proxy code
accordingly, of course: you must then code a call to the getter and setter.

The class is now ready for use in your webassembly program:
var
T : ĲSTestObj;

begin
Writeln(’Creating TMyTestObj object’);
T:=TMyTestObj.Create(’solo’);
Writeln(’Property : ’,T.StringAttr);

end;

The expected output is of course ’solo’ for the property value.The SOURCE CODE that
demonstrates this is included in the PAS2JS suite of demos, under the demo/wasienv/job/simple
directory. or you can download it from your Blaise Pascal Magazine code page:
https://www.blaisepascalmagazine.eu/en/your-downloads/

SOURCE CODE

❽ CONCLUSION
With the JOB technology, it is now possible to use all browser APIs in a webassembly program
without having to resort to lots of import/export routines: a list of 11 functions is sufficient to
create and use every possible browser object. To the best of the author’s knowledge, currently the
only other compiled language – compilable to WebAssembly – that offers this possibility is Rust.

As indicated above, the job web unit is large. This is somewhat of a disadvantage:
the compiler takes a lot of time compiling this unit, well over 1 minute.
The reason is the use of interfaces, which result in a lot of hidden code to call methods on an
interface, and the resulting unit is well over 65Mb. While the linker removes all unused code and
your program will contain only the needed code, the unit must be compiled (luckily only once) and
this takes time.

Pascal Code

90Blaise Pascal Magazine 117 2024

Create professionally designed reports
with minimal effort with FastReport VCL.

Create professionally designed reports with minimal effort with FastReport VCL.

Multiple graphical elements for information visualization, export filters to 30+
formats, easy integration with data, secure storage. FastReport VCL, with its
simplicity, convenience and small distribution size, is able to provide proper
functionality and speed on any modern computer.

In the latest version 2024.2:

Try the demo today to save time and resources on report creation.

www.fast-report.com

A new package with visual components TfrTreeView. Presentation of data
in an intuitive way.

Support for GeoJSON and TopoJSON formats in the FastReport VCL Maps
object.

Lazarus support in FastQueryBuilder. Integration into Lazarus projects and
data workflow improvements.

91Blaise Pascal Magazine 117 2024

Now fpc/lazarus using fresnel
Has three working backends,
A css-driven layout,
Multiple platforms,
A powerful event mechanism.
We now can:

CREATE A UNIVERSAL
GRAPHICAL APPLICATION
RUNNING ON
ALL NATIVE PLATFORMS
AND IN THE BROWSER.
All this using a single codebase,
and running at native speed.
And obviously,
all this using your favourite Programming language:

OBJECT PASCAL.

FPC/LAZARUS
FRESNEL

92Blaise Pascal Magazine 117 2024

Figure 1: A Fresnel application

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE

❶ INTRODUCTION
Project Fresnel was announced in this magazine a little over 1.5 years ago: Issue 107/108.
Work was started immediately, and work on project Fresnel has not stopped since.
As a reminder, the main goals of project Fresnel were:

● To create a set of controls (or widgets) that are streamable, so descendents of TComponent:
 the widgets can be manipulated in the IDE.
● Layout is determined completely by CSS.
● Multiple drawing backends must be supported.
● No dependency on the Lazarus LCL.
● Fresnel-Based Forms can coexist with LCL forms in a native application.

The end goal is a UI framework that will allow to create an application UI once, and let it run on any OS
and in the browser. Conceptually, the architecture of such an application is depicted in figure 1 on page
1 of this article.

The application code only uses the Fresnel API to display the graphical user interface, other functionality is
implemented on top of the operating system API. Fresnel components use the Fresnel backend to do the actual
drawing.

A Fresnel backend uses the graphical API of the operating system – or a library that makes the drawing easier –
to do the actual drawing.

Fresnel components do not access the APIs underlying the backend.
This ensures that Fresnel components will work with any backend. Several backends can be implemented,
and when running your application, you choose the backend in function of the operating system for which you’re
compiling your application.

In this article, we report on the progress made on each of these goals.

ARTICLE PAGE 1 / 17

ABSTRACT
At the end of the year 2022,

 Project Fresnel was announced:
a new graphical interface for Pascal applications,

based on CSS. Since then, work has been steadily progressing
on this new framework.

In this article an overview of what is possible today is presented.

BY MICHAEL VAN CANNEYT

Figure 2: Using stylesheet 1

93Blaise Pascal Magazine 117 2024

This means that today you can do the following

Div2:=TDiv.Create(Self);
with Div2 do
 begin
 Name:=’Div2’;
 Parent:=Body1;
 Style:=’border-color: black; height:50px; ’+
 ’position: absolute; border: 2px; ’+
 ’left: 30px; top: 100px; width: 50px; ’+
 ’height: 60px;’;
 end;

As you can see, the layout of the component is determined by the Style property.
Furthermore, these controls can be installed in the IDE, and you can create a Fresnel Form in the designer.
This part is still experimental. To do so, you need to recompile the Lazarus IDE with the trunk version of Free Pascal,
as project Fresnel requires the use of some units that are not yet present in the released version of Free Pascal..

❷ WIDGETS OR CONTROLS
 A basic set of controls (widgets) has been

 developed:

ViewPort This essentially encapsulates the visible
 portion of a form. It is the toplevel control
 in a Fresnel graphical window, and has a stylesheet
 associated with it that determines the
 style of the elements in a form.

Form is a descendent of a viewport. This is a viewport which
 can exist by itself.

Div is a basic building block of a graphical UI:
 a box for which you can specify sizes, borders, background and
 foreground colors etc.

Span is similar to a Div but has different layout flow behaviour:
 spans will be placed next to each other (’inline’ display, in CSS terms).

Label Is exactly what the name implies: it resembles a Div but allows you to specify a caption
 to be shown in the box.
Image A component to show an image.

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 2 / 17

94Blaise Pascal Magazine 117 2024

So today, we can specify the CSS of a control using the Style property, or using
the style sheet of the viewport: the stylesheet can be specified in the StyleSheet property.

Viewport.Stylesheet.LoadFromFile(’style2.css’);
Figures 2 on page 2 and figure 3 on page 4 show the same application, but with a different
stylesheet loaded. As expected, the controls adjust their properties (and location) according to
what is specified in the CSS.
Needless to say, there is still a lot of work to be done: there are many CSS properties,
and currently only the most basic properties are implemented: enough to create simple layouts,
without too much of the special effects that make CSS such a powerful mechanism.

❹ FRESNEL EVENT HANDLING
In the LCL, the event handlers such as OnClick, OnMouseMove can be assigned in the Object Inspector.
The same is true for Fresnel widgets:
Fresnel is designed from the start to be RAD-enabled. While not specifically specified in the goals of Fresnel, the
occasion was to used to address some of the shortcomings of the VCL and LCL event mechanisms,
and a complete redesign of the event mechanism was put in place.
The first thing to mention about the new event mechanism is that the signature of the event handlers is different
from in the LCL. The LCL uses the following notification event handler (with slight variations):

TNotifyEvent = procedure(Sender: TObject) of object;
Here, Sender is the component instance from which the event originates. You need to typecast the sender to
access its properties. The basic event handler in Fresnel looks like this:

TEventHandler = Procedure(Event : TAbstractEvent) of object;

Figure 3: Using stylesheet 2

❸ CSS LAYOUT
The primary goal of project Fresnel

is to have the layout determined by CSS.
CSS originated in the browser, and became a

powerful tool for creating good-looking UIs which is
used in all browsers. Prior to starting Project Fresnel, Free

Pascal already had a CSS parser available. This parser was
extended to make it more robust, and an engine was developed

to determine the CSS properties that are applicable to a given widget
(control).

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 3 / 17

95Blaise Pascal Magazine 117 2024

 The Event parameter is of
 type TAbstractEvent, which looks like this:

TAbstractEvent = Class(TObject)
 // Sender of the event
 Property Sender : TObject Read FSender Write FSender;
 // Event ID used for create
 Property EventID : TEventID Read FEventID;
end;

The Sender is still available as a member of the event.
Depending on the actual event, a descendent of TAbstractEvent is passed on,
which contains the necessary information pertaining to the event. For instance, the
mouse events all descend from TFresnelMouseEvent :

As you can see, a lot more information is available.
But there is more: for every event, multiple handlers can be registered. The basic Fresnel component exposes
a EventDispatcher property, which is of type TEventDispatcher:

TEventSetupHandler = Procedure(Event : TAbstractEvent) of object;
TEventSetupCallBack = Procedure(Event : TAbstractEvent);
TEventSetupHandlerRef = Reference to Procedure(Event : TAbstractEvent);

TEventDispatcher = class(TPersistent)
// Various forms to register an event handler
Function RegisterHandler(aHandler : TEventCallback;

 aEventName : TEventName) : TEventHandlerItem;
Function RegisterHandler(aHandler : TEventHandler;

 aEventName : TEventName) : TEventHandlerItem;
Function RegisterHandler(aHandler : TEventHandlerRef;

 aEventName : TEventName) : TEventHandlerItem;
// Dispatch an event.
// Calls the registered handlers for that event,
// in the order they were registered.
// Returns the number of handlers that were called;
Function DispatchEvent(aEvent : TAbstractEvent) : Integer;

end;

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 4 / 17

This is roughly modeled after many other event dispatching mechanisms in other toolkits (Gtk, Qt) and in the browser.
There are 2 things to note about this mechanism:

❶ You can register multiple handlers for the same event. Behind the scenes, setting the OnClick handler will use the
 event dispatcher to set one ’click’ event handler. Setting the event handler to Nil will remove the handler from
 the dispatcher.
❷ Event handlers no longer need to be object methods. It can also be an anonymous method,
 or a plain procedure or a local procedure.

TFresnelMouseEvent = Class(TFresnelUIEvent)
Public
 Property ControlX : TFresnelLength;
 Property ControlY : TFresnelLength;
 Property PageX : TFresnelLength;
 Property PageY : TFresnelLength;
 Property ScreenX : TFresnelLength;
 Property ScreenY : TFresnelLength;
 Property X : TFresnelLength;
 Property Y : TFresnelLength;
 Property Buttons: TMouseButtons;
 Property Button : TMouseButton;
 Property ShiftState : TShiftState;
 Property Altkey : Boolean;
 Property MetaKey : Boolean;
 Property CtrlKey : Boolean;
 Property ShiftKey : Boolean;
end;

At the moment, you still need to typecast the Event to get to the properties, but a mechanism using generics to
register a correctly typed event handler will be put in place.

❹ FRESNEL EVENT HANDLING - CONTINUATION

96Blaise Pascal Magazine 117 2024

A backend needs to provide two services: The first is to manage the top-level windows
This means that you could have a backend (for example Gdk3/Gtk3, to manage the
windows and events) that uses various drawing backends (Skia or Cairo).
Currently, 3 working backends for the Fresnel widgets exist, and a 4th is in the works:

LCL This was the first backend created for Fresnel. The fresnel controls are drawn
 on an LCL Canvas. This can be a canvas that is embedded in a LCL form on a
 TFresnelControl: this is a control that embeds the Fresnel viewport;
 all drawing happens within this control. It can also be a Fresnel LCL form:
 a form that is completely standalone. Events are generated by the LCL and are transformed into

Fresnel events. It is this backend that is used when designing a Fresnel form in the IDE.

Gtk3 using Skia The Gtk3 backend is a backend which relies on the Skia library to render the Fresnel controls.
Skia is a fast 2D library by Google which runs on various platforms (all major OSes and mobile devices).

 By creating a Skia drawing backend, the Fresnel framework should run on all platforms that Free Pascal,
Skia support. Skia by itself does not offer event handling, so it is paired with Gtk3,

 which is also cross-platform.

WebAssembly Lastly, a WebAssembly backend is made. Free Pascal supports creating webassembly binaries,
 and these binaries can be run in the browser.
 A Fresnel backend was made which uses the browser canvas and the browser events to deliver the
 needed functionality to Fresnel. It will be presented in the rest of this article.

More backends can of course be made:
Using one of the existing backends, it should not be difficult to create a backend that sits directly on top of the OS’
native UI mechanisms:

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 5 / 17

❺ BACKENDS
Another important goal for Project

Fresnel is that it must be cross platform
and must support different drawing backends:

the widgets or controls are not aware of the backend
in use to draw them.

All they get is a canvas on which they can draw themselves if
so required. (form) and the events sent by the operating system,

and the second service is to provide a canvas to draw on. These two
services are defined independently and can be coded independently.

● LCL backend with a Skia renderer backend.

● WinApi backend with a Skia renderer backend.

● WinApi backend with a WinApi renderer backend.

● WinApi backend with a BGRA renderer backend.

● Apple Cocoa backend with a Metal renderer backend.

● Apple Cocoa backend with a Skia renderer backend.

One such backend which is planned by the FPC team is PAS2JS:
This would allow running a Fresnel application as a Javascript application.

97Blaise Pascal Magazine 117 2024

FresnelBase this package contains the basics of Fresnel:
 the controls, the CSS handling, the event mechanism and
 the rendering backend specification
 (it is defined as an interface definition). This package does not

depend on the LCL - this was one of the design goals.

FresnelLCL This contains the LCL backend for Fresnel: a renderer that can render a
Fresnel form on a form or in a LCL control.

FresnelDsgn Installing this package allows you to to design a Fresnel form in the Lazarus IDE,
as you would design a LCL form: You can add Fresnel forms to a
standalone Fresnel application or a LCL application and drop Fresnel elements onto the
fresnel Forms and use the Object Inspector to set properties like the Style property.

Then there are 3 other packages that provide other backends:

fresnel This package automatically chooses a backend depending on some defines.
 On linux it will choose the Gtk and Skia backend to provide a window and an event mechanism.
 The drawing itself is done using Skia. This is still a work in progress.

fresnelwasm This package contains the webassembly part of the WebAssembly backend.
 The webassembly backend needs two parts:
 one in webassembly, one in the browser
 . This package contains the webassembly side of the Fresnel webassembly backend.

p2jsfresnelapi This package contains the javascript part of the WebAssembly backend, it must be used in the
browser host application that loads the Fresnel Webassembly program.

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 6 / 17

❻ COMPILING FRESNEL
To compile Fresnel, the development

version of FPC is needed: Fresnel uses some
mechanisms which are available only in the development

version of FPC (for example, the CSS parser).
Fresnel itself is implemented in a series of lazarus packages.

You can compile Fresnel and use without it the lazarus packages,
if you so desire.

❼ A FRESNEL APPLICATION USING THE LCL
As an example, we’ll show a Fresnel application using an LCL form and a TFresnelLCLControl to host the
Fresnel controls. The main form’s published section only contains an ’OnCreate’ handler, the rest is added manually:

TMainForm = class(TForm)
 procedure FormCreate(Sender: TObject);
private
 Body1: TBody;
 Div1, Div2: TDiv;
 Img1 : TImage;
 Span1: TSpan;
 Fresnel1: TFresnelLCLControl;
 label1 : Fresnel.controls.TLabel;
public
 procedure CreateControls(ViewPort: TFresnelViewport);
end;

In the OnCreate event, we create the LCL TFresnelLCLControl that will host all Fresnel controls.
We set it to take all available space, and load a stylesheet:

98Blaise Pascal Magazine 117 2024

procedure TMainForm.FormCreate(Sender: TObject);
begin
 Fresnel1:=TFresnelLCLControl.Create(Self);
 with Fresnel1 do
 begin
 Name:=’Fresnel1’;
 Align:=alClient;
 Viewport.Stylesheet.LoadFromFile(’style1.css’);
 Parent:=Self;
 end;
 CreateControls(Fresnel1.Viewport);
end;

In the CreateControls method, we create the Fresnel Controls:

Procedure TMainForm.CreateControls(ViewPort : TFresnelViewport);

Function CreateControl(aClass : TFresnelElementClass;
 aName : String;
 aParent : TFresnelElement = nil) : TFresnelElement;
begin
 if aParent=Nil then
 aparent:=Body1;
 Result:=aClass.Create(Self);
 Result.Name:=aName;
 Result.parent:=aParent;
end;

begin
 Body1 :=TBody(CreateControl(TBody,’Body1’,ViewPort));
 Div1 :=TDiv(CreateControl(TDiv,’Div1’));
 Span1 :=TSpan(CreateControl(TSpan,’Span1’));
 label1 :=TLabel(CreateControl(TLabel,’Label1’));
 Label1.Caption:=’Label1Caption’;
 Div2 :=TDiv(CreateControl(TDiv,’Div2’));
 Img1 :=TImage(CreateControl(TImage,’Img1’));
 Img1.Image.LoadFromFile(’image.png’);
end;

Note that we do not need to set any position or color properties. This is all taken care of by the CSS.

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 7 / 17

The Image property of the TImage widget deserves some extra attention.
This property is of class TImageData, which is defined as follows:

TImageData = class(TPersistent)
Public
 Constructor Create(aOwner : TComponent); virtual;
 Destructor Destroy; override;
 Procedure LoadFromFile(const aFilename : String);
 Procedure SaveToFile(const aFilename : String);
 Procedure LoadFromStream(const aStream : TStream;
 Handler:TFPCustomImageReader = Nil);
 Procedure SaveToStream(const aStream : TStream;
 Handler:TFPCustomImageWriter = Nil);
 Procedure Assign(Source : TPersistent); override;
 Property Data : TFPCustomImage;
 Property ResolvedData : TFPCustomImage;
 Property Width : Word;
 Property Height : Word;
 Property HasData : Boolean;
Published
 Property FileName : String;
 Property ImageName : String;
 Property ImageList : TBaseCustomImageList;
 Property ImageIndex : Integer;
end;

❼ A FRESNEL APPLICATION USING THE LCL - CONTINUATION 1

99Blaise Pascal Magazine 117 2024

Thus Img1.Image.ImageName:=’image’; would look for an image file using a standard
format (’.png’) in a standard set of directories. Both the format and the directory structure are
globally configurable. This mechanism makes it easy to configure a set of standard images for an
application. The images are loaded and kept in memory using Free Pascal’s TFPCustomImage class,
which can handle many image formats by default. The main program file for our program looks like
any other program:

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 8 / 17

The LCL and VCL use two
approaches to specify an image:

directly through a TGraphic or indirectly
using an ImageList and an ImageIndex property.

Which one is used depends on the actual control.
In Fresnel, these two approaches have been combined in

one single class: TImageData. Thus, every Fresnel control that
needs to specify an image, has both mechanisms enabled.
The TImageData offers also a third mechanism to load images:
a ImageName, which is used to look up an image by name in a central image
store. The central image store can look up image files by name, and can handle
multiple sizes and multiple screen resolutions. It caches the images in memory.

Figure 4: The styles demo

program StylesheetDemo;
{$mode objfpc}{$H+}
uses Interfaces, // this includes the LCL widgetset
 Forms, MainUnit;
begin
 RequireDerivedFormResource:=True;
 Application.Scaled:=True;
 Application.Initialize;
 Application.CreateForm(TMainForm, MainForm);
 Application.Run;
end.

It looks like any other Lazarus application.
Running the application will result in an application
looking like figure 4 on page 10

❼ A FRESNEL APPLICATION USING THE LCL - 2

The first line in the initialization of the library sets up a hook: the fresnel log will be written to standard output, and will
show up in the browser console. The rest of the application startup code looks the same as a standard Lazarus LCL
application. The CreateForm has been replaced with CreateFormNew so the CreateNew constructor of the form is
called: Currently there are no resources in the webassembly (this is being worked on). Calling CreateNew makes sure no
resources are loaded.
To demonstrate that the events mechanism works as expected also in the browser, our main form will also hook some
events. For this reason, we define an enumeration to select the events that we want to listen to.

100Blaise Pascal Magazine 117 2024

As explained in the article on using the browser’s API, when the browser runs a
webassembly program, it suspends the Javascript execution. As long as the
webassembly program runs, no event handlers will run. So, we need to create a library
that initializes the application, and then returns control to the browser, so it can start
receiving events. The events are processed in the fresnel tick callback which is called at
regular intervals by the browser, although this mechanism may change in the future.

library basic;
uses
 nothreads, fresnel.forms, fresnel.wasm.app, form.main, fresnel.wasm.api;

procedure __fresnel_tick (aCurrent,aPrevious : double);

begin
 fresnel.wasm.api.__fresnel_tick(aCurrent,aPrevious);
end;

exports
 __fresnel_tick;
begin
 Application.HookFresnelLog:=True;
 Application.Initialize;
 Application.CreateFormNew(TMainForm,MainForm);
 Application.Run;
end

This method must be exposed by the library:

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 9 / 17

Type
 THookEvent = (heClick,heMouseMove,heMouseUp,heMouseDown,heMouseEnter,
 heMouseLeave,heFocus,heFocusIn,THookEvents = set of THookEvent;

{ TMainForm }

 TMainForm = Class(TFresnelForm)
 private
 procedure HookAllFresnelComponents;
 procedure LogEventData(Event: TAbstractEvent);
 procedure LogMouseEvent(Event: TFresnelMouseEvent; LogData: Boolean);
 Public
 procedure DoClick(Event: TAbstractEvent);
 procedure DoGeneralEvent(Event: TAbstractEvent);
 procedure DoMouseMove(Event: TFresnelMouseEvent);
 constructor CreateNew(aOwner : TComponent); override;
 procedure HookEvents(aEl: TFresnelELement; Publ: Boolean);
 end;
var
 MainForm : TMainForm;

const
AllHookEvents = [Low(THookEvent)..High(THookEvent)];

❽ USING THE
WEBASSEMBLY BACKEND

To run a fresnel program in a webassembly
backend, you need two programs. One is the

webassembly program itself, the other is the Javascript
program that loads the Webassembly file in the browser.

This Javascript program we create of course with PAS2JS.
We’ll start with the webassembly program itself. Due to the nature of
webassembly, the fresnel program must be created as a library:

Basically, this is the contents of the style sheet used in our previous example, but applied directly to the controls. To
demonstrate events, we set some event handlers on the events. The HookAllFresnelComponents simply loops
over all controls and calls HookEvents

101Blaise Pascal Magazine 117 2024

 The form is populated in the same
 way as our LCL version, in our constructor,
 we call Create-controls. This time we pass Self
as the viewport, since the Fresnel form is the actual viewport:

constructor TMainForm.CreateNew(aOwner : TComponent);

const
 GlobalStyle = ’div {padding: 2px; border: 3px; margin: 6px;}’;
begin
 Inherited CreateNew(aOwner);
 Width :=640;
 Height:=480;
 Stylesheet.Text:=GlobalStyle;
 CreateControls(Self);
 HookAllFresnelComponents;
end;
NOTE that the Width and Height of the form are set: The form is the only component which has a width and
height property - this is logical, since it is the top-level control. We’ll come to the last line shortly, they hook all
fresnel events for all controls on the form. Note that we only set the globally applicable CSS styles in
the StyleSheet property:
these styles will be used for all controls, in addition to the CSS styles specified in the ’Style’ property of each
control. In CreateControls, we demonstrate that the CSS styles can also be directly applied to the controls by
setting the Style property:

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 10 / 17

Procedure TMainForm.CreateControls(ViewPort : TFresnelViewport);

 Function CreateControl(aClass : TFresnelElementClass; aName : String;
 aParent : TFresnelElement = nil) : TFresnelElement;

begin
 if aParent=Nil then
 aparent:=Body1;
 Result:=aClass.Create(Self);
 Result.Name:=aName;
 Result.parent:=aParent;
end;

begin
 Body1 :=TBody(CreateControl(TBody,’Body1’,ViewPort));
 Div1 :=TDiv(CreateControl(TDiv,’Div1’));
 Span1 :=TSpan(CreateControl(TSpan,’Span1’));
 label1 :=TLabel(CreateControl(TLabel,’Label1’));
 Label1.Caption:=’Label1Caption’;
 Div2 :=TDiv(CreateControl(TDiv,’Div2’));
 Img1 :=TImage(CreateControl(TImage,’Img1’));
 Img1.Image.LoadFromFile(’image.png’);

 // Apply styles
 Body1.Style :=’border: 2px; border-color: blue;’;
 Div1.Style :=’background-color: blue; border-color: black; height:50px;’;
 Span1.Style :=’width: 50px; height:70px; background-color: red; ’+
 ’border: 3px; border-color: black; margin: 3px;’;
 Label1.Style :=’background-color: green; ’;
 Div2.Style :=’border-color: black; position: absolute; border: 2px;’+
 ’ left: 30px; top: 100px; width: 50px; height: 60px;’;
 Img1.Style :=’border-color: red; height:50px; position: absolute; ’+
 ’border: 2px; left: 150px; top: 200px; width: 48px; height: 48px;’;
end;

❽ USING THE WEBASSEMBLY BACKEND CONTINUATION 1

The general event handler DoGeneralEvent, which is registered using AddEventListener,
logs the event and in case of a mouse event logs a little more:

procedure TMainForm.HookAllFresnelComponents;

Var
 C : TComponent;
 I : Integer;
 UsePublished : Boolean;

begin
 UsePublished:=False;
 HookEvents(Self,UsePublished);
 For I:=0 to ComponentCount-1 do
 begin
 C:=Components[I];
 if C is TFresnelElement then
 HookEvents(C as TFresnelElement,UsePublished);
 end;
end;
The UsePublished parameter allows you to select which mechanism must be used:
Specifying True will set the traditional property, specifying False will use the AddEventListener
mechanism of the event dispatcher:

102Blaise Pascal Magazine 117 2024

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 11 / 17

procedure TMainForm.HookEvents(aEl: TFresnelELement; Publ : Boolean);

begin
 if Publ then
 begin
 aEl.OnClick :=@DoClick;
 aEl.OnMouseMove :=@DoMouseMove;
 aEl.OnMouseEnter :=@DoMouseMove;
 aEl.OnMouseLeave :=@DoMouseMove;
 end
 else
 begin
 aEl.AddEventListener(’click’,@DoGeneralEvent);
 aEl.AddEventListener(’mousemove’,@DoGeneralEvent);
 aEl.AddEventListener(’mouseenter’,@DoGeneralEvent);
 aEl.AddEventListener(’mouseleave’,@DoGeneralEvent);
 aEl.AddEventListener(’focus’,@DoGeneralEvent);
 end;
end;

procedure TMainForm.DoGeneralEvent(Event: TAbstractEvent);
begin
 LogEventData(Event);
 If Event is TFresnelMouseEvent then
 LogMouseEvent(Event as TFresnelMouseEvent,False);
end;
The logging events do little more than writing the event data to standard output:

procedure TMainForm.LogEventData(Event: TAbstractEvent);
const
 Fmt = ’Event class %s type: %s, sender : %s’;
var
 S : String;
begin
 if Event.Sender=Nil then
 S:=’(Nil)’
 else
 begin
 S:=Event.Sender.ClassName;
 if Event.Sender is TComponent then
 S:=TComponent(EVent.Sender).Name+’ (’+S+’)’;
 end;
 Application.Log(etInfo,Fmt,[Event.ClassName, Event.EventName, S]);
end;

❽ USING THE WEBASSEMBLY BACKEND CONTINUATION 2

103Blaise Pascal Magazine 117 2024

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 12 / 17

Note the use of RTTI to convert button enumerated and sets to actual button names.
Some event handlers have a typed version of the parameter, as can be seen in the
DoMouseMove event handler, which receives a TFresnelMouseEvent parameter:

procedure TMainForm.DoClick(Event: TAbstractEvent);
begin
 Application.Log(etInfo,’You clicked ’+(Event.Sender as TComponent).Name);
end;

procedure TMainForm.DoMouseMove(Event: TFresnelMouseEvent);
begin
 LogMouseEvent(Event,True)
end;

With this, our webassembly application is finished. The structure is identical to the LCL application.
The differences (events, styles) were simply additions to the code in the regular LCL application.

Figure 5: Creating a loader application

procedure TMainForm.LogMouseEvent(Event: TFresnelMouseEvent; LogData : Boolean);

const
 Fmt = ’Mouse Event (X: %f, Y: %f, Button: %s, Buttons: %s) ’;
var
 Btn,Btns : String;
begin
 If LogData then
 LogEventData(Event);

 Btn :=GetEnumName(TypeInfo(TMouseButton),Ord(Event.Button)) ;
 Btns :=SetToString(PTypeInfo(TypeInfo(TMouseButtons)),Longint(EVent.Buttons),True);
 Application.Log(etInfo,Fmt, [Event.ControlX,Event.ControlY,Btn,Btns]);
end;

❽ USING THE WEBASSEMBLY BACKEND CONTINUATION 3

104Blaise Pascal Magazine 117 2024

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 13 / 17

The first thing to do is to provide the necessary Fresnel API methods to the webassembly.
The PAS2JS WebAssembly hosting environment has a mechanism to do this:

to provide APIs to a webassembly module, a descendant of the TImportExtension class must
be created and instantiated.
Such a descendant has been made for the Fresnel API, a class called TWasmFresnelAPI.
This class is implemented in the fresnel.pas2js.wasmapi, part of the P2jsfresnelapi package.

All that we need to do is to create an instance of the TWasmFresnelAPI class, passing the WASI
environment to the constructor. We do this in the constructor of our application class:

constructor TFresnelHostApplication.Create(aOwner: TComponent);
begin
 inherited Create(aOwner);
 FFresnelApi:=TWasmFresnelApi.Create(WasiEnvironment);
 FFresnelAPI.LogAPICalls:=True;
 FFresnelAPI.CanvasParent:=TJSHTMLElement(document.getElementById(’desktop’));
 RunEntryFunction:=’_initialize’;
end;

Since our Webassembly module is a library, the function to execute when running it, is not the usual start as for a
program, but initialize, which simply executes the initializations sections of the units included in the library and the
main library routine.
We set 2 properties on the FresnelAPI instance

❶. We choose to log the API calls (Every API call is logged to the screen)
❷ We set the parent element for the canvas: for every Fresnel form, a HTML canvas is allocated.
 All these canvases are positioned below the CanvasParent element.

❿ FILESYSTEM SUPPORT FOR WEBASSEMBLY
The Fresnel application loads an image from file using the usual Object Pascal file handling mechanisms.
How can we provide this file ?
The WASI standard provides all the API calls to open files and read data from files, as well as directory listing mechanisms.
It is up to the hosting environment to provide an implementation of these calls.
The Pas2JS webassembly hosting environment has implemented these API calls, and uses a plugin mechanism to handle
the actual reading from file.
The browser offers a standardized API to access the computer’s filesystem in a sandboxed manner:
https://developer.mozilla.org/en-US/docs/Web/API/FileSystem

❾
THE WEBASSEMBLY LOADER

To run our webassembly program in the browser,
we need a Javascript program that loads the webassembly

in the browser, provides it with the image file and finally that
provides the Fresnel canvas.
To this end, we create a ’Web Browser application’ in the IDE.
In the dialog that appears, we check the ’Use Browser Application object’
and ’Run Webassembly program’ options and enter a filename, as in figure 5
on page 12.
Setting these options will create a skeleton project which we can adapt to our
needs. We’ll rename the application class to TFresnelHostApplication. The
wizard will have added in the DoRun method a call to StartWebAssembly with the
filename we entered. We’ll need to change that.

105Blaise Pascal Magazine 117 2024

This basically
reserves a (hidden) directory

for use of your web application.
Your application can only access files and

directories inside this directory, and these
directories are private to each webpage This API would

seem ideal to provide a filesysem to a webassembly.
However, there is a catch: the filesystem API is an asynchronous API.
The WASI API is synchronous, and this means that currently,
the filesystem API is not usable.
So something else must be found. Before the FileSystem API was generally
available, a pure Javascript implementation of a FileSystem emulation was created,
called BrowserFS. It was modeled after the NodeJS filesystem API.
This implementation is now known as ZenFS:

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 14 / 17

PAS2JS comes with the necessary units to make use of this API, and here is a plugin for the WebAssembly hosting
mechanism to provide a filesystem. So, how to use the ZenFS filesystem to provide an image file to the webassembly
module? Before starting the webassembly, we load the necessary files from the webserver, and store them in our
in-browser filesystem emulation.
Since loading the files from the server is asynchronous, this loading needs to be completed before we can start the
webassembly. The ZenFS filesystem needs to be initialized. This initialization is also asynchronous, so we must wait for it
to complete before we can start our webassembly program. To make our life a little easier, we will introduce an
asynchronous method:

procedure RunWasm ; async;
This means we can use await in the RunWasm method to let the filesystem initialization finish before calling
StartWebAssembly. The code from the DoRun method generated by the application wizard in Lazarus
is replaced with the following:
procedure TFresnelHostApplication.DoRun;
begin
 RunWasm;
end;
The actual work now happens in RunWasm, which starts by initializing the ZenFS file system. The initialization means that
you tell ZenFS where to mount various file systems, similar to the way this happens on a typical unix or linux operating system.
You can use various filesystems at the same time, but for our needs, we’ll mount a single filesystem using WebStorage:

procedure TFresnelHostApplication.RunWasm;
var
 aCount : Integer;
begin
 Terminate;
 await(tjsobject, ZenFS.configure(
 new(
 [’mounts’, new([
 ’/’, DomBackends.WebStorage
])
])
)
);
 FS:=TWASIZenFS.Create;
 WasiEnvironment.FS:=FS;
 aCount:=await(LoadFiles);
 Writeln(’Loaded ’,aCount,’ files.’);
 StartWebAssembly(’basic.wasm’,true,@OnBeforeStart,@OnAfterStart);
end;

https://github.com/zen-fs
The ZenFS API comes with various backends that are synchronous:
InMemory : Stores files in-memory. This is cleared when the webpage is closed.
WebStorage : Stores files in local or session storage.

This means the filesystem can be persisted, even when the webpage is closed.

❿ FILESYSTEM SUPPORT FOR - CONTINUATION 1

106Blaise Pascal Magazine 117 2024

Before diving into these calls, let’s see how we can load files into our browser
-based filesystem. The TWasiHostApplication class offers 3 calls to preload
files from the server into the filesystem emulation:

function PreLoadFiles(aFiles : TPreLoadFileDynArray) : TPreLoadFilesResult; async;
function PreLoadFiles(aFiles : Array of string) : TPreLoadFilesResult; async;
function PreLoadFilesIntoDirectory(aDirectory: String;

aFiles: array of string): TPreLoadFilesResult; async;.
As you can see, all calls are asynchronous. The first call is the raw download mechanism.
You specify the files to preload using an array of records:

After the ZenFS
filesystem is initialized, we

create an instance of the WASIZenFS
class, and assign it to the WasiEnvironment.

Before starting the webassembly, we load the
needed files into our virtual filesystem using LoadFiles.

As mentioned before, this is an asynchronous call, so we wait
for it to complete.
Lastly, the webassembly is started, specifying 2 callbacks: one to be
executed before, one to be executed after the start of the webassembly.

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 15 / 17

function TFresnelHostApplication.OnBeforeStart(Sender: TObject;
aDescriptor: TWebAssemblyStartDescriptor): Boolean;

begin
 FFresnelApi.InstanceExports:=aDescriptor.Exported;
 Result:=true;
end;

TPreLoadFile = record
 url : String;
 localname : string;
end;
The URL contents will be downloaded and put into the local filesystem as a file with the given path and name. (NOTE
that if you specify directories, you must create any directories before loading files into them) The second form of the
PreLoadFiles call accepts an array of strings.
This should be an even amount of strings, where each pair is a URl and a local filename: these are simply transformed
into an array of TPreLoadFile records. The PreLoadFilesIntoDirectory is a utility function that stores all
downloaded files in a single directory. The LoadFiles function uses this latter utility function, and is really simple:

function TFresnelHostApplication.LoadFiles: Integer;

const
 Files : TStringDynArray = (’image.png’,’style1.css’,’style2.css’);

var
 Res: TPreLoadFilesResult;
 I : Integer;
begin
 result:=-1;
 Res:=await (PreloadFilesIntoDirectory(’/’,Files));
 For I:=0 to Length(Res.failedurls)-1 do
 With Res.failedurls[i] do
 Writeln(’Failed to preload file: ’,url,’ : ’,error);
 Result:=res.loadcount;
end;

The TPreLoadFilesResult gives info about the number of loaded files and any errors that may have occurred.
All that remains to be discussed are the 2 callbacks that were passed to the StartWebassembly call.
The OnBeforeStart event is called before the webassembly is started, and we use it to pass the functions that are
exported from the webassembly to the Fresnel API:

❿ FILESYSTEM SUPPORT FOR - CONTINUATION 2

procedure TFresnelHostApplication.OnAfterStart(Sender: TObject;
aDescriptor: TWebAssemblyStartDescriptor);

begin
 Writeln(’Starting timer’);
 FFresnelApi.StartTimerTick;
end;

107Blaise Pascal Magazine 117 2024

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 16 / 17

var
 Application : TFresnelHostApplication;
begin
 ConsoleStyle:=DefaultCRTConsoleStyle;
 HookConsole;
 Application :=TFresnelHostApplication.Create(nil);
 Application.Initialize;
 Application.Run;
end

With this, the loader program is finished. All we need now is a HTML page which will execute the code. We need 2
special tags in the HTML: one is the parent for the canvas (with id ”desktop”) and one is needed to display the output of
the WriteLn statement. We also need to load ZenFS : 2 Javascript files are needed: browser.min.js.This is the core
ZenFS module. browser.dom.fs. This is the ZenFS module that allows to store files in the browser local storage.
Add some CSS styling with Bulma CSS to the mix, and this is our web page:

Last but not least, we need the main program code to set the ball rolling. This looks like
any Free Pascal or Lazarus code, with a small addition to set up the console output:
the WriteLn statements from the webassembly are caught and displayed in the browser
console log, but also in a special HTML element (with id ”pasjsconsole”):

 The fresnel API
needs access to the exported

functions in order to call the timer
function_fresnel_tick. This is exactly

why the OnAfterStart event handler is needed:
once the webassembly module has been initialized, we start

the fresnel timer:

<!doctype html>
<html lang="en">
<head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Fresnel - Webassembly Backend</title>
 <link href="bulma.min.css" rel="stylesheet">
 <script src="browser.min.js"></script>
 <script src="browser.dom.js"></script>
 <script src="fresnelhost.js"></script>
</head>
<body style="background-color: yellow">
 <div class="container">
 <h1 class="title is-3">Fresnel WebAssembly Backend</h1>
 <div class="columns">
 <div class="column">
 <h1 class="title is-5">Fresnel graphical interface:</h1>
 <p>This demo demonstrates a Fresnel Program compiled in WebAssembly,
 using a custom canvas backend.</p>
 <div id="desktop" style="min-height: 480px;">
 </div>
 </div>
 <div class="column">
 <h1 class="title is-5">Webassembly console output:</h1>
 <div class="box" id="pasjsconsole"></div>
 </div>
 </div>
 </div>
 <script>
 rtl.showUncaughtExceptions=true;
 window.addEventListener("load", rtl.run);
 </script>
</body>
</html>

❿ FILESYSTEM SUPPORT FOR - CONTINUATION 3

108Blaise Pascal Magazine 117 2024

When all this is
loaded in the browser, the

application will look like figure 6 on
page 17. Note the yellow background on the

HTML body. This is done to demonstrate clearly that
the fresnel background (white) is observed when showing

an image with transparency, such as the lazarus icon.

CONCLUSION
In this article, we’ve shown that
the goals that were outlined for
project Fresnel are attainable:

We have 3 working backends,
a CSS-driven layout, multiple platforms,
a powerful event mechanism. With the Skia renderer available,
there should be no problem to create a universal graphical application which runs on all native platforms and in the
browser. All this using a single codebase, and running at native speed. And obviously, all this using your favourite
programming language: Object Pascal.

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 17 / 17
❿ FILESYSTEM SUPPORT FOR - CONTINUATION 4

code can be downloaded here
https://gitlab.com/freepascal.org/lazarus/fresnel

Fresnel
This repository contains the sources for Project Fresnel

What is project Fresnel ?
Project Fresnel is a new UI paradigm* for Lazarus projects.
Instead of using LCL controls, CSS-based custom drawn controls will be used to create your UI.

*In science and philosophy, a paradigm is a distinct set of concepts or thought patterns, including
theories, research methods, postulates, and standards for what constitute legitimate contributions
to a field. The word paradigm is Greek in origin, meaning "pattern."

Why is this project needed ?
The design of the VCL and LCL is old. In the browser, UX (User eXperience) and UI have evolved
far beyond what the LCL has to offer, largely thanks to the strength of CSS.
The choice for CSS as a mechanism for lay outing and display is therefore logical.
This will also allow to reuse existing CSS frameworks.

What's with the name ?
UI is about look and feel. Look and feel means light.
FRESNEL is a French Physicist who made important contributions to the wave theory of light.

Goals of project Fresnel:

100% Pascal code.
Create a set of controls that are independent of the LCL.
The layout and look of the controls are governed by CSS.
A Lazarus application must be able to run LCL forms alongside 'Fresnel' forms.
This will ensure easy porting.
Different drawing backends must be possible.

Skia:
To use Skia4Delphi you must put the library into the library path:

Linux 64bit: export LD_LIBRARY_PATH=fresnel/
 bin/Binary/Shared/Linux64
Macos X64: export DYLD_LIBRARY_PATH=fresnel/
 bin/Binary/Shared/OSX64

For more insight in Fresnel see also the article of
Issue 107/108 Page 65 of Blaise Pascal Magazine

APPENDIX

109Blaise Pascal Magazine 117 2024

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE

110Blaise Pascal Magazine 117 2024

EX VAT AND SHIPPING PRICE: € 75,00

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /

Blaise Pascal

BLAISE PASCAL MAGAZINE 117
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

https://www.blaisepascalmagazine.eu/product-category/books/

ADVERTISEMENT

LAZARUS HANDBOOK POCKET+PDF+
DOWNLOAD MAGAZINE SUBSCRIPTION

https://www.blaisepascalmagazine.eu/product-category/books

111Blaise Pascal Magazine 117 2024
COMPONENTS

DEVELOPERS4

COMPONENTS
DEVELOPERS4

D11

Donate for Ukraine and get a free license at:
https://components4developers.blog/2022/02/26/

donate-to-ukraine-humanitarian-aid/

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Blaise Pascal

D U :onat e f o r kr ai ne and get a f r ee l i cense at
https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

If you are from Ukrainian origin you can get a free Subscription for Blaise Pascal
Magazine, we will also give you a free pdf version of the Lazarus Handbook. You need to
send us your Ukrainian Name and Ukrainian email address (that still works for you), so
that it proofs you are real Ukrainian. please send it to editor@blaisepascal.eu and
you will receive your book and subscription

112Blaise Pascal Magazine 117 2024

 RAD Alexandria supported
● Win32, Win64, Linux64, Android, IOS 32, IOS 64 and
 OS X client and server support
● Native high performance 100% developer defined
 application server
● Full support for centralised and distributed load
 balancing and fail-over
● Advanced ORM/OPF support including support of
 existing databases
● Advanced logging support
● Advanced configuration framework
● Advanced scheduling support for easy access to
 multi thread programming
● Advanced smart service and clients for very easy
 publication of functionality
● High quality random functions.
● High quality pronounceable password generators.
● High performance LZ4 and J peg compression
● Complete object notation framework including full
 support for YAML, BSON, Messagepack, J SON and XML
● Advanced object and value marshalling to and from
 YAML, BSON, Messagepack, JSON and XML
● High performance native TCP transport support
● High performance HTTPSys transport for Windows.
● CORS support in REST/HTML services.
● Native PHP, Java, OCX, ANSI C, C#, Apache Flex client
 support!

5.23.00 is a release with containing new stuff, refinements and bugfixes, o p en SSL v3 sup p o rt,
WebSo cket sup p o rt, further imp ro vements to SmartB ind , new high p erfo rmance hashing algo rithms,
imp ro ved Remo teD esk to p samp le and much mo re.
This release req uires the use o f v. 7. 9 8 .0 0 o r newer.kbmMemTab le

kbmMemTable is the fastest and most feature rich in memory table
 for Embarcadero products.
● Easily supports large datasets with millions of records
● Easy data streaming support
● Optional to use native SQL engine
● Supports nested transactions and undo
● Native and fast build in M/D, aggregation/grouping
 range selection features
● Advanced indexing features for extreme performance

COMPONENTS
DEVELOPERS4

kbmMW Professional and Enterprise
NEW EDITION V. 5.23
kbmMemTable
NEW EDITION V. 7.99.00
Standard and Professional Edition
kbmFMX Std/Pro v. 1.52.00 released

● New: full Web-socket support.
 The next release of kbmMW Enterprise Edition will
 include several new things and improvements.
 One of them is full Web-socket support.
● New I18N context sensitive internationalisation framework to
 make your applications multilingual.
● New ORM LINQ support for Delete and Update.
 Comments support in YAML.
● New StreamSec TLS v4 support (by StreamSec)
 Many other feature improvements and fixes.

Please visit http://www.components4developers.com
for more information about kbmMW

● High speed, unified database access (35+ supported
 database APIs) with connection pooling, metadata and
 data caching on all tiers
● Multi head access to the application server, via REST/AJAX,
 native binary, Publish/Subscribe, SOAP, XML, RTMP from
 web browsers, embedded devices, linked
 application servers, PCs, mobile devices, Java systems
 and many more clients
● Complete support for hosting FastCGI based applications
 (PHP/Ruby/Perl/Python typically)
● Native complete AMQP 0.91 support (Advanced Message
 Queuing Protocol)
● Complete end 2 end secure brandable Remote Desktop with
 near realtime HD video, 8 monitor support,
 texture detection, compression and clipboard sharing.
● Bundling kbmMemTable Professional which is the fastest
 and most feature rich in memory table for Embarcadero
 products.

ADVERTISEMENT

DONATE FOR
UKRAINE
AND GET A
FREE LICENSE AT:

https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

	HUMOR:
	DBWorkbench:
	Editor:
	PUTS Delphi:
	|PUTS Treeview:
	INTEL:
	Debugger:
	Webassembly:
	FRESNEL:

