L'O"

LAISE Fr)C p\LETs MAGAZINE 177

\

Wi
AN

IT FINALLY HAPPENS:

- WITH FRESNEL YOU CAN CREATE

A UNIVERSAL GRAPHICAL APPLICATION

RUNNING ON ALL NATIVE PLATFORMS AND IN THE BROWSER

Fresnel: the new alternative lcl for lazarus

Coming Technology: Glass Cores (CPU) from Intel

Controlling the browser using webassembly
Accessing the Browser APIs from Webassembly.

Database Workbench 6.5 added support for SQL LITE
The Swiss army knife for database development

The Lazarus Debugger — An introduction and tutorial
Part 7: Change happens — Waiting for it

PUTS: Pascal User Tips & Solutions
Delphi: create your own Components
A delay component and a Time lapse component

PUTS: Pascal User Tips & Solution
The component Treeview

BLAISE PASCAL«> MAGAZINE 117

\Yi
AN

A UNIVERSA AP
RUNNING ON ALL NATIVE PLATFORMS

AND IN THE BROWSER By Michael van Canneyt
Fresnel: the new alternative LCL for lazarus

ADVERTISING
ARTICLES

LAZARUS HANDBOOK Page 6

David Dirkse Book Computer /Graphs / Games & Math Page 16
SUPERPACK Page 52/54

LIBRARY Stick including USB Card Page 58LAZARUS HANDBOOK + SUBSCRIPTION
DELPHI SUMMIT Announcement Page 62

Blaise Pascal Magazine We are at the summit Page 63

DELPHI SUMMIT Barnsten Page 64

DELPHI SUMMIT Sale Page 65/66

DELPHI SUMMIT Agenda Page 67/68/69

Database Workbench / Upscene Page 75

FASTREPORT Page 90

FRESNEL Page 91

LAZARUS HANDBOOK + SUBSCRIPTION Page 60/61/110
Ukraine Special Offer Page 111

Components4Developers Page 112

Pascal is an im(j)erative and procedural programming language, which Niklaus
Wirth designed (left below) in 1968-69 an published in 1970, as a small,
efficient language intended to encourage good programming practices using
structured programming and data structuring. A derivative known as Object

15/2/1934 T 1/1/2024 Pascal designed for object-oriented programming was developed in 1985. The

- - language name was chosen to honour the Mathematician, Inventor of the first
calculator: Blaise Pascal (see top right).

Publisher: PRO PASCAL FOUNDATION in collaboration
© Stichting Ondersteuning Programmeertaal Pascal

==

CONTRIBUTORS

Stephen Ball
http://delphiaball.co.uk
DelphiABall

Michaél Van Canneyt
,michael @ freepascal.org

Helmut Elsner

Korrektor der Deutschen
Ausgabe .
helmut.elsner@live.com

Mattias Gartnernc-
gaertnma@netcologne.de

Kim Madsen
www.component4developers.com
kbmMWwW

Anton Vogelaar _
ajv @ vogelaar-electronics.com

Editor - in - chief

lan Barker
EMBARCADERO DEVELOPER
ADVOCATE

Marco Cantu
www.marcocantu.com
marco.cantu @ gmail.com

Benno Evers
b.evers @
everscustomtechnology.nl

Wagner R. Landgraf
wagner @ tmssoftware.com

Andrea Magni

www.andreamagni.eu andrea.

magni @ gmail.com
www.andreamagni.eu/wp

Jeremy North
jeremy.north @ gmail.com

Danny Wind
dwind @ delphicompany.nl

Dmitry Boyarintsev
dmitry.living @ gmail.com

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

Vsevolod Leonov A
vsevolod.leonov@mail.ru

Boian Mitov
mitov @ mitov.com

Detlef Overbeek

www.blaisepascal.eu
editor @ blaisepascal.eu

Jos Wegman
Corrector / Analyst

Detlef D. Overbeek, Netherlands Tel.: Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Subscrigtions can be taken out online at www.blaisepascalmagazine.eu or by written order, or by sending an email to

office

Name:
VAT/NL814254147B01

David Dirkse
www.davdata.nl
mail: David @ davdata.nl

Holger Flick
holger @ flixments.com

John Kuiper
john_kuiper @ kpnmail.nl

Paul Nauta PLM Solution
Architect CyberNautics
paul.nauta @ cybernautics.nl

Siegfried Zuhr
siegfried @ zuhr.nl

blaisepascal.eu. Subscriptions can start at any date. All issues published in the calendar year of the subscription will be
sent as well. Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
SUbSCr‘IBtIOI’]S can be paid by sendingthe payment to: ABN AMRO Bank Account no. 44 19 60 863 or by credit card or PayPal

ro Pascal Foundation (Stichting Ondersteuning Programeertaal Pascal) IBAN: NL82 ABNA 0441>€/360863 BICABNANL2A

Subscription department Edelstenenbaan 21/ 3402 XA lsselstein, Netherlands + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavor to ensure that what'is published in the magazine is correct, we cannot

accept responsibilit?; for any errors or omissions.
thi

If you notice some
correction where relevant.

'l
Member of the Royal Dutch Library J \ J\\) KONINKLIJKE BIBLIOTHEEK
SUBSCRIPTIONS (2023 prices)

Printed Issue (8 per year) £60 pages :
Electronic Download Issue (8 per year) £60 pages :

COPYRIGHT NOTICE

All material published in Blaise Pascal is copyri%ht © SOPP Stichtin
otherwise noted and may not be copied, distri

Internat. excl. VAT

€ 64,22

uted or republishe

ng which may be incorrect, please contact the Editor and we will publish a

€ 200

Shipment

4 a0 ®
:4\\’ 4
aRLEEL
-(“ 1

\ »

Member and donor of VV IKIPEDIA
Internat. incl. 9% VAT

€ 218
€70

TOTAL

€130 € 348

Ondersteuning Programeertaal Pascal unless
without written permission. Authors agree that code

associated with their articles will be made available to subscribers after publication by placing it on the website of the
PGG for download, and that articles and code will be placed on distributive data storage media. Use of program listings
by subscribers for research and study purposes is allowed, but not for commercial purposes. Commercial use of
program listings and code is prohibited without the written permission of the author.

Blaise Pascal Magazine 117 2024

7

Hello dear readers,

| have a very important announcement to make:

FRESNEL is here.

Il try to explain in short what it means.

Fresnel is the new LCL.

We have talked about that before and at the summit in Amsterdam we will show some results of it,
and in October at the University of Cologne (Kéln) Germany we will show the achievements we
made.

Mattias Gartner and Michael van Canneyt have been partners in crime.

They finally did it:

drag Lazarus into the Future...

Since ever we had discussions about the way Lazarus looked and handled the graphical
environment

for all of the Os’s. Far to difficult etc. | asked Michael and Mattias and also Martin what could be
done about that and they came up with the new Framework FRESNEL.

So they started working on it and here is final proof. It works.

At page 92 you'll find an explanation of the many details there are.

The achievement is enormous:

We can now work with totally new designed components on the basis of the complete component
set that Lazarus and FPC has. These components are custom-drawn components that we use for
the LCL and now for FRESNEL.

What makes it very special is that we added CSS Style to these components and we are very busy
creating the new components and we can use help if you dare to.

So for now we have a platform running on all native platforms and in the browser,

wit the help of WebAssembly we can create apps that can run on the desktop and the web.
Michael created even a filesystem for this.

For the future we will implement Android as well.

All this using a single codebase,

and running at native speed.

And obviously,

all this using your favourite Programming language: Object Pascal.

Have lots of fun reading the articles...

Blaise Pascal Magazine 117 2024 @

From ow Techmical Advison, \’W M

L

“I don 't need to know your age. I saw
you using a flip phone, so I'll just
assume you 're old.”

Blaise Pascal Magazine 117 2024 @

O
<
a
Qs
T
n
(@)
Z
<
—AI

I YOOFONVH SIYPZHT 8
C NOOFONVH SAYEZYT =9

https://www.blaisepas
Blaise Pascal Magazine 110 2023

POCKET PACKAGE (2BOOKS)
LAZARUS HA

PUTS :

PASCAL USERS
TIPS & SOLUTIONS

CREATING TWO SIMPLE COMPONENTS
FOR DELPHI

Rewritten and converted by Detlef Overbeek, inspired by an old Dutch
article of Paul J Gellings Blaise 34 page 169.

This article covers the creation of two very simple Delphi
components.

It has two purposes:

Show how to create a component from scratch and create
something useful. For those for whom this is entirely new,
the entire procedure is followed step by step.

The first component makes it possible to set a wait time even in
Delphi (de1ay) in Delphi, for example to be able to view screen
output or intermediate results or something similar and is
especially useful during the development of a program.

The ancient Borland Pascal possessed the built-in Delay
procedure, but Delphi doesn't have it.

The second component is intended to measure times,

for example the time needed for a certain calculation or for
some other task performed by Delphi and with an accuracy of
milliseconds. The components can then be placed directly
from the component palette on a Form and thus included in
an application and in doing so, the unit name associated with
the component is automatically included in the uses clause.
Much more could be said about components, of course

but for the purposes of this article we must leave it at that.

The source code of the two components discussed is contained
in the units UDelay . pas and UClock . pas.

For the icons to be placed on the component palette,

we will handle that in a separate article.

Figure 1 Downloads

BLAISE PASCAI®MAGAZINE

LD EY@

HOME v YOURDOWNLOADS SUBSCRIPTIONS v EVENTS v SHOP v

MY ACCOUNT v

ARTICLE PAGE1/9

Since Delphi constantly changes handling of menus,

the user interface etc we simply have to repeat certain things
since they are not always very logical ordered

A simple test program for these two components is the
TestTime.dpr with the corresponding unit UTestTime.
pas. The code of these files will be made available for our

readers at https: //www.blaisepascalmagazine.eu/en/
your-downloads/ see image at the bottom.

CREATING A NEW COMPONENT

We start with the step-by-step description of the
component which we call TDelayer and which can be
used to set a delay set. This component is itself derived
from TComponent the highest class on the tree - the
most general component, with which TDelayer also
automatically inherits the methods associated with
TComponent.

To create a new component, (this action is to show how
component code looks like) we first choose from the top
listing: (See page 3 of this article) > Component > New
Component > VCL for Delphi Win32.

A new widow appears: Ancestor Component.

Since we have only the highest class to use: (there is nothing in
between) we select TComponent. If you choose in the next
window TComponent it will become the name of the unit:
Componentl. The number is for auto increment, if you want to
do more. At this point again a wizard pops up that will create the
component text. Click finish.

(See page 4 of article for the code listing).

Welcome Detlef Overbeek

BOOKS v SOFTWARE v GEIZENGLISH v LOGIN LOGOUT

YOUR DOWNLOADS - (ONLY FOR SUBSCRIPTIONS)

Magazines

.

.

T UVUVIVVVVVY VTV VUUVVIIVIWNVUVVIVVVUVVIIVVVVUIVVIVVVVVYIVVV VYV VY

Blaise Pascal Magazine 117 2024

&

PUTS: ARTICLE PAGE 2 /9

PASCAL USERS
TIPS & SOLUTIONS

WHAT IS A COMPONENT AND WHAT IS ITS USEFULNESS

Delphi is an application development environment that is based is based on the use of
components. This means that developing an application with Delphi is done at least partly by
placing components from the component palette on a Form.

Such a component then contains data and functionality and the user

(of course as opposed to the creator of a component) does not have to worry about its
implementation.

Among the components we distinguish visual and non-visual ones.

The former include buttons, dialogs and so on.

The second kind includes TTimer, TDataSet, and so on.

There can be all kinds of reasons for developing a component.
Two of the most important of which are:

e something is needed that can be easily reused;
e there is no existing component for that purpose.

In addition, it could just be play, whereby someone, by making a couple of components gets a
better understanding of the "Visual Component Library (VCL)" and its use in creating Delphi
applications.

In this article, the creation of two non-visual components is discussed.

In principle these could also be created and used as separate units, but it has several advantages to
create them as components. They can then be placed directly from the component palette on a
Form and thus incorporated into an application and in doing so, the unit name associated with the
component is automatically included in the uses clause.

LISTING @.
The basic component unit as created by Delphi
Of interest is the division into private, protected, public and published sections.

The following important rules apply to this:

e the private section is for internal use in a component only,
can only be used in the class unit and cannot be applied directly by the user of a component;

e what is declared in the protected section can be seen within the component's class unit
and in any new class derived from it;

e the public section is used for the runtime interface and everything declared in this section
can be seen and used by all components of the application and in it are placed those properties
and methods that the user of a component during the running of the application;

e the published section is analogous to the public section but however, the properties declared in
this section are visible in the the Object Inspector and can therefore be modified there
to the user's requirements.

In the present case, only one method is needed in the unit which can be seen in Listing 2 of the
unit UDelay and with it the delay is set.

It is included under the public declarations because it must, of course, be able to be called from
the program in which a delay is needed, it should be callable.

This call, when the component in the relevant program is included with the name Delayer, it takes
the form: Delayer.Delay (2000)where the number is the desired delay time in milliseconds, i.e.

For the required time measurement use the function GetTickCount which gives the number of
milliseconds since Windows last started. The quantity (GetTickCount - FirstTick) thus gives
the number of milliseconds that elapsed after the time FirstTick.

The result of GetTickCount becomes zero again after Windows has been running for about 49.7
days of continuous running.

That is about 2432 milliseconds, so the result of this function is apparently an "unsigned integer".

Blaise Pascal Magazine 117 2024 @ 8

PUTS: ARTICLE PAGE 3/9

PASCAL USERS
TIPS & SOLUTIONS

File Edit Search View Refactor Project Run Component Tocls Tabs Help

Ax0 New Component

o New Component...

Personality, Framework and Platform

ent... Select a persenality, framework and platform for the compoenent you would like to create,

I:IE Install Coemp

Create ComponenNgmplate.
(O VCL for C++ Win32

ila Install Packages... (O FireMonkey for C++]

Import Component... () FireMonkey for Delphi

Import W5DL...

Figure 2: New component

<< Back Mext =» jh Cancel Help

A0 Mew Component

nao New Component

Ancestor Component Component
Select the ancestor component for this compongfit. Choose the new component's name and unit name.
Figure 1 Downloads

D'I'Component . '

- ‘J o Class Mame: TComponent]
Component Name Unit Name
‘ TBackendRequeltComponent REST.Backend.EndPaint Palette Page: e
TBackendRequektCompaonen... REST.Backend.EndPaint
J REST Backend.EndPoint Unit name: Ch\Users\edito\Documents\Embarcaden
: Search path:
TfrxReportComponent
TMetHTTPClient System.Met.HttpClientComp...
TMNetHTTPRequest System.Met.HttpClientComp...

d
6 ‘
H .

<< Back Next == — e Fini-_-h Cancel Help

Figure 3 search for the Ancestor

mao New Component

Create Unit

Choose to create a unit or add the created unit to an active package. After the unit is added to a
package it can be installed through the Install Packages dialog.

(®) Create Unit

@\ (O Install to Existing Package

Once you want to create the delay component listing O tnstall to New package

there is a code example on page 4/x of this article.

If you want to rename the unit you created because it
has the wrong name, then you have to start the
process again, or create the form manually without
the wizard that sets it all up for you.

Just copy the code you already have or created and
paste it in the form you saved with the correct name.
Save again.

Finish Cancel Help

Figure 4 Create the unit of the component

Blaise Pascal Magazine 117 2024 @ 9

PUTS: ARTICLE PAGE 4 /9

PASCAL USERS
TIPS & SOLUTIONS

Listing 1 unit Componentl;
interface

uses
System.SysUtils, System.Classes;y

type

TComponentl = class(TComponent)
private
{ Private declarations }
protected
{ Protected declarations }
public
{ Public declarations }
published
{ Published declarations }
end;

procedure Register;
implementation

procedure Register;
begin

RegisterComponents('Samples', [TComponent1]);
end;

end.
Listing 2 unit UDelay;j
interface

uses
System.SysUtils, System.Classes, Windows, Messages, Graphics, Controls, Forms, Dialogs;

type
TDelayer = class(TComponent)
private
{ Private declarations }
FInterval & Integery
FActive : Booleany
protected
{ Protected declarations }
public
{ Public declarations }
Procedure Delay(Interval : Integer);
published
{ Published declarations }
property Intervali Integer read FInterval write FInterval;
property Active : Boolean read FActive write FActive default False;
end;

procedure Register;
implementation
procedure Register;
begin

RegisterComponents('Samples', [Tbelayer]);
end;

Procedure TDelayer.Delay(Interval : Integer);

Var
FirstTick : Integery
Begin
If Active Then ShowMessage('Already running delay')
Else
Begin
Active i= True;
FirstTick := GetTickCount;
Repeat
Application.ProcessMessagesy
Until
(GetTickCount = FirstTick) >= Interval;j
Active i= Falsej
End;
End;
END.

Blaise Pascal Magazine 117 2024 @ 10

PUTS :

PASCAL USERS
TIPS & SOLUTIONS

File Edit Search View Refactor Project Run Component Tools

A0 Install Component

oo New Component...

4B Install Component... p Select units

Tabs

ARTICLE PAGE5/9

Help

Select the unit files you want to install, and whether they must be installed into a new or

Create Component Ternplate...

Install Packages...
Import Component...

L
—y
Import WSDL... ‘ Jl ‘
Figure 5 Install component
Now we can start the installing of the
component in the Delphi IDE.

Go to:

Component > choose the next step:
Install Component. Again a window
appears: See figure 5.

By choosing the three dotted button
(Ellipsis) the file system pops up and
then go to where you saved your
UDelay .pas (or whatever name you
have given it).

Select = Install to a new package.
Click Next.

The search path appears

(See figure 7.) and below that you can
enter the package name.

The description should of course be
some meaningful text. Click > Finish.

as0 |nstall Component

Its not all done yet:

Delphi wants to know what the
framework will be:

See figure 8. There is little choice,

so click OK and now the window (See
Sigure 9) will appear. Package

. ..Delay.bpl has been installed.

Now you can check if the component
really is available:

Start creating a new VCL program and
take a look in the

Palette > Sample > TDelayer

Figure 6 Unit File name

Install into new package
Select the package and enter the descripti

<< Back Next = >

an existing package.

Unit file name(s):

[-]

"UDelay.pas"

(O Install into an existing package

@:' Install into a new package

Finish Cancel Help

n for the package

Search path:

S(BDSLIBM\S (Platform)\release; S(BDSUSERDIR)\Imports; S(BDSUSEI
Package name:

Delay

Package description:

|delay action|

'@) Delphi package
(O C++Builder package

Finish Cancel Help

Figure 7: search path

-

Unit "UDelay" uses unit "Controls” which requires one of
listed frameworks, but the project does not specify support
for any framework.

Please select a framework to use.

X

Select Framework

Available Frameworks:

Visual Component Library -

Information

Component Installer

Package
C:\Users\Public\Documents\Embarcaderc'\Studich.. \Delay.bpl

L has been installed.

Figure 8: framework VCL

Blaise Pascal Magazine 117 2024

Figure 9: final install worked

11

PUTS :

PASCAL USERS
TIPS & SOLUTIONS

Palette

ARTICLE PAGE6/9

Furthermore, two fields: FInterval and

v % ‘x Tdelay]

FActive are defined of which the properties
Interval and Active are included.

~ Samples

Figure 10;
Gt TDelayer

the installed component

“ Samples
« TGauge
TColorGrid
H TSpinButton
E!TSpinEdit
= ThirectoryOutline
TCalendar

S gt TDelayer >

~a0 Project Options for Project2.exe (Win32 - Debug)

Figure 11:
uninstall is also

! v Packages
important

Runtime Packages

Normally in the IDE is a palette which becomes
available if you have started a new VCL Project.
See image xxx where you have filled in the
component you search for. If you open the
Samples Tab you will find your installed
component.

UNINSTALLING

What you still need to know is how to uninstall
the component.

It's rather strange organized.

You need to do it like this:

go to > Components chose > Install Packages.
The next window will appear. Scroll through the
list and then select the component and click
remove. That's all.

Blaise Pascal Magazine 117 2024

The property Active is intended to prevent a
new delay from being started during delay, which
is obviously not desirable and the correct interval
not being used again!

Usually there is something wrong with the logic of
a program. It is important for the writer of the
program that an error message appears if such a
thing is the case. If it is ok, the end-user of a
program never gets this message to be seen.
Next, the unit is then saved with File|Save as
choosing a more meaningful name, in my case
Udelay.pas.

This is placed in a separate folder for components.
| chose c:\Components\TimeDelay\.

Make your own choice

X

Packages
Design packages

DBExpress Enterprise Data Explorer Integration =
DBExpress InterBase Data Explorer Integration

delay action
.0 Compatibility Components
Edge WebView2 Components
EmbarcaNero - RTL Component Editors
Embarcadely
Embarcadero YctionBar Components

Embarcadero ADQ DB Components

Embarcadero C++Byilder Internet Explorer Components Package
[] Embarcadero C++BuNder Office 2000 Servers Package

‘:] Embarcadero C++Build& Office XP Servers Package
Embarcadero Cloud manay
Embarcadero Common Desidg Resources
Embarcadero Control Panel Appet Package

i PSR . -~ -

- Tethering Component Editors

gement components

C:\Users\Public\Documents\Embarcadero\Studio\23.0\Bpl\Delay.bpl

Add... Remove Edit Components

Cancel Help

2 ”

PUTS :

ARTICLE PAGE 7 /9

PASCAL USERS
TIPS & SOLUTIONS

Figure

Delphi offers a special
way of showing the
graphical possibilities:

Go to > Project
->Options - Application
- Appearance

ANOTHER COMPONENT

We now describe, without explicitly repeating all the steps mentioned in the previous section
mentioned, a second component:

TClock, which, like the previous one, is derived from TComponent and placed on the Sample
page of the component palette. This component gets two functions and one property, and the
entire unit is shown in Listing 3:

Listing 3. Source code of the unit UClock.

Here again we see the use of the GetTickCount function. The GetStart function is used to set
the start time, while at the end of the period whose duration is to be measured, the function
TClock.Time is called, which as a result at once gives the string for the elapsed time.

To also be able to determine intermediate times, e.g. in addition to the total time taken by a
calculation, also that of intermediate operations, the array the array st [0..3] is used to record
the individual start times in it. In the constructor Create its initial value is setto 0.

Including the component on the component palette, including compiling proceeds exactly as
described for the previous component. In this case, given the purpose of this component,
there is no need for the presence of an adjustable property.

Although here you could therefore also use a unit instead of a component, inclusion in an
application is, as already mentioned above, easier for a component than for a unit.

TEST PROGRAM

To test the components discussed above, we created a small program called DelayTesting with one
unit: UDelay.pas. In it, we define the form TestForm and on it we place on a panel (TestPanel)

o the two components, six labels, two Buttons and an Edit field as shown in Figure 6.

At the heart of the program are the procedures TestBtnClick and CalcButtonClick which are
shown in Listing 4, see next page. Furthermore, we see the TestMemo in which the results of the

ArithmeticButtonClick procedure are shown.

Listing 4. The procedures FormCreate, TestBtnClick and

il calculateButtonClick from the unit UTestTime. (See page 8 of this article)

In the FormCreate procedure, the default value of the Interval in the IntervalEdit window.
This or a modified value of this number is used as the interval for the Delay.
After expiration of that interval, the DelayLabel field displays the elapsed time.

When everything works correctly, the result is equal to the set delay. In most cases, this is correct
within a few milliseconds and so that is apparently the accuracy of the time measurement.

In the ArithmeticButtonClick procedure is both - the total time measured - as well as the
time for each calculation separately. This latter can be important, when between individual
calculations intermediate operations take place and one also wants to determine their influence.
In this case a delay as an example.

E DelayerTestForm Blaise Pascal Magazine

Test delay

.Test calculation Tiklabel
MowLabel
DelaylLabel

CalcMemo

Delayer DelayClock

Blaise Pascal Magazine 117 2024 @ 13

PUTS :

PASCAL USERS
TIPS & SOLUTIONS
Listing 3 Unit UClock;

Interface

Uses

System.SysUtils, System.Classes, Windows, Messagesy

Type

TDelayClock = class(TComponent)

Private { Private declarations }
FStart i Integer;
nPartTime: Integery
st : Array[0..3] OF Integer;

Protected { Protected declarations }
Public { Public declarations }

Constructor Create(AOwner : TComponent); override;

Function GetStart i Integer;
Function Time i STRING;

Property Start : Integer read GetStarty

Published

{ Published declarations }

End;

Procedure Register;

Implementation

Procedure Register;

begin

RegisterComponents('Samples', [TbelayClock]);

end;

Constructor TDelayClock.Create (AOwner : TComponent);

Begin

Inherited Create(RAOwner);

nPartTime := 0;

End;

Function TDelayClock.GetStart @ Integer;

Begin

If nPartTime < 3 Then inc(nPartTime);
st[nPartTime] := GetTickCount;

ARTICLE PAGE 8 /9

End;
Function TDelayClock.Time i String;
Var
iExpireTime : Integery
hour, min : Word;
sec 1 extended;
tmp : String;
Begin
iExpireTime := GetTickCount - st[nPartTime];
hour 1= iExpireTime DIV 3600000;
iExpireTime = iExpireTime MOD 3600000;
min = iExpireTime DIV 60000;
iExpireTime := iExpireTime MOD 60000;
sec 1= 0.001 ¥ iExpireTime ;
If hour >0
Then tmp := tmp + Format('%2.1d u %2.1d m %5.3f s', [hour, min, sec])
Else
Ifmin >0

Then tmp := tmp + Format('%2.1d m %5.3f s', [min, sec])

Else tmp := tmp + Format('%5.3f s', [sec]);

Result i= tmpy

dec(nPartTime);

End;

end.
Blaise Pascal Magazine 117 2024

)

14

PUTS: ARTICLE PAGE9/9

PASCAL USERS
TIPS & SOLUTIONS

Listing 4 unit DelayTest;

interface

uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System.Classes,
Vcl.Graphics, Vcl.Controls, Vcl.Forms, Vcl.Dialogs, Vcl.ExtCtrls, Vcl.StdCtrls,
UClock, UDelayy

type

TTestForm = class(TForm)
DelayClock: ThelayClock;
TestPanel: TPanely
TestBtn: TButton;
CalcButton: TButtony
Tiklabeli TLabel;
NowLabel: TLabely
DelayLabel: TLabely
Delayer: TDelayer;
IntervalEdit: TEdit;
CalcMemo: TMemoy

procedure FormCreate(Sender: TObject); Fi 3
procedure TestBtnClick(Sender: TObject); tflwgeurrL?nnihg project
procedure CalcButtonClick(Sender: TObject);
private -
{ Private declarations } ﬂ DelayerTestForm Blaise Pascal Magazine
public
{ Public declarations } Toct delov
end; est delay
var Test calculation 2000
TestForm: TTestForm,; 20-5-2024 14:
implementation Total amount of time used: 42,641 s
{SR *.dfm} i=3sun

Total amoun
Total amount o
Finished calculation

Procedure TTestForm.FormCreate(Sender: TObject);
Begin

IntervalEdit.Text := IntToStr(Delayer.Interval);
End;

Procedure TTestForm.TestBtnClick(Sender: TObject);

Figure 14: the error message

Begin
NowLabel.Caption := DateTimeToStr(Now);
TikLabel.Caption := IntToStr(GetTickCount);
DelayLabel.Caption := "}
Delayer.Interval :i= StrTolInt(IntervalEdit.Text);

DelayClock.GetStart;

Delayer. Delay(Delayer Interval);

DelayLabel.Caption := 'Total amount of time used: ' + DelayClock.Time;
End;

Procedure TTestForm.CalcButtonClick(Sender: TObject);
Var i, j i Integer; Sum : extended;
Begin
DelayClock.GetStart;
For i i= 1 TO 5 DO
Begin
sum := 0.0;
DelayClock.GetStart;

FOR j := 1 TO 10000 DO
sumi=sum+ i/ (i +3)/ (1 +3);

CalcMemo.Lines.Add('i ="'+ IntToStr(i) + 'sum ="+ FloatToStr(sum));
CalcMemo.Lines.Add('Total amount of time used: ' + DelayClock.Time);
Delayer.Delay(Delayer.Interval);

End;
CalcMemo.Lines.Add('Total amount of time used: ' + DelayClock.Time);
CalcMemo.Lines.Add('Finished calculation');
End;

end.

Blaise Pascal Magazine 117 2024 @ 15

ADVERTISEMENT

David Dirkse’'s website: davdata.nl/math

_ GraphicsExplorer

[K/

https://www.blaisepascalmagazine.eu/product-category/books/

Blaise Pascal Magazine 116 2023 16

<>

PUTS: ARTICLE PAGE 1/ 2

PASCAL USERS TIPS & SOLUTIONS

Some weeks ago | had a reaction from Ettore Cicinelli from Italy

and he asked for a solution .He had a problem with a project from the book Learning to program using Lazarus: a
very nice example, very useful but not yet checked with the latest version of Lazarus 3.2.

It did not compile in the right manner, so | asked Ignace Peeters from Belgium if he could take a look at it.

Ignace solved the problem and here it is:

There was an error in the code:

In the StringList, an object is added (descending from TStrings) via AddObject.

When this object is requested afterwards, it is already an object, it does not need to be converted to TObject.

The Pointer conversion that used to be there: TObject (Pointer (Length (APPI”.name)))

has been replaced by TObject (PtrUint (Length (....))) which is clearer and easier because this is an unsigned
object. If you then do the reverse operation via PtrUnt afterwards when excavating, everything works.

procedure TForml.DisplayComponentPropertiesy
var

aPPI: PPropInfoy

aPTI: PTypelInfoy;

aPTD: PTypeDatay

aPropListi PPropListy

sortSL: TStringListy

il integery

s: stringy

begin
seViewer.Lines.Add("); inc(1lineNo);
aPTI := PTypeInfo(compClass.ClassInfo);
aPTD := GetTypeData(aPTI);
s := Format(' %s has %d published properties:',[aPTI”.Name, aPTD”.PropCount]);
hiliter.AddToken(lineNo, 1, tkText); hiliter.AddToken(lineNo, Length(s), atrBD);
seViewer.Lines.Add(s); inc(lineNo);

if (aPTD.PropCount = 0)
then seViewer.Lines.Add(' (no published properties)')
else
begin
Getmem(aPropList, SizeOf(PPropInfo)* aPTDA.PropCount);
sortSL i= TStringlList.Create;
sortSL.Sortedi= true;

try
GetPropInfos(aPTI, aPropList);
for i := 0 to aPTDA.PropCount = 1 do
begin
aPPI := aProplLj
sortSL.AddOb; \ %0S: %s', [aPPI”.Name, aPPIN.PropType”.Name]),
Commented [/ TObjeft(Pointer(Langth(aPPI”.Name))));
ength(aPPI”/.Name))));

end,

for i i= 0 to sortSL.Count = 1 do
begin
seViewer.Lines.Add(sortSL[i]);

Comm/ [/ hiliter.AddToken(lineNo, S nteger(s L.Objects[i])), atrBD);
hiliter.AddToken(lineNo, Sdec(PtrUInt(s L.Objects[i])), atrBD);
hiliter.AddToken(lineNo, Length(sor i]), tkText);

inc(1lineNo);
end,;
finally
Freemem(aPropList, SizeOf(PPropInfo)* aPTDA.PropCount);
sortSL.Freey
end,;

end,;
end,;

Blaise Pascal Magazine 117 2024 @ 17

PUTS:

PASCAL USERS

Standard
Additional
Common Controls
Dialogs
Data Controls
System
Misc

~ Data Access

ThemDataset
TsdfDataSet

- TDbf
SynEdit
LazControls
RTT

IPro

Chart
S0Ldb

TFixedFormatDataSet

TIPS & SOLUTIONS

FalettePayge Data Access

\7\? @ ARTICLE PAGE 2/ 2

This is a very nice example that

ThataSource
T Component Browser
I3
Standard
1™ Additional
- TBitBtn
- TSpeedButton
- ThtaticText
T - Tlmage
- TShape
T - TBewvel
A - TPaintBox
D - TMotebook
Ex - TLabeledEdit
H - TSplitter
01 - TTraylcon
e - ThlaskEdit
e - TCheckListBox
T - TacrollBox
- TApplicationProperties
- TStringGrid
- TDrawGrid
< - TPairSplitter
- TColorBox
- TColorListBox
- TWaluelistEditor

_shows how to work with
Treeviews and and how to use

pointers.

Blaise Pascal Magazine 117 2024

Commeon Centrols
Dialegs

Data Contrals
System

Misc

Data Access
SynEdit
LazControls

- TDividerBevel
TExtendedMotebook
TListFilterEdit

i TTreeFilterEdit
RTTI

IPro

Chart

~ 5QLdb

- T50LCQuery

- Ts0LTransaction

- T30LScript

- TSOLConnector

- T30LConnection

- TOracleConnection

- TODBCConnection

- TMySCL40Cennection
- TMy5CL41Connection
- TMySQL50Cennection
- TMySCQL51Cennection
- TSCLite3Connection
- TIBConnection

FPalettePage Additional
TBitBtn

'TEitBtn' is declared in the Buttons unit
Instancelize i= 1528 bytes

TBitBtn class hierarchy [9 ancestor classes]
Tohject
TFersistent
TComponent
TLCLComponent
TControl
TWinControl
TEuttonControl
TCustomButton
TCustomBitELn
TEitBtn

TBitBtn has 76 published properties:
Action: TEasiclAction

Align: Tilign

Anchors: TAnchors
AnchorSideBottom: Tinchorlide
AnchorSideLeft: Tinchor3ide
AnchorSideRight: Tinchor3ide
AnchorSideTop: Tinchor3ide
AutoSize: Eoolean

BidiMode: TEil'iMode
BorderSpacing: TControlBorderSpacing
Cancel: Boolean

Caption: TTranslateltring
Color: TGraphicsColor
Constraints: T3izeConstraints
Cursor: Tlursor

Default: Eoolean
DefaultCaption: Eoolean
DisabledImageIndex: TImageIndex
DragCursor: TCursor

DPragKind: TDragKind

DragMode: TDragMode

Enahled: Eoolean

Font: TFont

Glyph: TEitmap

GlyphShowMode: TGlyph3howMode
Height: LongInt

HelpContext: THelpContext
HelpKeyword: Ansi3tring
HelpType: THelpType

Hint: TTranslatel3tring
HotImageIndex: TImageIndex
ImageIndex: TImacgeIndex
Images: TCustomImagelist
ImageWidth: LongInt

Kind: TBitBtnKind

Layout: TEuttonLayout

Left: LongInt

Margin: LongInt

HModalResult: THModalResult
Hame: AnsiString

HumGlyphs: LongInt

NN R N LY .

<

&

18

DATABASE WORKBENCH 6.5 PAGE 1/ 33

The Swiss army knife for database development

‘

g _=er= INTRODUCTION:
We introduced Database Workbench 6 back in 2022, a lot has changed since then.
But now, first things first:

WHAT IS DATABASE WORKBENCH?

A complete database development tool with native support for Oracle, SQL Server, MySQL,MariaDB,
PostgreSQL, Firebird, NexusDB, InterBase and SQLite.

Database Workbench offers a well-ordered, clear and consistent user interface for different
database systems and provides access to database system specific features. It is very user friendly
and the GUI is made in away that people can understand most of it with simply using your
expectations and logic. Which is worth a great compliment.

L

File Edit Search Editors View Tools Windows Help

3| v] En,

Q@ L5~ - - - - - - - - - - - - -
S| e - Ly EHREQ| REE iy
E% Server Manager
BE-Blamn
Personal .
Register Server Help & Support

[Enter database name fiter here... [X] Register a database server View the documentation,

. 50 you can use itin videos with tips & tricks

¥ Favorites Database Workbench. or visit our support page and

v E upscene-server MySQL ask a question

> Wi Databases (Fitered)

g Backup -
> E} Management » Examples
> & Security / Open a diagramming example
3 pr A for conceptual or physical
’ ﬁ’ Activity diagramming

y Online Shop N, Website
W, chase licenses online for J Visit our company website for
- Database Workbench or N\ L/ news and information on
other products Database Workbench and
other products

Show when starting Database Workbench Close Window

Database Workbench

[Welcome
caps | NUM

Figure 1: You can use this application for your database development from start to finish:

9
Database Workbench . .
main window / aeigrcger start with designing graphically, end with testing queries and debugging stored procedures.

And somewhere in between, you can create schema objects like tables, indices, constraints, generate
data or import data from legacy systems for testing purposes, and document your database with
printing or maintain your database with to-do lists and version control.

EDITIONS, MODULES, LICENSING AND SUPPORT
Database Workbench comes in 3 editions: Basic, Pro and Enterprise.

The license itself is not time limited, updates are included for the first year.
You can purchase a subscription beyond your first year for additional updates for the current major
version. Each license has to include at least 1 module for a specific database system.

Blaise Pascal Magazine 117 2024 @

DATABASE WORKBENCH 6.5 PAGE 2 / 33

x

Figure2: |
Feature matrix with
detailed edition
differences

Such a module provides native access to a database system and includes functionality to design,
create and modify databases. Additional modules can be added at a later time.

The Basic edition covers the needs for most developers, but doesn't include visual database design,
although you can reverse engineer an existing database for documentation purposes.

With the Pro edition, you can design your database with logical and physical models.

It adds the ability to debug stored procedures and triggers, and open any ADO or ODBC data
source (in meta data read only mode) or convert from those to supported database systems.

The latest version of the Pro edition also allows you to open SQLite databases in meta data read
only mode without licensing the SQLite module, there's full SQLite support with the module added
to your license.

More features for the Pro Edition: transfer data to and from ADO or ODBC data sources, print
schema objects, create custom reports that can be used for multiple databases, support for
roaming Windows profiles and Windows Terminal Server, and additional productivity features like
favorite databases, integrated To-Do lists and SQL/Code Catalogs.

The Enterprise edition is created for development teams:

adding a central repository or registered servers and databases, specific multi-user features and a
built-in Version Control System for database objects.

Modular licensing in combination with the different editions with different prices makes sure there's
a suitable option for everyone.

Feature Matrix

Feature Lite Basic Pro Ent

Free versus licensed

Commercial database development - v ¢ ¢
Ability to register more than 2 servers - v ¥ ¢
Ability to register/use more than 2 databases per server - ¢ ¢
Ability to use multiple database systems - ¥ ¢
Ability to open SQLite databases (without SQLite module license, meta data read only) - - ¢ ¢
Support for Windows roaming user profiles - - ¢
Support for Windows Terminal Server 2 - - ¢
Connect to Database Workbench TeamServer - - -y
ODBC & ADO Tools

Ability to open MS Access databases (meta data read only) - v ¢ ¢
Ability to connect to any ODBC & ADO data source (meta data read only) - - v
Export data from any ODBC & ADO data source - - v ¢
Create INSERT script from any ODBC data source - - v ¢
Cross-Database development

Compare meta data objects, also from different database systems - v ¢ ¢
Migrate meta data objects to the same or different database systems - ¢

A detailed feature matrix is available here:
https://www.upscene.com/database workbench/editions

Blaise Pascal Magazine 117 2024 @ 20

DATABASE WORKBENCH 6.5 PAGE 3/ 33
CONCEPTUAL AND PHYSICAL DATABASE DESIGN

A data modeling tool can be useful during the database design phase and Database Workbench
includes a diagram editor with which you can create 2 types of model, a "logical model" and a
"physical model".

9= 2% ~ H ~ B3| [3 & [#4i 52 Sd- N~ Zoom [100% v || D
New Logical Diagram |
New Physical Diagram InterBase Diagram

Firebird Diagram

New Sub-diagram

Microsoft SQL Server Diagram
MySQL Diagram

Oracle Diagram

Domains

NexusDB Diagram
PostgreSQL Diagram
SQlite Diagram

Figure3
Neéw Diagram menu

The physical model is the actual database, it contains tables, views and their relationships via
foreign key constraints. You can visually design a database this way or reverse engineer an existing
database, for example for documentation purposes.

Figure 4:]
A pPB/,smaI data model in
the Diagram Editor.

< 0 | X

DS E-R(RS[H S 58 N zoom [100% ¥ ® O(ffon == (K& |EE®

Diagram Explorer
v 5 Diagrams order_lines cart_products
& Main orderid Integer
> T Tables ¢ orderlineid Smallint cartline
- productid Integer productid Integer
00 Views quantity Smallint quantity Integer
— — - price_per_item _ Decimai(10, 2)
Object Info
Table
Iorder_hs
TS products
Integer
Name Datatype A prod_name VarChar(200)
orderid Integer : prod_image Becmﬂmal(()ﬁ) 2
. price i 5
‘;:odde'm"?d ms't' egemrlt | weight Decimal(10, 2)
quantity Smallnt
price_per_item Decimal(10,... |
item_description VarChar(200) -V orders customers
<IN

DateTime

Navigator =+ A expected_delivery_date Date
_notes LongText postcode VarChar(10)
countrycode Char(2)
phonenumber VarChar(20)
regdate DateTime
<
Main
Modified Ful View

Blaise Pascal Magazine 117 2024 @ 21

DATABASE WORKBENCH 6.5 PAGE 4 / 33

|

Figure 5:

Aphysical model
foreign ke% constraint
from ORDERS to
CUSTOMERS

Figure 6:
A'logical model
relationship

The physical model (the database) is an implementation of certain business logic, eg in a webshop
database, each "customer" can have orders. Each "order" record should point to an existing
"customers" record.

This logic is physically implemented by a CUSTOMERS table, an ORDERS table and a foreign

key constraints between those tables with a CUSTOMERID column in the ORDERS table.

¥ orderid Integer © custid Integer
custid Integer cust name VarChar(200)
order_date DateTime cust_email VarChar(200)
expected_delivery_date Date = —{fk_orders_customersl—b mddress VarChar(200)
customer_notes LongText postcode VarChar(10)

countrycode Char{2)
phonenumber VarChar(20)
regdate DateTime

The "logical model" is database agnostic, more abstract and it does not care about actual
implementation, you're only modeling the business logic.

A logical model can then be used to generate the physical model: the actual database.

Logical data models consist of entities and their relationships, a so-called entity-relationship model
(ER-model). A "customer” is an entity which has a relation to the "order" entity.

OnlineStore
Customer
% OnlineCustomerlD Integer
Name Variable length string
Address1 Variable length string
Address2 Variable length string
Region Variable length string
(Z:Ity ;arlaz:e :engt: string R — o *8n;|m[a)0rderlD IDntger
ip ariable length string rderDate ate
Phone Variable length string ShippingAddress Text
CreditCardNr Variable length string
CreditCardExpiryDate Date
\ 1
& Q7
HasInCart ‘ii

As you can see here, you don't have a reference to the CUSTOMER entity in the ORDER entity, but
there is only a logical relationship between the two. This makes for a cleaner model with the focus
on the actual logic instead of how to implement such a relationship in your database.

Blaise Pascal Magazine 117 2024 @ 22

DATABASE WORKBENCH 6.5 PAGE 5/ 33
s |

‘l General Cardinalities
N
- T 1| R g o
BelongsTo| [H
Ei u{e 7: hi el
elationsni
properties {% a logical O One - One (@ Many - One
model
(O One - Many (O Many - Many
Dominant role [none] 2
"Order" to "Customer”
Required Cardinality 11 v
Role name |BelongsT0 ‘
Attributes |[defau|t] ‘ v ‘
"Customer” to "Order”
[] Required Cardinality on v
Role name |Has ‘
Attributes |[defau|t] ‘ v ‘
[ok | ‘ Cancel ‘ Help ‘
There are different types of relationships in an ER-model and these relationships have different
implementations in a database.
A relationship can be "identifying" or "non-identifying" and it has cardinality,
with the number ratio expressed in symbols, like one-to-one or one-to-many. An identifying
relationship means the dependent entity can only be identified when also using the owner entity
identifier. When generating the physical model, the identity identifier becomes the primary key and
for an identifying relationship, the primary key of the parent will be part of the primary key of the
childtable.
With a non-identifying relationship the child entity can be identified without using the owner
entity. When generating the physical model, the primary key of the owner will be referred to in
the child, but the child will have its own primary key.
Orders OrderLines
% OrderlD Integer Order_Orderines % OrderLineNr Short integer
Orders2 : B OrderLines2
eger| ' Order2_OrderLines2|- — - <. 6 derl inelD Integer
- 8 Diff Orders OrderLines
bétween implementation Order_Orderlines * OrderLineNr Smallint
of identifying vs non- ¥ Orders_OrderlD Integer
identifying
Orders2 OrderLines2
¥ OrderlD Integer Order2_OrderLines2 ¥ OrderLinelD Integer

Orders2_OrderlD Integer

Blaise Pascal Magazine 117 2024 @ 23

DATABASE WORKBENCH 6.5

Additionally, a non-identifying relationship can be mandatory or optional, resulting in a child table

l
R

PAGE 6/ 33

with either a non-null column for the parent identifier, or a nullable column.
This optionality is also an aspect of cardinality, as it possibly defines "one-or-zero"-to-many

relationships, for example. When you generate the physical model, columns for the relationship will
be added to the table automatically.

OnlineStore
Customer
% Onlin merl Integer
Name Variable length string —
Address1 Variable length string
Address2 Variable length string
Region Variable length string
City Variable length string I
Zip Variable length string | OrderDate Date
Phone Variable length string ShippingAddress Text
CreditCardNr Variable length string
CreditCardExpiryDate Date /y/
oy OnlineStore
L
* OnlineCustomerlD Integer
Name VarChar(30)
Address1 VarChar(80)
Address2 VarChar(80)
E%riecgi relationship Region rcheet) v w —
; City VarChar(45) OrderDate Date
E:;%ggzirg?ni e Zip VarChar(6) ShippingAddress BLOB (text)
Phone VarChar(20) Customer_OnlineCustomerlD Integer
CreditCardNr VarChar(20)
CreditCardExpiryDate Date P\ T
OnlineStore A zero-to-more relationship is easy, but a many-to-many
relationship is physically implemented with an in-between-table.
Customer D[Rl 7 e
% OnlineCustomerlD Integer This adds an extra table to the physical model with
Name Variable length string constraints "pointing" both ways.
Addressi Variable length string
Address2 Variable length string
Region Variable length string -
City Variable length string | | OnlineStore
2 Veritie e S
one ariable length string -
CreditCardNr Variable length string N W :;IarCﬁ;r(M)
CreditCardExpiryDate Date Address1 VarChar(80)
Address2 VarChar(80)
Region VarChar(45)
City VarChar(45) ‘_ICustomerID
Zip VarChar(6)
Phone VarChar(20)
CreditCardNr - VarChar(20)
CreditCardExpiryDate Date
% ProductlD Integer . A
Name Variable length string .| FK_Customer ShoppinaCartPro
EAN Variable length string= — duct pping
Price Money '
::r:lf(t:) gix(;B ! ", ShoppingCartProduct
|

AT

Fi?ure 10:
ATogical many-to-

many relationship ends

up creating an
additional table

Blaise Pascal Magazine 117 2024

¢ ProductlD" Integer
“ OnlineCustomerlD Integer

i
FK_PRODUCT_SHOPPINGCART
PRODUCT

¥ ProductlD Integer
Name VarChar{45)
EAN VarChar(20)
Price Numeric(18, 4)
Info BLOB (text)
Pic BLOB (binary)

ProductGroup_PreductGrouplD Integer

[BelnnneTAl

X

DATABASE WORKBENCH 6.5 PAGE 7 / 33

(& Database Workbench v6.5.0 Pro ' "}
File Edit Search Editors View Tools Windows Help
SO -EA-Evd@ -SRI rOo @O sy Oy iy vy v iE| T v L BHRCEQ|RI
— T (7 S
E@ Server Manager = e 3
0 me i o O BB BI6 8% K A zeom 059 © OB = [B] S |EE | 0 W r
&&C|m|o| TR | Rl a8
Firebird: Detlef (SYSDBA) e Eg":: INVOICELINES INVOICESTATE VATPERC
[Enter fiter here... X|1| > o5 rables = '
v [Schema: Detlef (dialect 3) o Views
> '@ Domains =5 Domains
v T Tables (39)
> [ADDRESSES
> [F] ADDRESSESUSED
>] ADDRESSFORMATS
>] ADDRESSROLES
> B3 sooausst
> [CLENT_DATA_SET Object Info
> [COMPANIES
> @ COUNTRIES INVOICES VATREGION VATSELECTOR

> [0 EMPLOYEES

> [GENDERNAMES
> [IMPORTCSV_WP
> F mworceLNes

> [mwoices

>] INVOICESTATE
> I} INVOICESTATETYPE
> E3 JosusT

> [MEMBERPAYSTATUS
> [EH MEMBERS

> [H MEMBERTYPES

> 7] oLDMEMBERIDS
>] PERSON2COMPANY
> [PersoN20B

> [F] RECORDSTATUSINFO ADORESSFORMATS
> [} RECORDSTATUSNAMES = IMPORTC SV_WP
FORMATNAME VarChar(25)

> [] SELECTIONDATA \J mm mm ”
i % MSE.ECIOIUSIS USER_LOGIN VarChar(70)
> [SUBSCRIPTIONLIST EEER lrjl;*sj}r:m ¥m§
> [vaATPERRC © PKRECORD Integer LAST_NAME VarChar(70)
> [VATREGION GENDER VarChar(10) MEMEBERSHIP_LEVEL_ID VarChar(70)
MEMBERSHIP_LEVEL_NAME ~ VarChar(70)
> [VATSELECTOR SUBSCRIPTION_KEY VarChar(70)
T Views CREATED_DATE VarChar(50)
EXPIRATION_DATE VarChar(50)
£g Procedures STATUS VarChar(20)
% Functions TIMES_BILLED
Ui Packages DISCOUNT_CODES VarChar(70)
#% Indces GATEWAY VarChar(70)
-) GATEWAY_CUSTOMER_D VarChar(70)
&5 Constraints GATEWAY_SUBSCRIPTION_ID VarChar(70)
T Triggers AUTO_RENEW VarChar(10)

vvvwvwy
YRy v v v v v v vV vy
w
i

Navigator Workspace

¢’ NweledenDiagram.pdg

CAPS NUM

Figure 11: You can add colors

Blaise Pascal Magazine 117 2024 @ 25

DATABASE WORKBENCH 6.5

PAGE 8 / 33

Diagram Explorer

O-®-8-B|E 8|t

B8z

R X~ | Zoom [100% V]| © O [AfEe == B H|EE &

v [5 Diagrams
2 Main
> Tables

rew

Views
Domains

Object Info

Bxa

v A A~

B

INVOICELINES INVOICESTATE VATPERC STOCKLIST

INVOICES INVOICESTATETYPE REGIO SELECT(BOOKLIST

ADDRESSFORMATS IMPORTCSV_ WP
 FORMATCODE Integer PR
FORMATNAME VarChar(25) ¢ MEMBERSHIP 1D Integer ® ME

USER_D Numeric(18, 0)
USER_LOGN VarChar(70)
GENDERNAMES 'F’:Es"-}_fm, ME x-rcmmoa m;
© PKRECORD Integer LAST_NAME VarChar(70)
GENDER VarChar(10) MEMEBERSHIP_LEVEL_ID VarChar(70)
MEMBERSHIP_LEVEL_NAME ~ VarChar(70)
SUBSCRIPTION_KEY VarChar(70)
CREATED_DATE VarChar(50)
EXPRATION_DATE VarChar(50)
STATUS VarChar(20)
TIMES_BILLED Integer
DISCOUNT_CODES VarChar(70)
GATEWAY VarChar(70)
" D)
GATEWAY_SUBSCRIPTION_D VarChar(70)
AUTO_RENEW VarChar(10)

ADDRESSESUSED

¥ PKRECORD Integer
‘COMMONID Integer

SELECTION

ADDRESSROLES

ROLEID Integer
ROLENAME VarChar(25)

ard<aac i

x
[1

PREC 328

PRODUCTLIST

Integer
CTNAME VarChar(35) MO
PRODUCTNAMEEX BLOB (text) BE
DEPRECATED Smalint VE
UNITPRICE VE

VATGROEPID

AINUMBER Integer
PRIVATREMARKS BLOB (text)

FERI I L]

EEEREEY]

Figure: 12 If you open the pdf file with an opposite page you will see the whole picture over two pages

Blaise Pascal Magazine 117 2024 @

26

RECORDSTATUSINFO

RECORDSTATUSNAMES

STATUSID Integer
STATUSNAME VarChar(30)

DATABASE WORKBENCH 6.5

PERSON2JOB MEMBERS

JOBLIST MEMBERPAYSTATUS MEMBERTYPES
¥ JOBID Integer © STATUSID Integer ° Integer
JOBTITLE VarChar(20) PAYSTATUS VarChar(20) TYPESPEC ‘VarChar(1)
REMARKS BLOB (text) DESCRIPTION ~ BLOB (text)

LIENT_DATA_SET

_DOORGEVOERD

ING

ING
ENACHTER
ISNR

VarChar(10)
VarChar(10)
VarChar(25)
VarChar(10)
VarChar(10)
VarChar(50)
VarChar(50)
VarChar(10)
VarChar(15)
VarChar(100)
VarChar(15)
VarChar(50)
VarChar(100)
VarChar(100)
VarChar(100)
VarChar(10)
VarChar(15)
VarChar(100)
VarChar(40)
VarChar(10)
Date
VarChar(50)
VarChar(10)
VarChar(15)
Date

Boolean

Date
VarChar(10)
VarChar(50)
VarChar(50)
Date

VarChar(50)
VarChar(50)
VarChar(50)
VarChar(50)
VarChar(50)
VarChar(100)
VarChar(50)
VarChar(50)
VarChar(50)
VarChar(50)
VarChar(50)
VarChar(50)
VarChar(50)
VarChar(50)
VarChar(50)
Boolean
Boolean
Boolean
Timestamp
VarChar(50)
VarChar(50)
BLOB (text)
BLOB (text)
BLOB (text)
BLOB (text)

ADDRESSES

COUNTRYID Integer
FORMATCODE Integer

COUNTRIES

 COUNTRYID Integer
SHORTNAME VarChar(2)

COUNTRY VarChar(50)
POSTALNAME VarChar(50)
ALIAS BLOB (text)

REGIOND Integer

PERSON2SUBSCRIPT

PERSON2COMPANY

PAGE 9/ 33

EMPLOYEES
¥ PKRECORD Integer
PERSONID Integer
EMPLOYEED Integer

] Integer
SUBSCRIPTTITLE VarChar(35)

POSTMAIL
MONTHS

—
SUBSCRIPTIONLIST

Integer
Integer

Integer
VarChar(15)
VarChar(15)
FRSTNAME VarChar(30)
INBETWEEN ~ VarChar(15)
VarChar(45)
JRSR VarChar(15)
PERADRES ~ VarChar(30)
GENDER VarChar(1)
NATIONALITY VarChar(20)
ADDRESSD Integer

EMAIL VarChar(30)
EMAIL2 VarChar(30)
PHONE VarChar(20)
PHONE2 VarChar(20)
SKYPE VarChar(20)
FORMATCODE Integer

INLOGNAME VarChar(30)
PASSCODE Bigint
REMARKS BLOB (text)

OLDMEMBERIDS

PERSONID Integer
OLDMEMBERID VarChar(10)
REMARKS

BLOB (text)

Integer
VarChar(30)

DEPARTMENT VarChar(30)

ADDRESSID
WEBSITE
EMAIL

PHONE
CONTACT
VATNR
REMARKS

Integer

VarChar(30)
VarChar(30)
VarChar(15)
Integer

VarChar(20)
BLOB (text)

Blaise Pascal Magazine 117 2024

27

DATABASE WORKBENCH 6.5

Right:

%

<

Focusing on modeling the business
logic first, is easier than trying to

PAGE 10 / 33

General Attributes

EO_O|E|_:

e |mp|ement a database right ID Name Datatype Length Scak
e logical data types get . R
converted to physical, ~ away and gives you more visual 1 OnlineCustomerID Integer
ggﬁ)ae?]aégnstyfﬁggl information about the relationships 2 [] |Name 30
compared to visualized foreign 3| [J Addressi Datatype/Domain Domain Datatype
key constraints. See the next page 4| [] |Address2 Short integer
for the other half op the picture. 5 [] Regon Integer
6 [] city Long integer
7 [\zp Byte
8 [] Phone Unsigned short integer
9 [] CreditCardNr Unsigned integer
10 [|CreditCardExpiryDate Number
Float
Money
Date
Time
Date & Time
< Fixed length String
Variable length string
Single character
Fixed length unicode strin
I —Unicode variable length st
Main Products Unicode single character
Text
Unicode text
BLOB
_EENSEL:
Figure 14:
Ditferent ways of rch || View Tools Windows Help

opening object editors

"3 upscene-server:tonies:2

b JE v @~

MySQL/MariaDB: tonies (root)

[Enter fiter here... [x]
> @ wp_actionscheduler_caims Inn
> @ wp_actionscheduler_groups 1ni
> % wp_actionscheduler_logs Innol
> B wp_commentmeta InnoDB

> @ wp_comments InnoDB
> @ wp_es_deliverrepgcid

b4 % wp, ica A

> [wiles_p L¢ Edit Table...

> [wig es_st New Table...

> [woNg Drop Table

’ % Wp_e=] Duplicate

’ @ wp_ig_ag =] Rename...

> @ wp_ig_bl -

> [wp_g_c W

> @ wp_ig_cq ﬂ' Create SUID Procedures...
i’ % wp_lg_c Fd Show in Grant Manager...
> [wp_g_c

« P wm i o l7h Copy DDL

Blaise Pascal Magazine 117 2024

B0 R
5 R CEQ|RE:

Ctrl+F6

Stored Module Editor...
a ¥+ Trigger Editor..

Shift+F6

F7
Ctrl+F7
F10
F11

Java Source Editor...

r

Index Editor...

<> Constraint Editor...

[’ Domain Editor...

CREATING AND MODIFYING
DATABASES

You can create a new tables using the modeling
tools or by hand. Changes and additional schema
objects like indices or triggers can be done using the
different object editors.

Object editors can be reached from the Database
Navigator using double click or the context menu,
via the buttons in the toolbar or the main menu.

28

DATABASE WORKBENCH 6.5

General Columns Table Objects Options DDL
RREBRD

PK Column Name Column Type Length Scale Array Not NULL Identity Default
1 ONLINECUSTOMERID Integer O
2 [NamMe 30 O
3 [[] ADDRESS1 Domain/Datatype Domain Dataty... Not N... Default Characterset C

4/ | [] ADDRESS2 BLOB (binary) [w]
5 | [] |REGION BLOB (text) [w]
6 [ary Boolean [w]
7 [ap Char w]
8 | [] PHONE Date w]
9 | [J CREDITCARDNR DecFloat (]
10 | [] |CREDITCARDEXPIRYDATE |DecFloat (16) (=l
DecFloat (34) [w]
Decimal [m]
Double Precision [w]
Float [w]
Int128 [m]
Integer [w]
Numeric [w]
< Smallnt [w]
Time [w]
Time With Time Zone [w]
T - Timestamp [w]
’ Main Pro{Timestamp With Time Zone [w]

VarChar O

Figure: 12 If you open the pdf file with an opposite page you will see the whole picture over two pages

Blaise Pascal Magazine 117 2024

PAGE 11/ 33

29

DATABASE WORKBENCH 6.5 PAGE 12 / 33

> Each type of object has a different editor available. And although different database systems have different
features for each object type, the user interface shows you consistent object editors for each system.

Er:tonies:2 [wp_es_notification]

v

f Index Editor: upscene-server:tonies:2 [wp_actionscheduler_actions : args]
H \j E‘ b4 e

Table |wp_ i _actions V| Index |args

Table Table Objects Options Description Permissions DDL To-Do Data
BRBESD
PK Column Name Column Type Length Scale Not NULL AutoInc

es_note_id Integer 10

[les_note_cat Text] [] Full Text Index?
|

|

|

Index DDL To-Do

‘es_note_group NvarChar 255 Avaiable Columns Indexed Columns
es_note_templ Integer 10!

es. note,_status NVarChar 10 = Datatype Not NULL Name Datatype Not NULL
BigInt(20) args VarChar(191)]

SR AMELS

Table |wp_actionscheduler_claims ~ Trigger |wp_actionscheduler_claims_ad

Trigger DDL To-Do
Timing ‘Operation
O before O Insert
@ after @ Deete
O update

Trigger Source
10 | */
. Ebegin
/* variables */
DECLARE tmpVar INTEGER;
. /* code */
15 |lend

Line Message

-Unnamed-

Figure 15: 4 From each object editor, you can create new objects or modify existing objects. Depending on the
severaltypes of object ty e of object, additional tabs can be available that show, for example, the data for tables.

ﬂ —EP X i"*'
: Table [mantis_bug_table ~|
Table Table Objects Options Description Permissions DDL To-Do Data
H"H‘V'l'—‘c Max rows | HTIEAI "%‘E’H;‘ [] Autocommit
& platform 7/ % version ™ % fixed_in_version[7) % buid([¥) % profie id¥] * view_state" % summary o
Click here to define a fiter
» 2.4.0 0 10 Ability to control what date format & numerical forme
2.4.0 0 10 Possible wrong error message on setting string paran
Tl 1.5.2 0 10 Rare AV when closing FB TraceManager with active tr
1.5.1 1.5.2 0 10 Option to automatically start trace sessions upon ser
1.5.1 1.5.2 0 10 Multi-select in project grid to enable start/delete of m
1.5.1 1.5.2 0 10 Multi-select in trace session list to resume/suspend/stc
Tl 1.5.2 0 10 Clear entire regex fiter in parsed trace data grid withc
1.5.1 1.5.2 0 10 Confirmation dialog to commit active log database tr:
il IS 0 10 Allow regex fitter for # column of the parsed trace da
Vindows 1 10 Exception Text Limited to 78 Characters
Vindows 1 10 Procedure Editor Does Not Understand Autonomous
Vindows 1 10 Add a "Single Record" mode to the Data Viewer
0 10 Possible access violation when scroling to end of resu
Heoure 15 Vindows 1 10 Export Data Dialog - Select No Columns does not wa
Table Editor with 1.5.1 57 0 10 Show "Finish” button in project wizard in al wizard pa
additional Data tab] 10 Query Prepare takes a lot of time and seems to fetch ,,
< ' o - ' Y
Find data |Enter search text here... z” AV | Find column |Enter column name here... v|

Blaise Pascal Magazine 117 2024 @ 30

DATABASE WORKBENCH 6.5 PAGE 13/ 33

Different database systems all use a slightly different syntax for these statements, from within the
editors, you can easily modify the object properties and Database Workbench will generate system

|
& specific Data Definition Language (DDL) statements for you.

'n- Trigger Editor: upscene-server:tonies:2 [wp_actionscheduler_claims : wp_actionscheduler_claims_ad] E‘@
‘ EXE-fE- B kR
: Table |wp_actionscheduler_claims - Trigger |wp_actionscheduler_claims_ad |

Trigger DDL To-Do

Timing Operation
O before O Insert
@) after @ Delete
(O update
Trigger Source
10 */ ~
. Ebegin

. ||/* variables */
o DECLARE tmpVan INTEGER;
. ||/* code */

Relation [INVICES v | Trigger [IvoICES_ID o
Trigger Descriggion DDL Dependencies To-Do
[¥] Active? Position
Timing Operation(s)
@ before [] on Delete
O after On Insert
[] on update
Trigger Source
[External
1 =begin
new.id = get_new_id('INVOICE_ID', new.id);
end
Line Message
-Unnamed-
Figure 17: The user interface shows you the different possible data types, options for indices, triggers and

Trigger Editor for . . . h .
MyAlQLAatnderrebwd, ! constraints. It allows you to create complex objects using mouse and keyboard, all without having
differences o *M@ to know the exact DDL syntax or available options. It's fast and easy.

SQLITE WITH DATABASE WORKBENCH

The sQLite module was recently added to Database Workbench, it fully supports all SQLite
features include third party extensions.

Although SQlite is not server-based, it fits neatly into the application, instead of registering a
server, you register the SQLite library and optional extensions. After that, you can register your
databases. You can register multiple versions of the library or with different sets of extensions
depending on your requirements.

Blaise Pascal Magazine 117 2024 @ 31

DATABASE WORKBENCH 6.5

PAGE 14 / 33

\l °
Q
N
\")N Register SQLite Server
Enter or modify the information for this server u
Eigufe 18:
eqgistering an itrati
SQlite library with Regitration
an extension Display name |SQL‘rI:e 3.44 (with extensions) |
Folder | [root] "|
Details
SQLite library |C:\ngram Flles\Upscene Productions\Database Workbench 6 Enterpnse\sqite?;.dE” Version 3.44.0
Extensions C:\Data\sqglean-win-x64\sqlean.dl]
Fiqure 19: 0 You can register multiple instances (and versions) of the SQLite library, displayed as a 'server'. You can register
dT%e gNofthwind" sQLite multiple databases per SQLite 'server'.
CHEIOERE This alows for separation of SQLite versions, extensions or databases.
SQLite 3.44 (with extensions):Northwind.sqiite: 1 pxY - |
§ Server Manager Next Cancel Help
() SQLite 3.44 (with extensions):Northwind.sqgite: 1
TR - |
$8C PIXEE~-0-
SQLite: Northwind.salte Registering or creating a database is as easy as selecting an existing file or
[Enter fter here... x| entering a new filename. You can now open the database and view or

v 5 Schema: Northwind.sqlite
v T3 Tables (10)
> B Categories
> @ Customers
> @ Employees
> B OrderDetais
> @ Orders
> @ Products
> EF |Shippers
> @ sqlean_define
> @ sqlite_sequence
> B supplers
T3 Views (0)
% Indices (D)
v & Constraints
T Check Constraints (0)
s Unique Constraints (0)
> [Foreign Key Constraints (7)
v % Primary Keys (9)
> E% Categories.PK_Categories
> E% Customers.PK_Customers
> E Employees.PK_Employees
> Eb OrderDetais.PK_OrderDetails
> E% Orders.PK_Orders
> E% Products.PK_Products
> Eb Shippers.PK_Shippers
> E& supplers.PK_Suppliers
> E% sqglean_define.PK_sqglean_define
> Tg Triggers
v [Management & Maintenance
" Database Properties
g Backup Database
I« Perform Vacuum

Navigator Workspace

create the meta data and data.

The Database Navigator displays the tree with schema objects and several
"Management & Maintenance” options for commonly used database
information and tasks.

Although sQLite is easy to use, you'll notice that during development you
can run into problems.

For example, SQLite does not support adding or removing constraints for
existing tables. There's a number of steps to take:

O Create a new table with the constraints

® Transfer the data from the old table to the new
© Drop views that rely on the old table

® Rename the new table

@ Recreate the triggers on the table

® Recreate the views

Database Workbench has this all automated for you.

In the Table Editor you can add or drop constraints

and the application will generate the required SQL statements for you.
This makes modifying your SQLite database much easier.

On the next page of this article (12 /33) is an example,

no views or triggers available.

& .

DATABASE WORKBENCH 6.5 PAGE 15/ 33

Complete Modifications

. PRAGMA foreign_keys = false; A
. CREATE TABLE OrderDetails_2179375
.

OrderDetailID Integer,

B OrderID Integer,
. ProductID Integer,
Quantity Integer,

CONSTRAINT PK_OrderDetails PRIMARY KEY (OrderDetaillD),

o CONSTRAINT FK_OrderDetails_Orders2 FOREIGN KEY (OrderID) REFERENCES Orders (OrderID) ON DELE
10 CONSTRAINT FK_Ord|erDetails_Productsl FOREIGN KEY (ProductID) REFERENCES Products (ProductID)
LILP

. INSERT INTO OrderDetails_ 2179375 (OrderDetaillD, OrderID, ProductID, Quantity) SELECT OrderDetaill

. DROP TABLE IF EXISTS OrderDetails;

. ALTER TABLE OrderDetails 2179375 RENAME TO OrderDetails;

15 PRAGMA foreign_keys = true;

< >
BEu 20: SQLite database properties, or so-called PRAGMAS, can be easily modified in Database Workbench as
e statements after

modifying a forei%n key well: it displays the available options, just click and select and use OK to finish the job.
constraint for a table

Database Properties
View and edit database pragmas
Alias |Northw'nd.sqlte ‘
Database |c:\Data\Northwhd.sqrte
Auto Vacuum |None v|
Automatic Indexing
Foreign Key Constraints
Check Constraints
Journal Mode ‘ Delete ~ ‘
Journal Size Limit ‘:] (-1 means 'no imit")
Locking Mode ‘Normal > ‘
Max Page Count | 1,073,741,823
Page Size 096 v|
[] Recursive Triggers
[] secure Delete
Synchronous ‘Off > ‘
Temp Store [Default ~ ‘
User Version ‘j}
WAL Auto Checkpoint (0 means 'off)
Figure 21:
Erclfg]e%t%ast?g raéaLite ILI Ezre = ‘

TOOLS FOR WRITING QUERIES

Writing SQL queries is part of day-to-day database development. Database Workbench offers
several tools to make this easier for you.

The sQL Insight tool can help you when writing queries by hand. As is the case for other text
editors for programming, this tools parses what you've written so far and offers suggestions in a
drop down box. This helps you to quickly select tables, columns and write JOINs.

Blaise Pascal Magazine 117 2024 @ 33

DATABASE WORKBENCH 6.5 PAGE 16 / 33

SQLite 3.44 (with exd YNorthy +1 [-Unnamed-
) l >~ HO SQLite 3.44 (with extensions):Northwind.sgiite: 1 v‘) [] Autocommit
x D~y Byw g b v | o0 | B0

Single SQL SQL Script

A | e by ks O |- Orechal|
.| select od.

3

)

from Orders o
join OrderDetails od on

Figure 22: SQL
In%ight with Join

Completion
OrderDetails -> Orders (OrderlD)
—o.CustomerlD Integer Orders.CustomerlD
—lo.EmployeelD Integer Orders.employeelD
—lo.OrderDate DateTime Orders.OrderDate
=70.0rderlD Integer Orders.OrderlD
Page 1 —lo.ShipperlD Integer Orders.ShipperlD
9 l—.‘znpl OrderDetaillD Intener OrderDetaile OrderDetailll)
([| (5 modordd B B B [ti- Orecnn | |7 il ¢
Cick here to enable local sorting, grouping and fitering... —oedProd | select od.
=od.Qual .| from Orders o
3] join OrderDetails od on (od.OrderID = o.0rderID)|
SaL Insight understands table aliases when selecting columns, parses definition of temporary
views and uses foreign key constraints available in the database for JOIN-completion.
Additionally, Parameter Insight shows the parameter names and data types when trying to execute
stored procedures from SQL or when calling built-in DBMS functions.
Figure 23: Single SQL SQL Script
Parameter Insight for a .
Stored Procedure [| 15~ [Fetch Al ‘ G | ezl |
1] execute procedure create_customer il

CONTACT_NAME: VarChar(200); CONTACT_SEX: Char(1); CONTACT_EMAIL: VarChar(255); IS_COMPANY: Boolean; COMPANY_NAME: VarChar(200); T: Char(1)
T ——

Another query writing tool is the ability to drag and drop object names, like tables and columns.
You can drag lists of columns as well. You can drag from the Database Navigator or the Describe
Companion, the latter supports selecting multiple items from the list of available columns.

These 3 tools are available in all code editors as well.

Fren

sqL Catalg 2 Describe Companion

ﬂv =9+
DGR - |08
Single SQL SQL Script

I) Firebird 3:2014_FB_Conference.fdb:4 v | =

Session I () 2014_FB_Conference.fdb

Object type I [T Tables

Object |FFE orDERS

> b nW Type NULL Dd
1| ielect !j. ;ﬁhmﬂ\ Timestamp N
. rom orders =ICUSTOMER_ID BigInt N 0

Single SQL SQL Script CJESTIMATED_SHIP... Date Y
S s —RID BigInt N 0
> by B O |3k~ Orecha C=ILAST_MODIFIED... Timestamp N ay
.| select IPLACED_BY BigInt Y
E CISHIPPED_AT Timestamp Y

Figure 24:
SQL drag-n-drop

from orders

Blaise Pascal Magazine 117 2024 @ 34

DATABASE WORKBENCH 6.5

x

Figure 25:
The "More DML" context
EnQeEU item offers quick

PAGE 17 / 33

Alternatively, using the context menu on a table allows you to quickly create an SQL statement for
SELECT, INSERT, UPDATE or DELETE. Just fill in the blanks and execute!

]

"1[# Edit Table...
EmM|
Ord |j New Table...
rd¢ %6 Drop Table
brod .[9 Duplicate..
Bhip = R
ol i&’ Diagram Editor - Physical Data Model (Firebird)
Fd New 3 .
Kqite . O-f-B-RBIRSHS S8
Sup Copy DDL
5 ;
i Extract DDL.. Diagram Explorer =3
o |5y Extract DDL With Options.. v [& Dagrams =
stra W& Print. % Main
> T35 Tables
gers [Q; Compare... -
mer 3= Mi T Views
igrate... -]
b Domains
up Quick Browse Data...
brm Count Table Rows
Delete All Rows
More DML SELECT ... FROM ... (with column names)
3 Export Data.. UPDATE ...
F3 Export Data as Script UPDATE ... WHERE ... m
Show Description UPDATE ... WHERE ... (with paramet
: INSERT ... INTO ...
c Refresh List
INSERT ... INTO ... (with parameters)
INSERT ... INTO ... SELECT ... FROM ...
DELETE ... FROM ...
DELETE ... FROM ... WHERE ...
’Gpace [r=l — |

The Visual Query Builder offers another environment to write your SQL queries.

If you open the tool with a query available, the query is parsed and displayed in the builder.
If not, you'll start with an empty canvas.
Double click tables or views in the tree to add them or drag them onto the canvas.

It will automatically add JOINs if foreign keys are available in the database.

You can also drag from one column to another to create a JOIN.
Use the context menu on the line to display the join options.

Blaise Pascal Magazine 117 2024

35

DATABASE WORKBENCH 6.5 PAGE 18 / 33

) COMPANIES.IC
i CONTACTS.CONTACT_NAY
| |~ CONTACTS.CONTACT_SE)
i CONTACTS.CONTACT_EM/
| |~ OrderID ORDERS.ID
| |- ORDERS.CREATED_AT CREATED_AT Timestamp
| .- ORDERS.LAST_MODIFIED. (/1 LAST_MODIFIED_AT Timestai
i |~ ORDERS.ESTIMATED_SHIF [CUSTOMER_ID Bigint
Lo ORDERS.SHIPPED_ATREJ /| ESTIMATED_SHIPPING_DATE
| |- ORDER_COMMENTS.O SHIPPED_AT Timestamp
i L. COMPANIES.COMPANY_NA [] PLACED_BY Bigint
~ FROM
- CUSTOMERS
ORDERS
'goRﬁEkE;MMENTS 2)CO S | (L] CREATED_AT Timestamp
_ CONTACTS 3)CONTACTS | DLASTJ‘IODITED_ATTmesta

[] CREATED_AT Timestamp
[LAST_MODIFIED_AT Timesta)

[/ CONTACT_EMAIL Varchar(25¢
("] SDFDS Varchar(12)
[AAAA Bigint

-

] OutpulExpression [Alias [Sort Type[Sort OrddAggregate [[] Groupinglfriteria or... or... or...
+[= * o o [ZICOMPANIES.ID |Customer]
ila v @a CONTACTS.CON O
lav@a CONTACTS.CON [}
|la>aoa CONTACTS.CON | [}
lav@a ORDERS.ID OrderID)
ilavaa ORDERS.CREAT
IPEE ORDERS.LAST_N
[« v @ a| 1 |ORDERS.ESTIM/ y 4]
|avaoa ORDERS.SHIPPE /J O
< I 2| ¢ = W d——
. ORDERS.CREATED_AT,
. ORDERS.LAST_MODIFIED_AT,
. ORDERS.ESTIMATED_SHIPPING_DATE,
10
. LORER_CO
. ANTES . COMPANY NAME
ROM
CUSTOMERS
INNER JOIN ORDERS ON ORDERS.CUSTOMER_ID = CUSTOMERS.I
LEFT JOIN ORDER_COMMENTS ON ORDER_COMMENTS.ORDER_ID =4DRDERS.ID
. ER JOIN COMPANIES ON COMPANIES.ID = CUSTOMERS.I
. 1IN CONTACTS ON ORDERS.PLACED BY = COl .ID
Figure 26: Simply checking a colum adds it to the output, additional options can be modified in the grid.

Visual Query Builder with
several visualized joins ~ WITH THIS TOOL YOU CAN WRITE SQL QUERIES WITHOUT KNOWLEDGE OF SQL.

So for example, it's ideal for people writing ad-hoc reports (more on that later).

Queries can be complex, you can go beyond a single SELECT and also add UNIONSs, or add a
Common Table Expression (CTE), all these will show up in the query tree outline and selecting a
particular query or CTE in the tree will display it on the canvas.

Blaise Pascal Magazine 117 2024 @ 36

DATABASE WORKBENCH 6.5

X
N,
Figure 27:

Visual Query Builder with
a CTE on a Seperate tab

Figure 28:
Options for database
migration

Blaise Pascal Magazine 117 2024

R

PAGE 19/ 33

v -Main A | Main “CTE: cte_active_customers_only |
w - CTE
v - cte_active_customers_only q
v FIELDS —
L. customers.®
o FrOM vl
[JID
| GIEETIE [] CREATED_AT
v FIELDS [] LAST_MODIFIED_AT
- CustomerID COMPANIES.ID -
- CONTACTS.CONTACT_NAME
- CONTACTS.CONTACT_SEX
- CONTACTS.CONTACT_EMAIL 4 OUtpU Expression Alias
- OrderlD ORDERS.ID viPle * aa "Active'
< > Hla * @ @ | customers.*

. WITH
o cte_active_customers_only AS
o customers. *

(SELECT

. FROM

5 customers

" WHERE

7 'Active' = true)
. SELECT

- COMPANIES.ID AS CustomerID,
10 CONTACTS.CONTACT_NAME,
- CONTACTS.CONTACT_SEX,
CONTACTS CONTACT FEMATT

CROSS DATABASE DEVELOPMENT:

MIGRATING, COMPARING AND DATA-TRANSFER.

As Database Workbench supports multiple database systems, it also features special cross database
development tools. With the Database Migration tools you can convert tables, views, indices and
constraints from one database system to another.

Migration Options

Target owner [default] ~
General ~
[] Do not include character set and/or colation

Object Names

Names to uppercase
[] Names to lowercase
[] Concatenate '_' to reserved words
Replace ' ' with '_'
Removes spaces and ilegal characters from names
Tables
Use default Primary Key constraint naming
Include domains used by tables
Map domains to raw datatypes
[] Include table indices
[] Include table constraints
["1 Include table trinaers v

Data types and other options will be automatically converted.

For example, while MySQL uses VARCHAR for character data, Oracle uses VARCHAR2.

Firebird uses BLOB SUB_TYPE TEXT, while SQL Server uses TEXT. Some systems use AUTOINC as a
data type, while others use it as an attribute to any INTEGER-based column. No need to remember
these differences, Database Workbench does it all for you. Migrating an existing database like this
help speed up your cross-database development efforts a lot. Very helpful.

> .

DATABASE WORKBENCH 6.5

PAGE 20/ 33

‘!chema Migration Report
Q

wFilter |[al tems] ™

> [TI] COMPANY_ADDRESS

> [[T] COMPANY_CONTACT

> [[] COMPANY_PHONENUMBER
> [conTacTs

> [} CONTACT_ADDRESS

> [CONTACT_PHONENUMBER
> [} CUSTOMERS

>] CUSTOMERS_DESC

> @ DatatypeTransferTest

> [DATATYPETRANSFERTEST2
> [pumMy_rOows_10

v [EXTRACT_TEST

1. Computed column "COMPUTED_BY_PROC" migration might faill due to incompatible routines or syntax.
& Computed column "COMPUTED_BY_FUNC" migration might fail due to incompatible routines or syntax.

© Migrated table "EXTRACT_TEST"

© Error whik trying to create object (extract_test).
> [[7] GANGBANOR
v [IDENTITY_TEST

© Migrated table "TDENTITY_TEST"

©® Error while trying to create object (identity_test).
> [mwoices
>) INVOICE_ORDER
> [150_3166_COUNTRIES

FA ren 2126 counTDIESD

(
)

c Integer NOT NULL AUTOINCREMENT

[FreDAC][Phys][SQLite] ERROR: near "AUTOINCREMENT": syntax error

Figure 29:

igration report with
de(t3 o

If you want to check meta data of one database against another,

ailed warnings and ~ you can use the Database Compare Tool.

error messages

Useful for detecting changes between development and production database,

or checking database versions for deployment.
It can even compare databases between different database systems,
using the same data type conversions as the Database Migration Tool.

Blaise Pascal Magazine 117 2024 @

38

DATABASE WORKBENCH 6.5

&

N

PAGE 21/ 33

A T T VI Vi VI R W Y

7

#

@ sqlean_define
] ulvsu_ndavAgen
] ADDRESSES

] ADDRESSES2

@ ADSADAS Create in destinzs 5

] ADSADAS2 Create in desti Eelioiing

B A_TBL Create in desti Do Nothing for All

EH A_TaB2 Create in destin| ® Create in Destination
@ A_TAB3 Create in desti Drop in Destination
5] CATEGORIES Merge with d Madify in Destination
F] COMPANIES Merge with d Merge with Destination
E COMPANY_ADDRESS Merge with d.

T COMPANY_CONTACT

T COMPANY_PHONENUMBER
] conTACTS

] CONTACT_ADDRESS

F] CONTACT PHONENUMBER
FF] cusToMERS

Merge with destination
Merge with destination

Q Schema Compare Results (Firebird 3:2014_FB_Conference.fdb -> SQlite 3.44 (with extensions):FB_Conference.sqlite) b IE\
QY- sl
Object Action

Merge with destination
Merge with destination
Merge with destination
Merge with destination
Merge with destination
Merge with destination

Index: I DATATYPETRANSFERTEST2_

Index not found in destination.

1 CREATE ASC INDEX I_DATATYPETRANSEFERTEST2_|

Figure 30: The results are shown after comparing and Database Workbench can generate a change script you
Compare result, you can

define what action to take can execute on the destination database to modify the schema objects.

To move data between databases, the DataPump tool can be used.

It supports transferring all data, even large binary data, as fast as possible.

After selecting both a source and destination database, the tables can automatically be arranged
in the correct order as per the foreign key constraints in the database.

For example, an ORDER record can only exist for a particular CUSTOMER record, SO

the data in table CUSTOMER needs to be moved first.

Blaise Pascal Magazine 117 2024

> .

DATABASE WORKBENCH 6.5 PAGE 22 / 33

|

ESN AR "

lﬁ
EQN
= > - O[p|EXAVY

\
Connec&&'l. 2asfer Mappings Options Progress & Messages

Source Database Destination Database
Data Source lﬁrebird 3 - 2014_FB_Conference.fdb ~ | Data Source |SQLite 3.44 (with extensions) - FB_Conference.sqlite v |
Server l) Firebird 3 | Server IU SQLite 3.44 (with extensions) |
Connection 2014_FB_Conference.fdb v |% || Connection ‘FB_Conference.sqﬁte v ey
Objectfiter | [al] v ||| |Enter fiter here... [x]
|Enter fitter here... ®| Name Type Not ...
14 > [}] sglean_define A

Name Type Not ...)

> [PRODUCTS_WITH_IMAGES 7 15 > [sys_test SIS_TEST

> % PRODUCT CATEGORY 16 > % size_self_ref SIZE_SELF_REF

17 > [sizes SIZES

> [F PRODUCT_IMAGES
> [PRODUCT_IMAGES2 \$] recursive_test RECURSIVE TEST
v [PRODUCT_SIZE 19" v] product_size PRODUCT SIZE

=7 PRODUCT_ID Bigint =¢ product_id PRODUCT_ID - Bigint BigInt
=g SZE_ID Bigint % see_id SIZE ID - Bigint BigInt
> [TT] RECURSIVE_TEST 20 ~ [T product_images2 PRODUCT_IMAGES2
> [sizes =% id ID- Bighnt BigInt
> [) SIZE_SELF_REF == product_id PRODUCT_ID - Bigint BigInt
5 [TT] sys_TesT = product_image PRODUCT_IMAGE - BLOB
>EN 21 > [product_images PRODUCT_IMAGES
> [T ThB1 22 > [product_category PRODUCT_CATEGO
> [T TABLE_UNIQUE_TEST 23 > [products PRODUCTS
> [TABLE_UNIQUE_TEST_CONS 24 > [pk_error PK_ERROR
> [TT] TEST_VIEW 25 > phonenumbers PHONENUMBERS
> [TRIG_TEST 26 > [person PERSON
> [0 TsT VEEW v 27 > @ order_comments ORDER_COMMENTS o
ngguﬂi with linked You can either simply transfer data from one table to another, or modify how the DataPump
fransfers fetches the data from the source table:
this can be done by setting a WHERE-clause for the source, or even more complex,
by using a completely self-written SQL statement to fetch data.
This can be useful if the data for the target table needs to come from multiple source tables,
for example, or from a selectable stored procedure.
> @ VIEW_TEST 438 v @ addresses2 active addresses
> T o =g id ID - Bigint BigInt
> @ V_TEST_CREATE == created_at CREATED_AT - DateTim DateTime
< v [=] active_addresses = last_modified_at LAST_MODIFIED_/ DateTime
D O == address_type ADDRESS_TYPE - NV Char(1)
DateTime [] = cc Integer []
LAST_MODIFIED_AT DateTime O = cc2 Integer O
ADDRESS_TYPE NvarChar(1) [49 > [addresses ADDRESSES v
ngrgaiga source to The DataPump can disable triggers in the destination databases to avoid business logic coded into
transfer data to the destination database being executed. It can also disable indices and enabled them afterwards,

tinat | .
destination table to increase data transfer speed.

Blaise Pascal Magazine 117 2024 @ 40

DATABASE WORKBENCH 6.5

TESTING & DEBUGGING

x

PAGE 23/ 33

If you haven't got existing data, the Test Data Generator tool can help you to create fake data for
testing purposes. You need data to test your performance, reporting, user interface and so on,
never test with a (near) empty database.

= Test Data Generator: SQLite 3.44 (with extensions):FB_Conference.sglite:1

FE>

Fiing Settings Progress & Messages

B-ZAVY

|Enter fitter here...

X

Name
» [1FF addresses - don'tfil -
» (I addresses2 - don't fil -
> I categories - don't fil -
> O companies - don't fil -
> JE company_address - don't fil -
> JE company_contact - don't fil -
> |:| company_phonenumber - don
v contacts Rows: 10000
7 id
7 created_at
7 last_modified_at
T contact_name
7 contact_sex
./ contact_email
» (I contact_address - don't fil -
» [JE contact_phonenumber - don't
» [1E customers - don't fil -
» [JEH customers_desc - don't fil -
» [1ET datatypetransfertest - don't fil
» [IER dummy_rows_10 - don't il -
» [JE invoices - don't fill -
» [JER invoice_order - don't fil -
» T ®n 316A conntries - don't fil -

0%

Field Type

BigInt
DateTime
DateTime
VarChar(200)
Char(1)
VarChar(255)

Not NULL P. Key

NEARRERIE]

OO0 0R

~

SRRl >

Table Settings

Rows to generate
Rows per transaction

[] Empty Table before generating
Disable Indices

Disable Triggers
Column Settings

Fill with Random Values b

Include NULLs

10| 94 of rows
() Random values length to
() Random URLs
(@ Random E-mail addresses
() Random phone numbers (1-X00(CX00(-X000C)
(O) Random addresses (street + number)
() Random first names
() Random last names
(O Random full names (first & last name)
() Random cities
() Random countries
() Random GUID
(O Masked values: |WNNN[CDN5TANT]

Figure 33: .
Test Data Generator with
example options

and more.

Blaise Pascal Magazine 117 2024

In order to fill the database with real-life-like data, it can generate fake e-mail addresses, street
names, first and last names, postal codes, it can use existing images, generate large pieces of text,

141

DATABASE WORKBENCH 6.5 PAGE 24 / 33

W v +-[Cali- FRE&E-B

@ &riable local sorting, grouping and fitering... What's this?
* ﬁr aVYed at % last_modified_at #* contact_name

» 1 4/24/2022 1:20:41 PM |4/24/2024 1:20:41 PM Jake Godowsin

2 4/24{2022 1:23:43 PM 4/24/2024 1:20:41 PM Edmund Michalik

3 4/24/2022 1:26:45 PM 4/24/2024 1:20:41 PM | Freddie Spies

44242022 1:29:47 PM |4/24/2024 1:20:41 PM | Deanna Harnisch

5 4/24/2022 1:32:49 PM 4/24/2024 1:20:41 PM Felks Buente

6 4/24/2022 1:35:51 PM 4/24/2024 1:20:41 PM Rainer Manske L.Schmidt-Eiseloh@web.net

7 4/24/2022 1:38:53 PM |4/24/2024 1:20:41 PM Eadaoin Durme N.Petrosino@web.org

contact_sex * contact_emai &
X
M
M
M
F
F
F

8 4/24/2022 1:41:55 PM |4/24/2024 1:20:41 PM Juliana Huckele M G.Kadow@maihost.de
M
X
M
F
X
X
F

Z.Wetzel@hotmail.ru
H.Feu@spamguard.ru
LPiterek@xoom.com
0.Jaschke@xoom.com
R.Herdner@yahoo.it

9/4/24/2022 1:44:57 PM 4/24/2024 1:20:41 PM Johannes Schiichtherle D.Linder@hotmail.net
10 4/24/2022 1:47:59 PM 4/24/2024 1:20:41 PM Leonardi Hatzenbuehler X.Bluhm@xoom.de
11 4/24/2022 1:51:01 PM 4/24/2024 1:20:41 PM Saskia Lueddicke O.Fisinger@spamguard.de
12 4/24/2022 1:54:03 PM 4/24/2024 1:20:41 PM Martyna Scheel K.Unold@xoom.net
13 4/24/2022 1:57:05 PM |4/24/2024 1:20:41 PM | Marianne Mich
14 4/24/2022 2:00:07 PM 4/24/2024 1:20:41 PM Ruediger Kollar
15 4/24/2022 2:03:09 PM 4/24/2024 1:20:41 PM Carey Brueckl

Y.Lubianski@spamguard.c

D.Baumbauer@yahoo.com
D.Leonhard@maihost.ru V)

Find data |Enter search text here... Iﬂ| AV | Find column |Enter column name here... ~

Figure 34:
Result of the above
settings for data
generation

[V Procedure Debugger [CREATE_CUSTOMER]
o FalolemEals &

ﬁ- CREATE_CUSTOMER

10begin ~
. mydate = current_timestamp;
e . mydate = mydate + 1;
c /* create master customer record */
epld insert into CUSTOMERS (id)
15 wvalues (0)
o returning ID into :NEW_CUSTOMER_ID;
c /* create contact */
e . insert into CONTACTS (CONTACT_EMAIL, CONTACT_NAME, CONTACT_SEX)
c values (:CONTACT_EMAIL, :CONTACT_NAME, :CONTACT_SEX)
20 returning ID into :contact_id;
. /% 1f this is a company, create a company, or else, create person */
e . if (is_company)
¢ . [then begin
. insert into COMPANIES (COMPANY NAME, ID, VATID)
25 values (:COMPANY_NAME, :NEW_CUSTOMER_ID, '');

- insert into COMPANY CONTACT (COMPANY ID, CONTACT_ID)

- values (:NEW_CUSTOMER_ID, :contact_id);

- L end

e 30 else begin v

&
|

Parameters and Variables 7% Messages
&0 Watches W8 Results [E Last Statement @ Parameters and Variables ¥ calStack @ Breakpoints = Messages

Name Type Value Y M
W CONTACT_... VarChar(20... 'Jessica Albright' || Routine Line Type Message
’ CONTACT... Char(1) 'F

Eigsu rl(te ng;Ehe M CONTACT_. VarChar(25... ‘jessica@albright_mail.com’
u , .
above settings for 8 1S _COMPANY Boolean False

data generanon [Pty VarChar(a0 "Dareanal

Alternatively, a much more feature rich application to generate fake test data,

named Advanced Data Generator is available as well,

see https://www.upscene.com/advanced data generator/

If you use code on the database itself, triggers, stored procedures, stored functions or packages,

Database Workbench offers a debugger for this code. While Oracle and PostgreSQL provide a debugging
interface, InterBase, Firebird and MySQL do not. In order to debug code for those database systems,
Database Workbench emulates the code as if it were executed on the database, step by step, line by line.

Blaise Pascal Magazine 117 2024 @ 42

DATABASE WORKBENCH 6.5 PAGE 25/ 33

CU

i EBeiEalo o

¥ CREATE_CUSTOMER

10 begin A~
. o mydate = current_timestamp;
e . mydate = mydate + 1;

. /* create master customer record */
epla insert into C d)
15 wvalues (0)
returning ID into :NEW_CUSTOMER_ID;
. /* create contact */
® . insert into CONTACTS (CONTACT_EMAIL, CONTACT_NAME, CONTACT_ SEX)
. values (:CONTACT_EMAIL, :CONTACT_NAME, :CONTACT_SEX)
20 returning ID into :contact_id;
/* If this is a company, create a company, or else, create person */

e .| if (is_company)
e . then begin
LI insert into COMPANIES (COMPANY_NAME, ID, VATID)
25 values (:COMPANY NAME, :NEW _CUSTOMER_ID, '');
. - insert into COMPANY_ CONTACT (COMPANY_ID, CONTACT_ID)
values (:NEW_CUSTOMER_ID, :contact_id);
o end
®* 30 else begin v
Parameters and Variables [E] 7 Messages [ORS
60 Watches 8 Results [F Last Statement @8 Parameters and Variables] calstack @ Breakpoints =] Messages
Name Type Value Y-
B CONTACT_.. VarChar(20... ‘Jessica Albright' ~ | | Routine Line Type Message
M CONTACT_... Char(1) P A
’ CONTACT... VarChar(25... ‘jessica@albright_mail.com'
B [S_COMPANY Boolean False’
BB ~AMDARY AarCharf a0 "Narcansl’ v e
e %%cedure When you start a stored routine, the debugger will prompt you for input values.
debugger, with If it's a trigger, you can browse the table for values.

breakpoint set Continue to start the actual routine. From here going forward, you're able to execute the stored

routine statement by statement, just like with Delphi or Lazarus. You can modify variable or
parameter values or execute SQL statements to check the current state of data.

Figure 37:
Evaluate/Modify dialog
to modity values of

parameters and .
variables Expression

CONTACT_EMAIL - |

Result

‘jessica@albright_mai.com' A

New value:

|‘jessica@albr‘|ght_maﬂ.com‘ v |

| Evauate | modfy | Addwatch |

[oo || nep |

After the routine has finished, you can use the Debugger SQL Editor to rollback or commit the
transaction.

Blaise Pascal Magazine 117 2024 @ 43

DATABASE WORKBENCH 6.5
—
. AD-HOC REPORTING
% With the reporting tool, you can create your own reports
"i’ based on any database query. You can start creating a report
< from the Workspace tab of the Database Navigator,

or from the Report Manager Figure 34:

under the Tools menu item. Different methods to create a new report
While reports in the frebird: 2014_FB_Conference.fdb (SYSDBA)

Workspace are saved for that Reports

particular database = Add Folder
configuration, a report in the o Delete Folder
Report Manager has the T# Rename Folder
added benefit of possibly B5 Add Objects..
being used for multiple 8 Remove Objects.

databases if these include the

Re-compile All Source Code Objects
same tables used as a source

PAGE 26 / 33

Tools Windows Help

1=

for data o Create Note...

' Delete Note
In order to create.and test Create Report..
your query, the Visual Query B Edit Repart

. . e

Builder is opened. 21 Dolete Reoort
After composing your - . g

. \ b5 Print Report...
query, click OK and you'll -
see the Report Editor. & Disconnect

You can preview the results from within the Report Editor,
just click the tab Preview and the report will fetch the data

R b and display it.

Réport Editor

bﬁ‘

Diagram Editor...
Database Compare...
Database Migrator...
Data Pump...

Data Compare...
ADO/ODBC Explorer...
Open MS Access File...
Open SQLite Database...

CR®AAV S

Server Output...
-~ Describe Companion...

BLOB Editor...

Empty Tables...
Import Data...
Export Table or View...

@ 5 B9 &h | <P

Export Multiple Tables or Views...

Create INSERT Script from ODBC...

= Print Objects...
#%| Visual Query Builder...
E Report Manager...
Grant Manager...

Shift+Ctrl+P

Name |contactq |
Report Data Report Preview
| E Fl&l| o D] 9 o | %% 100% - [BEIE8E | = & || T of ol | ok % | @] %] 5F
[-l g sy|lmA-m9l====|wwum -= 7
IE / Code ! Data | Pagel |
@ 1 t1 v 20 30 4050 60+ 70 818 1101112013 140150 16+ 17 18 192002902 L
E[Report / Data ! Variables | Functions |
Q| v -] Pager @i | 71F | Bo@
T, v == ReportTitlel @ pata yy
B A Memo2 ReportTitle: ReportTitel ~ |3 MainQue!
7 v 23 MasterDatal - “Our Contacts G 1[? ry
=E A ManQueryCON| FF CREATED_AT
A A ManQueryCRE) [T LAST_MODIFIED_AT
@ v - PageFooterl - Header: Headerl [A] CONTACT_NAME
A Memol © Name N "Since 3 2
v =4 Headerl [A] CONTACT_SEX
& LA Memo3 |- ~[A] CONTACT_EMAIL
b A Memod N MainQuery."CONTACT_NAME"] [D1
@ > - ¥ CREATED_AT1
& > 'f - LAST_MODIFIED_AT1
- E PageFooter: PageFooteri Al CONTACT_NAME1
Bl o "agel ‘ag: E
A k [Page A] CONTACT_SEX1
/ Properties | Events | -
e s e ~-[A] CONTACT_EMAIL1
c IndexTag 0 -
KeepChid || False ©
KeepFooter []False -
i) KeepHeader [False @
KeepTogether | | False -
| Len 0 s
Name Master -
oy | OutineText =
ParentFont MTrue ¥ | -
o
Y bropL -
A2 |DescrL -
=l -
- -+ v
Centimeters 1770.00; 3.90 17719.00; 0.70 MasterDatal: MainQuery
oK Cancel Help

DATABASE WORKBENCH 6.5

A
%

<

PAGE 27/ 33

Name

| Contacts|

|

Report Data Report Preview

100% v
~

Our Contacts
Name

Jacob Gooding
Delois Fleury
Wissal Root
Clarinda Alcaraz
Ireno Raybum
Jawis Kar van de
Has Arandoja
Eryn Denning
Sherron Mazo
Rosie Sauer
Blancefloor Uriot
Felicitas Strasters
Dario Cimbron
Mindi Perez
Luciano Grundy
Janis Pison
Elzelien Bayon
Sofia Homes
Yuonne Gibson

Nastasia Fabeiro

Elsy Voorhees

L 1 >DE

Since

10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM
10/21/2014 5:32:55 PM

oK

|| cmes ||

Figure 39:
Report Preview

DATABASE DOCUMENTATION

And there's another printing feature. A visual overview of your database and relations between
tables can be created using the modeling tools, either reverse-engineer an existing database or
create the database from a model.

Blaise Pascal Magazine 117 2024

> .

DATABASE WORKBENCH 6.5

Figure 40:
Print preview
of a reverse
engineered
database

Lt > M

PAGE 28 / 33

<

Page 1 of 1

order_lines
* orderid Integer
© orderlineid Smallint
productid Integer
quantity Smallint

price_per_item Decimal(10, 2)
item_description VarChar{200)

fk_order_lines_orders

orders

? orderid
custid Integer
order_date DateTime
expected_delivery_date Date
customer_notes LongText

Integer

fk_order_lines_products

cart_products

productid Integer
quantity Integer

t_products_products

products

* prodid Integer
prod_name VarChar{200)
prod_image LongBLOB

price Decimal(10, 2) [—
weight Decimal(10, 2)

© custid

cust_ name VarChar{200)
cust_email VarChar{200)
address VarChar(200)
postcode VarChar(10)
countrycode Char(2)
phonenumber VarChar(20)
regdate DateTime

cart

¥ cartid Char({38] ¥ cartid Char{38
¥ cartline Integer custid Integer

cartdate DateTime

customers

Integer

But there's more: indices, triggers, stored procedures.
Detailed documentation for tables inside the database using table and column descriptions is
supported by nearly all database systems. But you need a way to use it.

This is where meta data printing comes in.
With this tool you can print (or print-to-PDF) schema objects like tables, views, triggers, indices and

SO on.

Object descriptions, source code or DDL is optional.
You can print all, or a selection of items. Also useful when you want to give a third party
documentation, for example, for a set of database View's that can be used for export data or

custom reporting functionality.

Blaise Pascal Magazine 117 2024

46

DATABASE WORKBENCH 6.5 PAGE 29/ 33

W& Print Metadata [2014_FB_Conference.fdb] (=& =]
\ OFE S LE 0 &
] Figure 41: Avalable Objects Objects for Printing
Da_tabase S(;hema Name Description p Name Description
‘ object printing [TT] ADDRESSES2 ~l oy [TT] ADDRESSES test
[T ADSADAS [T coMmpaniES
[T ADSADASZ < [T COMPANY_ADDRESS
FH A_TAB1 « EF COMPANY_CONTACT
] COMPANY_PHONENUMBER
B CcoNTACTS
[[Bl100% _v|i< <[1| D| ET CONTACT_ADDRESS
~| EE CONTACT_PHONENUMBER
Tables and/or Views April 24, 2024 1:41:00 PM Printing Options
2D:JRE SSES Indlude Description Include Indices
oumns - Include DDL Include Triggers
11D Bigint v o
=t Include Columns Include View Source
2. CREATED_AT Timestamp v CURRENT_TIMESTAMP [Include Column Description
description
3. LAST_MODIFIED_AT Timestamp v CURRENT_TIMESTAMP
4. ADDRESS_TYPE Char(1) v /
——
test T — T
DOL
CREATE TABLE ADDRESSES
(
hs:) T_KEY_INT_REQUIRED,
CREATED_AT T_RECORD_TIMESTAMP,
LAST_MCDIFIED AT T _RECCRD_TIMESTAME,
ADDRESS_TYEE T_ADDRESS_TYPE,
CONSTRAINT PK_ADDRESSES PRIMARY KEY (ID)
)
2. COMPANIES
Columns [
2014 _FBt V‘
search for ‘Customer \ v| [search | @
Options Objects to search
Tables =8
Views 88
[l 1gnore object names Materialized Views
Figure 42: Ignore descriptions [] Triggers ["] Domains
Database search can Ignore comments Types [] Exceptions
search for objects and in))
source code [] Search data types [] Constraints [] Indices
] search defaults
> [VIEW _TEST (5) ~
v [g Procedures (9)
> £§ A0 (1)
> £ ALL (1)

> £ A6 (1)

> £ A7 ()

> £ A9 (1)

> ¥} CALLER TEST (2)

v # CREATE_CUSTOMER (7)
£ CREATE_CUSTOMER
B8, NEW_CUSTOMER_ID
15: insert into CUSTOMERS(id)
17: returning ID into :NEW_CUSTOMER_ID;
26: values(:COMPANY_NAME, :NEW_CUSTOMER_ID, ");
29: values(:NEW_CUSTOMER_ID, :contact_id);
33: values(:NEW_CUSTOMER_ID, :contact_id);

s ___ o ___

"customer" found 48 times in 19 objects

OTHER VALUABLE TOOLS

There's not enough room here to show you all the tools, but let's highlight two more. The Database
Meta Data Search tool let's you search for objects inside your database. It can search for object
names, but also searches inside the source code of views, triggers and stored routines.

Blaise Pascal Magazine 117 2024 @ 47

DATABASE WORKBENCH 6.5 PAGE 30/ 33

Figure 43:

Database search can

also search for data

types and column
efaults

For columns, it can even search for appearances in column defaults or data types (either a raw
data type or domain/user defined data type name).

As not all database systems support dependency tracking or don't support it at the same detail
level, using the Database Search tool can help you to keep track of objects, occurrences in different
places or use in code or default definitions.

£ Search Database: 2014_FB_Conference.fdb @
mFB_Conference.fdb ~ ‘

N\
Search for |time \ N ™ ‘ | Search
Options Objects to search
[] Case sensitive [] stored Procedures Tables
[whole words only [] stored Functions Views
[] 1gnore object names [] Packages Materialized Views
Ignore descriptions Triggers [] Domains
Ignore comments Types [] Exceptions
Search data types Constraints [indices
\ Search defaults
~
== CREATED_AT: T_REFORD_TIMESTAMP [Timestamp]
== CREATED_AT: CU NT_TIMESTAMP
== LAST_MODIFIED _ATNT RECORD_TIMESTAMP [Timestamp]
== LAST_MODIFIED AT: RURRENT_TIMESTAMP
> [ADDRESSES2 (4)
> [E] CATEGORIES (4)
v [F] CoNTACTS (4)
== CREATED_AT: T_RECORD_N\IMESTAMP [Timestamp]
== CREATED_AT: CURRENT_ AMP
== LAST_MODIFIED_AT: T_RECOR®_TIMESTAMP [Timestamp]
== LAST_MODIFIED AT: CURRENT_TIMESTAMP
> [CUSTOMERS (4)
> [mVOICES (2)
> [150_3166_COUNTRIES o

"time" found 70 times in 17 objects

Besides the fore mentioned Meta Data Compare, there's also a Data Compare tool. Especially
useful for data analysis, checking of logging functionality or simply to compare one state of a

Bg%r%gfﬁpare - database to another. Just as with the DataPump tool, you link tables in a source and destination
linked tables database together. If the columns are different in name, you can link those manually as well.
e Data Compare =R x
FEHXPOBEETAVY
Connections & Compare Mappings Options Progress & Resufts
Y -BEEE[S1
Compare Action Compared Different ~ Source Only Dest Only
COMPANY_ADDRESS <-> company_address Done! 378 0 378 0

og
oo

CONTACTS <-> contacts Done 10000 1144 o I

Different Source Only Destination Only

Include ID-id purce

RERREE

<

Key REATED_AT-created_at LAST_MODIFIED_AT-last_modified_at CONTACT_NAME-contact_name CONTACT_SEX-contact_sex CONTACT_EMAIL-contact_em *

1]/21/2014 |4/24/2022 110/21/2014 5:32:% 4/24/2024 1:20:4 Jacob Gooding Jake Godowsin M
2 D/21/2014 4/24/2022 110/21/2014 5:32:5 4/24/2024 1:20:4 Jacob Goodin¢ Edmund Michalk M
15 /21/2014 |4/24/2022 © 10/21/2014 5:32:% 4/24/2024 1:20:4 Jacob Gooding Carey Brueckl M
16 /21/2014 4/24/2022 © 10/21/2014 5:32:C 4/24/2024 1:20:4 Delois Fleury | Burkhard Ruecker M
17 /212014 |4/24/2022 © 10/21/2014 5:32:% 4/24/2024 1:20:4 Wissal Root |Steve Epping M
18 /212014 4/24/2022 : 10/21/2014 5:32:5 4/24/2024 1:20:4 Clarinda Alcarz Enda Treiing F

Dest Source Dest Source Dest Source Dest Source Dest
jacobgooding@tr(Z.Wetzel@h
Jjacobgooding@tr(H.Fleu@spal
jacobgooding@tr(D.Leonhard
deloisfleury@usmez P.Joerns@s|
wissalroot@nexm: LGelbert@y
clarindaalcaraz@er R.Graef@gn
>

> x| Zz MmN =E =

Compare finished in 0.360 sec.

DATABASE WORKBENCH 6.5

x

Figure 45:)
BLOB Editor, shown with
PDF, document and
image

Blaise Pascal Magazine 117 2024

PAGE 31/ 33

A database contains more than just text or numbers, it can also contain images, HTML or
documents like PDFs. You can view these with the BLOB Editor, either found under the Tools menu
item, or directly embedded in the SQL Editor.

As Text AsHex AsImage AsOLE AsHTML As PDF As Document

@ Search ‘O - ‘ Previous

Next

Hou herhoofd koel endood in perspectief

As Text AsHex AsImage As OLE As HTML As PDF As Document

™ Multimodal, Stochastic

@é Symmetries for E-Comme
’ |

el

P—\bstracﬂ

Recent advances in modular technology and
flexible archetypes are based entirely on the
assumption that Scheme and IPv4 are nof
vith randomized algorithms. In

cyberinformaticians ~ would
th the study of consistent
B present an analysis of hash
h we call Ounce.

Elliot Gnatcher,
Ph.D

As Text As Hex AsImage AsOLE As HTML As PDF As Document
[] stretch Image

Keep proportions

[

When you browse data, the BLOB Editor will attempt to automatically detect the type of data, if it's
an image, it will display the image, if it's a PDF, it will display the PDF.

If it can't determine the type of the content, it will display a hex-editor. The BLOB Editor supports
and detects the following formats: Doc, DOCX, RTF, PDF, HTML, XML, ICO, SGI, PCX,
PSD, BMP, GIF, TIFF, PSP, PNG, EPS, WMF and JPG.

ENTERPRISE EDITION & TEAMSERVER

Database Workbench requires you to register servers and possibly databases so you can use those
with the application. These are stored in configuration files in your Windows profile.

But if you're working with a team of developers, it might be easier to store these in a central
repository. Database Workbench TeamServer offers this for the Enterprise edition in addition to your
local repository.

When a TeamServer registered databases is opened, the Workspace can contain shared items as
well: notes, folders, reports, TO-DO items.

The TeamServer Console allows you to create groups of privileges for users and administer the
privileges for each user and group. For example, allow users to create public notes in the
workspace, register a shared server or database.

You can also control which team members are allowed to create or drop databases for a server,
create backups and so on.

TeamServer also offers a Version Control System (VCS) for shared databases. After adding a
database to the VCS, you can add individual objects. Once added, Database Workbench will no
longer allow you to modify or drop the object, you first need to lock it for editing.

49

g

DATABASE WORKBENCH 6.5

DTV TTaTTagTT

Firebird 3:2014_FB_Conference.fdb:3

, 1P| 5 &
'Alt‘B_Conference.fdb (SYSDBA)

Ak

G Y

1= Add Folder

Remove Project from VCS

PAGE 32 / 33

0 Do you want to add this project to the TeamServer VCS?

No

|

==

Select objects...

Available Objects:

> [T Database Triggers
> []ig@ Domains

> M7 g Tables

> (ITE Views

> V7% Procedures

> [IT& Functions

> [VITG Packages

> MITF Indices

> [V Constraints

v [V]Tg Triggers

¢ ADDRESSES2_1 (ADDRESSES2)

v Ta Procedures (33)
> £% AL0 (CONTACT NAME VarChar(200), Ci
> Z¥ ALl (CONTACT_NAME VarChar(200), C1

> ¥ As

> ¥ A6 (CONTACT_NAME VarChar(200), CO
> ¥ A7 (CONTACT_NAME VarChar(200), T C

> B A9 =
LER_TEST returns
¥ CALL_CASE_SENSITIVE

DYNAMIC_SET_INDEX_STAT]

> ¥ EXTRACT_TEST_PROC (P_
> ¥ FAKE_DATA_SET (AIntege
> ¥ INSERT_TEST (FIN1 EigInt)
> ¥ LOCAL SUBROUTINE (ZInt

> ¥ CREATE_CUSTOMER (CONTACT_NAME
> &¥ DEBUG_CURSOR_TESTS returns (P_OL

0

s

Figure 46:
TeamServer console to |
administer users and privileges

You can lock, unlock or check in the
objects via the context menu in the
Database Navigator or via the
toolbar button in each object editor.

 Procedure [CREATE_CUSTOMER

Procedure Description Permissions DDL Dependencies To-Do Plan Analysis Data/Results

Input Parameters
Parameter Type Of Type Length Scale Subtype Not NULL Dsg
1 CONTACT_NAME CONTACTS.CONTAC | 200 [
2|CONTACT_SEX] T_sEx 1 O
X u“] T_EmMAL 255 O
[] Boolkan ~ O
e WIEIHEEEE COMPANIES.COMPA| | 200]
¥ Drop Procedure [Tsex ™ H 0
ﬁ\j Duplicate...
l;gé Re-compile Procedure l\ >

———|

ype of column contad
tamp;

returns integer

F|%ure 47: e .))
Objects in the VCS show a status indicator, editors have VCS related functionality

Blaise Pascal Magazine 117 2024

g

= Add Object
> % LOOP_CURSOR returns (PQ :
— i T Add Objects
> i LOOP_FOR_SELECT returni W Show in Grant Manager... =3 JECtS... B
» # LOOP_FOR_SELECT_AS_CUF » Execyte Procedure.. E;c“ Check Out for Editing
> £ PARAMVALUES (11 Integer, B Debug Procedure... £
> # PA_SPLIT_STRING (P_STRI ! = Release Lock
- E“ Gefzy ol @ Break Lock
i my Extract DDL.
Vigator |Workspace - . 3 = Check for Changes
Extract DDL With Options... .
ect Description F Print Compare to Latest Revision...
[-; Com;are Compare to...
f_:ﬁ Migrate...
C' Refresh List
Innamed-

50

DATABASE WORKBENCH 6.5

|

PAGE 33 /33

If you modify an object, Database Workbench automatically saves the generated DDL statements to
the VCS, as to keep a record of all changes. You can check for changes against the VCS or compare

between object revisions.

Figure : 48

You can compare the
current database to
revisions in the VCS

Blaise Pascal Magazine 117 2024

, current vs revision 0. *

=0 - |29 - | @ O R

. |CREATE OR ALTER PROCEDURE DEBUG_CUE A
P_OUT1 TYPE QF COLUMN DUMMY_ROWS_
RC Integer)

AS

declare c scroll cursor for (select

. |begin

s 9 /*fo r select v from dummy_rows_

into p_outl

do suspend;

fetch relativie -11 from c into :f

open c;

[

10

fetch absolute 4 from ¢ into
p_outl = c.v + 1;

rc = row_count;

suspend;

p_c¢
15

fetch ¢ into :p_outl;
rc = row_count;

An ——— e

< >

current, 58 lines

4

EENEoE =X

CREATE COR ALTER PROCEDURE DEBUG_CURSOR_T A
P_OUT1 TYPE OF COLUMN DUMMY_ROWS_10.V,
RC Integer)

AS

declare c scroll cursor for (select v fr

begin
/*for select v from dummy_rows_10 orde
into p_outl
de suspend;
fetch relative -11 from c into :p_outl
open c;

fetch absolute 4 from c into :p_outl;
p_outl = c.v + 1;

rc = row_count;

suspend;

fetch ¢ into :p_outl;
rc = row_count;

—— e — -

< >

revision 0, 58 lines

Each TeamServer user or group can have different privileges for the VCS, allowing each user to
lock objects or not, break an existing lock and so on.

CONCLUSION

this is an exceptional tool for database developers. Its incredible possibilities makes me very
enthusiast. Even for simple small databases its is very helpful. | haven't seen for a long time a
developer that makes such a good and incredible tool. | think he deserves an award.

It does what | like so much:

The user interface is logically structured and senses where the questions or expectations are for use..

UPSCENE
X_Database Workbench

AGAZINE

A AN

L NoDIS3a aNY

. . -

51

ADVERTISEMENT

BLAISE PASCAL «»
;:{ Mukipttform /O

BLAISE

BLAISE PASCAL «» MAGA!
= st ot o

sssssss

£

LAZARUS® @2
HANDBOOK

Edition
+shipment

LAZARUS

HANDBOOK
PDF

A=

. One year Subscription
. Internet Viewing of the Magazine
. The newest LIB Stick
- All issues 1-111
- On Credit Card
. Lazarus Handbook Pocket
. LH PDF including Code

. Book Learn To Program
- using Lazarus PDF including —
19 lessons and projects p

. Book Computer Graphics
Math & Games € 1 20
- PDF including +50 projects RMAL PRICE € 275

BLAISE PASCAL MAGAZINE |

INTEL SEES A FUTURE AS CLEAR AS GLASS ARTICLE PAGE 1/ 5

The original article can be found here: https://www.cnet.com/pictures/take-an-early-look-at-intels-glass-packaging-tech-for-faster-chips/

intel.

Inside Intel's Chip Factory there is a possible view in to the future:

It looks and is simply ordinary glass.

Intel is transitioning its CPU's to a new architecture in order to meet the rapidly increasing demand
for more powerful computing capabilities.

Computer processors are very intricate technological machines. Engineers selectively extract
precise combinations of atoms from the periodic table to create materials capable of directing
streams of electrons through intricately patterned circuits at extremely fast rates.

However, the next significant advancement in enhancing the efficiency of our laptops and
increasing the strength of artificial intelligence may originate from conventional glass.

Intel has provided a comprehensive explanation of the glass technology during its Innovation event
in San Jose, California. At a large, technologically advanced structure located in the hot desert
landscape of the Phoenix area, Intel converts small tabletop-sized sheets of glass into rectangular
sandwiches of circuitry, similar to the procedures used in building processors.

Intel has initiated a lengthy process of transitioning to a new technology that involves placing chips
on a glass substrate instead of the current organic resin that resembles epoxy. The newly developed
glass foundation, referred to as a substrate, provides the essential speed, power, and space
required for the chip industry's transition to a new technology that involves assembling several
"chiplets" into a single, larger processor.

Essentially, this implies a novel method to uphold Moore's Law, which measures advancements in
packing additional transistor circuitry elements into a CPU.

The A17 Pro CPU in Apple's new iPhone 15 Pro boasts a staggering 19 billion transistors.

The Ponte Vecchio supercomputing processor developed by Intel has a processing capacity
exceeding 100 billion. Intel anticipates that by the end of the decade, computers will have a
staggering one trillion transistors.

Intel adopted the chiplet strategy to narrow the gap with competitors who had better capabilities in
CPU manufacture.

According to Creative Strategies analyst Ben Bajarin, Intel can now utilise this technology to exceed
its competitors in a time when there is a high need for increased processing power that the industry
is struggling to meet. Intel's glass substrate technology showcases their expertise in packaging.

—

=

Blaise Pascal Magazine 117 2024 @ 53

https://www.cnet.com/pictures/take-an-early-look-at-intels-glass-packaging-tech-for-faster-chips/

INTEL SEES A FUTURE AS CLEAR AS GLASS ARTICLE PAGE 2/ 5

intel.

In the future, you can expect more advanced computers and Al technologies that are significantly
more intelligent than the ones currently available. The semiconductor industry will transition to
glass substrates due to many reasons. The whole chip industry, particularly high-end CPUs, will
undergo the glass transition in order to address the problems of chipmaking, (with Intel leading?)

Through extensive collaboration with academics and rigorous testing of innovative techniques over
a period of more than ten years, a team of 600 employees based in Chandler has successfully
transformed research and development into an operational manufacturing process. “The innovation
is complete," stated Ann Kelleher, the executive vice president overseeing technology development
at Intel. The utilisation of glass substrate technology provides us with the capability to achieve
superior performance for our products in the long run.

These are confident statements from a business that is currently in the middle of a four-year
endeavour to regain the dominance it lost to Taiwan Semiconductor Manufacturing Co. and
Samsung, who are chip "foundries" responsible for manufacturing processors for several electronics companies.
Intel's production progress saw a significant slowdown for a period of several years, beginning almost ten years
ago. As a result, it relinquished its previously dominant position to the two chipmakers from Asia.

The glass technology integrated beneath a processor is expected to be introduced in the latter half
of the decade. Initially, it will be implemented in the largest and most energy-intensive chips,
which are utilised in numerous servers housed in data centres operated by major hyperscale
companies such as Google, Amazon, Microsoft, and Meta.

The new substrate has the capacity to handle tenfold the power and data connections compared to
current organic substrates, enabling a higher volume of data transfer to and from a chip.
Minimising warping is crucial for ensuring that processors remain flat and effectively link to the
external environment, allowing for the use of chip packages that are 50% larger.

It effectively transfers power, allowing semiconductors to operate at higher speeds or with greater
efficiency.

Furthermore, it has the capability to operate at elevated temperatures, and when it undergoes
thermal expansion, it maintains a consistent rate of expansion with silicon to prevent any potential

mechanical malfunctions.
O\
sy . ”~"

Blaise Pascal Magazine 117 2024 @ 54

INTEL SEES A FUTURE AS CLEAR AS GLASS ARTICLE PAGE 3 /5

Glass will facilitate the development of next-generation server and data centre processors, which
= ®Y will replace large processors such as Intel Xeons. These processors will be capable of running cloud
l n te computing services, such as email and online banking, as well as Nvidia's highly sought-after

artificial intelligence processors, which have gained immense popularity due to the widespread
adoption of generative Al.

However, if glass substrates reach a more advanced stage of development and become more
affordable, this technology will extend beyond data centres to personal computers. It is evident that
Intel anticipates this technology being integrated into client applications. referring to personal
computers.

The chipmaking industry is expected to experience a comeback with the development of five nodes
within a span of four years. Intel, under the guidance of Chief Executive Pat Gelsinger, who
returned to the company in 2021, is making efforts to regain its position at the forefront of the
industry. During each press conference and quarterly earnings call, Intel executives repeatedly
emphasise the goal of achieving "five nodes in four years."

This refers to the ambitious plan to rapidly progress through five significant chip manufacturing
advancements in order to catch up with and ultimately surpass TSMC and Samsung by 2025.
Kelleher, who is leading the project, states that two of the processes have been finished and the
remaining steps are progressing according to the planned timeline.

AN ALL-INCLUSIVE BUNDLE

Even if Intel manages to regain its advantage in the lithography production process, which involves imprinting
transistors into a silicon surface, the business and its competitors still confront a significant challenge:
constructing the housing that connects these chips to a circuit board. Packaging and glass
substrates play a crucial role in this context.

The Intel 8086 chip, which was developed in 1978, served as the foundation for all subsequent PC
and server processors manufactured by Intel. It consisted of a flat square of silicon with 29,000
transistors. In order to safeguard and connect it to a circuit board, the device was enclosed in a
packaging that resembled a flat caterpillar. The device was powered and received data by forty
metal legs.

Blaise Pascal Magazine 117 2024

INTEL SEES A FUTURE AS CLEAR AS GLASS ARTICLE PAGE 4 /5

Subsequently, there has been a significant advancement in CPU packaging. The distinction between
L ®Y chipmaking and packaging, which used to be quite basic, is now becoming less clear. Currently,
l n tel packaging methods employ lithography equipment to engrave their own circuitry, but with less
precision compared to CPUs.
Over time, processors have evolved from having caterpillar-like legs to having hundreds of pins
resembling a small bed of nails that cover the bottom of the processor. However, in the end, that
method proved to be insufficient in providing an adequate number of electrical connections to the
circuit board.
Today's packages are equipped with flat metal contact patches located on the bottom of the
package. The chip is affixed to the circuit board with significant pressure, amounting to hundreds of
pounds, during installation.
A metallic cap positioned on top of a processor effectively dissipates excess heat that would
otherwise cause a computer to malfunction. Below the processor lies a substrate featuring a
progressively intricate, three-dimensional network of power and data connections that serve to
connect the chip to the external environment.

THE HIDDEN DEPTHS

Transitioning from current organic substrates to glass presents many problems. Glass is fragile,
hence it necessitates cautious handling, for instance.

In order to facilitate the transition, Intel is modifying glass-handling equipment obtained from
professionals in the display industry, who possess the knowledge and expertise to handle glass
without causing any damage. The display sector is responsible for manufacturing a wide range of
products, including small wristwatch screens and large flat-panel TVs. In addition, they are required
to engrave circuitry onto glass and have successfully created numerous essential ultrapure
materials and meticulous handling procedures.

CHALLENGES RELATED TO MICROCHIPS

® |Intel's strategy to recover its chip manufacturing capabilities might potentially revive the
United States' manufacturing strength.

® The practice of stacking chips in a layered manner, similar to pancakes, has the potential to
reduce the cost of laptops.

® Intel gained valuable insights when one of its supercomputer chips was damaged by an
elevator collision.

Intel is planning to build a '"Megafab' that may potentially become the largest chip manufacturing
plant in the world. The project is estimated to cost around $100 billion.
However, there are distinctions.

Flat-panel displays use electronic components that are sensitive and located exclusively on one
side, allowing glass to smoothly move through factories using rollers. Intel constructs a structure
consisting of various materials and circuitry, known as redistribution layers, on both surfaces of the glass.
Consequently, their computers are required to securely grip the glass solely at its edges.

Every panel is meticulously removed from the container, inserted into the machine, rotated into a
vertical position, and then inserted further to allow for additional layers to be added to the
sandwich.

Blaise Pascal Magazine 117 2024 @ 56

INTEL SEES A FUTURE AS CLEAR AS GLASS ARTICLE PAGE 5/ 5

intel.

Like all other products at Intel, it is specifically built for large-scale production rather than small-
scale research and development initiatives.

INTEL FOUNDRY SERVICES IS ENHANCED BY PACKAGING.

The utilisation of Intel packaging technology is expected to be beneficial for its proprietary data
centre processors. It is crucial for Intel's planned corporate restructuring to include becoming a
chip foundry, similar to TSMC and Samsung, where it manufactures processors for other firms
under its Intel Foundry Services subsidiary.

Intel can offer packaging services, regardless of whether it manufactures the chips and chiplets that
are included in the box. However, this can subsequently result in a more extensive customer
agreement, wherein Intel fabrication facilities, sometimes known as “fabs," are responsible for
constructing both the silicon processor chips and chiplets.

"At IFS, Mark Gardner, the senior director in charge of the Foundry Advanced Packaging group,
stated that we possess both competitiveness and capacity." According to him, it is relatively simpler
to get a packaging customer compared to a chipmaking customer, as there are fewer technological
complexities and shorter timeframes for completion.

However, when it comes to customer agreements for packaging, it can result in a more profound
partnership that extends beyond chipmaking. Specifically, Intel anticipates that its 18A chipmaking
process will overtake TSMC and Samsung by 2024.

"It represents an opportunity to establish a connection or gain entry," Gardner stated. "The
trajectory of packaging first and advanced packaging then 18A is working well for a specific
customer.”

The M2 Ultra, which marks the culmination of Apple's two-year shift away from Intel CPUs, is
accompanied by two M2 Max chips that have a high-speed interconnect. AMD has increased its
market share at the expense of Intel by utilising TSMC and Samsung to manufacture its designs,
particularly server chips that incorporate several chiplets.

The extent to which the processor business will transition from "monolithic," single-die designs to
chiplet designs remains uncertain. There are still benefits in terms of cost and simplicity when one
chooses to eschew complex packaging. However, it is evident that the most significant processors,
specifically the server and artificial intelligence (Al) processors located in data centres, will evolve
into extensive networks of interconnected chiplets.

Glass substrates are useful in providing chip designers with ample space, communication linkages,
and power delivery capabilities, allowing for future expansion.

LIB-STICK ON USB CREDI
BLAISE PASCAL MAGAZIN

LIB-STICK USB-CARD: ALL ISSUES / CODE INCLUDED. SAME INTE
INTERNET LIBRARY € 100

procedure

begin
Tor I :=1to a0

Prof Dr.Wirth, Creator of Pascal Programming language s

BLAISE PASCAL MAGAZINE

and®

(]
Prof DrWirth, Creator of Pascal Programming language Blaise Pascal, Malhematician

lJsselstein Netherlands
procedure
begin
Tor 121 to 7 0 S
begin
end 1

editor@blaisepascalmagazine .eu
Prot DEWith, Creator of Pascal Programming language Blise Pascal, Mathematician

https://www blaisepascalmagazine.eu

BLAISE PASCAL MAGAZINE J Edeitenenboan 31 0T A

A Blaise Magazine Library x +

-2 % £ @%0@

Other bookmarks

C Y & library.blaisepascalmagazine.eu

Tester Search in PDF Dark mode ® Tester v

@@ Issue
BLA L FMIAGAZINE

ARTICLES NO ISSUE SELECTED
Click on an article to show the contents n BLAISE PASCAL MAGAZINE

om- Be @ e

Quantum computing
Detlef Overbeek
Page: 9

BLAISE PASCAL <« MAGAZINE 117

Issue 62, page 6 = Multplatforn
/ S

Books: Cross Platform
Development for Windows,Mac
0S X (mac os) and LINUX

Harry Stahl

Page: 6

Issue 62, page 41

Viruses without a trace
Detlef Overbeek
Page: 41

Creating a ToDo list with kbmMW
Detlef Overbeek
Page: 21

Direct Current (DC) networks
project a Delphi project to
calculate currents and voltages
in complex DC networks of
resistors and voltages sources
David Dirkse

Page: 14

Introduction to video processing
Boian Mitov

Page: 31

Blaise Pascal Magazine 117 2024

LIB-STICKBLAISE PASCAL MAGAZINE

EXECUTING P RAMS ARTICLE PAGE 1 /18
ON THE SERV

By Michael Van Cann

BLAISE PASCAL MAGAZINE

|
=

When using a web-based program, not everything can be done in the
browser.

Often,tasks are executed through some

mechanism on the webserver. This can

an SQL statement .d re
complicated and ti i

database, indexing

test suite, or even i

these remote progr

To keep programs

of 1second fora H

consuming task and waiting f;
not a good idea: t

the HTTP server is occupied I

servers between the HTTP server and the browser may decide to tgne-out

your request.
Much better is to start the p ng a 5@% FLG
mechanism to poll the status Of theé executed process. In this artcle we

present one such mechanism.

® ARCHITECTURE

The solution we present here consists of 2 components. One component
which is used on the server, and which can be used to start a process,
capture its output and poll for the status of the process. The other
component takes care of the polling process on the client.

These components are ignorant of the communication mechanism between
browser and server, this means that they do not implement the actual RPC
calls used to start the process: There are many possible mechanisms,

and some may be more suitable for your purpose than others.

The components are called Tproces e server part and
: . The server part takes

part implements the polling mechanism andsome callbacks to handle the
actual server calls and the result. We'll demonstrate both components with
a simple set of programs:

A test program to be executed.

It is used for demonstration purposes only.

A HTTP server program that allows to serve

HTML files and that offers an

RPC mechanism to start the

handle status requests. A Si

that will run in the browser

execute the test program. It will'showthe output of

the test program in the browser.

We’ll start with the test program.

Blaise Pascal Magazine 112 2023 @

LIB-STICK USB-CARD: ALL ISSUES / CODE INCLUDED. SAME INTERFACE AS THE
INTERNET LIBRARY € 89 SPECIAL OFFER

ADVERTISEMENT

LAZARUS HANDBOOK (PDF)
+SUBSCRIPTION 1 YEAR

Lazarus Handbook
Printed in black and white
PDF Index for keywords
Almost 1000 Pages
Including 40 Examples
Blaise Pascal Magazine
English and German

Free Lazarus PDF Kit Indexer
8 Issues per year

minimal 60 pages
Including example
projects and code

S 3
Q[
Q |}
R Q
NK
NB
NE
AR
|

J

Ac
' L
Ve

Blaise Pascal Magazine 117 2024 @

ADVERTISEMENT

LAZARUS HANDBOOK PRINTED
+SUBSCRIPTION 1 YEAR

Lazarus Handbook Printed
Printed in black and white
PDF Index for keywords
Almost 1000 Pages
Including 40 Examples
Blaise Pascal Magazine
English and German

Free Lazarus PDF Kit Indexer
8 Issues per year

minimal 60 pages

Including example

projects and code

SPECIAL OFFER € 75
+SHIPPING

N N
S 3
Q[
Q |}
R Q
NK
NB
NE
AR
|

J

(1
>
(G

Blaise Pascal Magazine 117 2024 @

JUN 13-14 2024 | AMSTERDAM ,

Spinnekop 3, 1444 GN Purmerend, the Netherlands

-~

§

Delphi Summit

https://delphisummit.com/

<>

sten CPOMOR ﬁ Delphi Summit
Q

AT JUN 13-14 2024 | AMSTERDAM

Barnsten proudly announces its gold sponsorship at this
year's Delphi Summit, where the world's top Delphi
developers gather for inspiration, knowledge exchange,
and networking.

We're thrilled to connect with Delphi enthusiasts from
around the globe, eager to share their stories of success
and overcome challenges.

As Embarcadero software vendors for over 25 years,

our expertise is at your service. Whether you seek advice
or solutions for your development needs, our dedicated
Barnsten team is here to empower your projects.

Visit our booth to explore exclusive offers and discounts
from renowned component vendors like Fast Reports,
Steema TeeChart, Gnostice, TMS, Devart, Woll2Woll,
and more!

Let's make this summit an unforgettable experience
together!

Warm regards,
The Barnsten Team

Delphi Summit ®mbarcadero

j UN 13-14 2024 I AMSTERDAM Official Technology Partner

For just 249,-* you will get:

Admission for both days, with all speakers
Each day from 10:00 a.m. to 6:00 p.m.
Lunch and drinks included

Free video recording of all sessions

All sessions in English

Free parking + easy public transport from Amsterdam Schiphol Airport
Hotel rooms can be booked separately after ordering

Discount with two or more tickets

*Early bird discount, ends April 1st

https://delphisummit.com

Extra 10% discount for
Blaise Pascal readers!
Use code AVB16BT6S1BF
at the check-out

See you there!

@ Delphi Summit ®mbarcadero

JUN 13-14 2024 | AMSTERDAM Ol Technology Partner

Delphi Summit 2024

In Depth Sessions Attendees
all about Delphi and Pascal meeting Fellow developers

Full Delphi Days
from 10 PMto 6 PM

Acclaimed speakers
from all over the world

%

-
¥,
+

About the summit Meet and great

The summit is organised by GDK Software, in The location is the H20 Esports conference
partnership with Embarcadero and Barnsten. centre, located near Amsterdam, The

It is a two-day event packed with the latest Netherlands. Speakers include Jim

and greatest news and innovations, all about McKeeth, lan Barker, Marco Cantu and

our favourite programming language: Delphi. many more!

Join the Delphi Summit: https://delphisummit.com

Delphi Summit 2024
“Agenda

09:00
10:00
10:15
11:00

11:30

12:30
13:30

14:30

15:30
16:00

17:00
18:00

Day 1: Thursday 13th

Registration

Welcome and opening — Kees de Kraker and Marco Geuze

Keynote — Jim McKeeth and lan Barker
Coffee Break & Network

Cary Jensen - Selected Advanced FireDAC
Technologies

FireDAC supports a wide range of powerful
and useful operations. This session will
discuss and demonstrate four of the more
interesting ones, including caching
updates, batch move operations, using
FireDAC built-in functions, and Local SQL.
Lunch, Network & Gaming

Marco Cantu - Building FireMonkey Apps
with Style

Unlike VCL, styles in FireMonkey don't only
determine the graphical elements of a Ul
control, but also its architecture. In this
session, we'll explore how styles work, how
to customize controls at runtime, how to
build new styled FMXcomponents, and
how this all helps building a single-source
multi-device Ul.

Jim McKeeth - Evidence Based Delphi
Engineering

Why do you write code that way? Chances
are it is “the way you'’ve always done it.”
Learn how to gather the evidence you need
to know the right way.

Break & Network
Marco Geuze — Delphi and Al

Large language models (LLMs) provide
significant help for development. Learn
how to use a private LLM in Delphi without
giving away your privacy and source code.

Network & Gaming
Day 1 ends

Stage Alexandria

Fabrizio Bitti - Creating a real-life
Blockchain with Delphi

Demonstrate how a blockchain
works and what it is used for. All
with Delphi in a multithread
environment to mine the blocks.

Richard Hatherall — Test driven
development with WebMocks

Frank Lauter - MVVM - The Delphi
Way!

A waste of time or a way to keep
the source code maintainable?
Frank Lauter will present his view
on the MVVM pattern and explain
which steps are necessary for
new and legacy applications.

Bob Swart - REST with
WebBroker in Delphi

i LT 3

'*‘ .Jﬁgm;pr &l

Steffen Nyeland - | can, therefore IAM

Changing your application login process to
an |IAM (Identity and Access Management)
controlled process

Serge Pilko — How to replace DataBase
components with Rest API calls in Delphi

An introduction to REST and creating a cross-
platform RESTClient application, using
Embarcadero's REST Client library to replace
database access components.

Primoz Gabrijeléi¢ - Defensive programming

Learn from someone with 35 years of
experience how to write code that will be
easy to understand now, and in the future.
Dive into some of my own ,laughable, terrible
code examples with me and get easy-to-
reuse advice on how to improve

Conrad Vermeulen - From monoliths to
microservices

In this session, we'll explore the concepts
and challenges of monoliths and
microservices for web system development.
We'll present a new approach using Delphi to
create web apps and services that integrate
with existing enterprise solutions, enhancing
productivity and leveraging team skills. This
method supports building decomposable
applications at runtime, aligning with modern
deployment practices.

Day 2: Friday 14th

09:00

10:00

10:15
11:00

11:30

12:30
13:30

14:30

15:30
15:45

Registration

Welcome and opening — Kees de Kraker and Marco Geuze
Panel discussion with Jim McKeeth, Marco Cantu, lan Barker and MVPs

Coffee Break & Network

Ray Konopka - Component Building:
Fundamentals This session focuses
on the fundamental techniques
required for building robust Delphi
components. We build a custom
component, showing the key classes
from which all components descend,
followed by an analysis of the
anatomy of a component. We
conclude with a discussion on the
proper way to distribute custom
components through runtime and
design packages.

Lunch, Network & Gaming
Olaf Monien - REST Easy

Connecting to REST APIs and
visualizing data on desktop
and mobile devices.

Carlos Agnes - The Best of Delphi
Underground

A set of small Delphi secrets and
how they work under the hood. IDE
and debugging tips, historical issues
like why the base date for TDateTime
is 12/30/1899, Exceptions stacks,
interface tricks, and the dictionary of
secrets.

Break & Network

Barnsten - License Management,
support and subscription
Barnsten will inform you about
the different Embarcadero licence
types that are available. The
subscription is also discussed.
What is covered by the contract
and how can Barnsten help you
with your licensing questions.
Such as: licence transfer to
another user, what about
previous versions, how to log a
feature request., bug or support
case etc. And there will be room
for questions after the
presentation.

Stage Alexandria

Patrick Quist — Linux Delphi
Services

A journey through the
Cloud(s)

Christoph Schneider —
Firestone Cloud

For the Firestore Cloud
database, the FB4D open-
source library contains
everything you need to access
it from VCL/FMX applications.
In this session, the author will
show you how easy it is to
write and read a document and
to be notified of changes in the
database with the new object-

to-document wrapper.
Andrea Raimondi -

Algorithmic password
hardening

From the forgotten lessons of
Enigma to generating salts and
scrambling passwords, Andrea
will guide you through the best
ways to keep everything safe.

NexusDB - Implementing NP-C
and NP-Hard Algorithms In this
session, we'll delve into the
complexities of designing
algorithms for NP-Complete
and NP-Hard problems. Using
the Eternity Il puzzle and
commercial scheduling
software as case studies, we'll
discuss why these problems
remain unsolved, explore
practical algorithmic solutions,
and highlight the role of

modern hardware and Delphi as

the IDE. Gain insights into the
impact and practical handling
of these problems in real-world

Stefan Glienke — Spring4D

Some goodies from the
Spring4D collections.

Patrick Prémartin — Synchronize
your databases

Our users want to access their data
from anywhere, on any type of
device, with or without an Internet
connection. Some also want to work
together offline or online, remotely
or on-site, on desktops, laptops,
smartphones or tablets. Here's an
easy-to-implement solution in
Delphi to transform any local
database into a synchronized one

Bruno Fierens — Build a full-stack
application within an hour

In this session, you'll discover how
to leverage a new and innovative
approach to build web client
applications using TMS WEB Core as
well as native Delphi applications on
desktop or mobile platforms that
work with backend data.

programming.
16:15 lan Barker - What to do if you're old, ugly, and everything is annoying

Join lan for this session where he applies his uniquely lively style of presentation to the subject of software
development in an age where everyone wants your apps to be free, have a name like ZZxQFImbl, and be
'monetized' by a YouTube influencer with green hair, a pierced fingernail, and their own brand of hair removal
creme.

16:45 Door prize giveaway

17:00 Closing talk with Jim McKeeth, Kees de Kraker and Marco Geuze

17:15 Network & Gaming

18:00 Conference ends

FPC/LAZARUS

FRESNEL

Now fpc/lazarus using fresnel
Has three working backends,
A css-driven layout,
Multiple platforms,
A powerful event mechanism.

We now can:

All this using a single codebase,

and running at native speed.

And obviously,

all this using your favourite Programming language:

OBJECT PASCAL

THE LAZARUS DEBUGGER BY MARTIN FRIEBE ARTICLE PAGE 1/ 5
PART 7: Change happens — Waiting for it

FOLLOW THE DATA, RATHER THAN THE CODE

So far all our debugging methods had one thing in common. We would pause the app and single
step or run to the next breakpoint. And on each pause we would check if our data matched our
expectations. The more code our application has, the more stepping we may have to do. In some
cases, it can even be hard to tell where to pause for the single stepping.

Now we will have a look, how the debugger can help us finding the right spot. Of course in the
scope of this article we can't have a sample project so big that we actually couldn't solve it by
stepping. We'll just have to pretend, and also the feature in question works well with any size of

app.

. program projectly
. {8Mode objfpc}{SH+}

. uses SysUtils;

. function ChangeQuotes(const ASource: Stringj var ADest: String): Boolean;
. var

Len: Sizelnty

Src, Dsti PChar;

10. begin

11. Result := Falsey

12. Len := Length(ASource);
13. SetLength(ADest, Len);
14. Src := PChar(ASource);
15. Dst := PChar(ADest);
16. while Len > 0 do begin

17. DSEX 85 SEe™p
18. if Dst” ="" then begin
19. SeeX 58 ™

20. Result i= Truey
21. end,;

22. inc(src);

23. inc(Dst);

24. dec(Len);

25. end;

26. end;

27

28

29. var

30. sl, s2: String;

31. begin

32. sl :='This"+IntToStr(Random(99))+" is a random number';
33. writeln('Initial value: ', s1);

34. if ChangeQuotes(sl,s2) then begin

35. writeln('With double quotes: ', s1);

36. writeln('With single quotes: ', s2);

37. end

38. else

39. WriteLn('Nothing changed');
40. end.

The code is simple enough. We have a text containing double quotes, the function replaces them
with single quotes, and returns true. The 2 versions of the text will be printed.

And as in previous articles the output does not match what we expect:

Initial value: This "54™ is a random number

With double quotes: This '54 ' is a random number

With single quotes: This "54" is a random number

Blaise Pascal Magazine 117 2024 @ 70

THE LAZARUS DEBUGGER

” . ARTICLE PAGE 2 /5
PART 7: Change happens — Waiting for it

Of the 2 last lines, each line has the quotes that should be in the other line.
Well, we need to start the app, and so we need to run to a breakpoint. Let's make that on line 33.
We know from the writeln that the value of s1is ok on that line.

O+ ¢ 7 =I¥#v|u%|e
Expression Value
s1 "This "54" is a random number'
s1[6] i
: >

As you can see, | also added “s1[6]” to the list of watches. This is one of the double quotes in
the initial string. That double quote is not supposed to change, yet from the 2nd line of output we
already know it does get changed.

From here we will ask the debugger to do the work, and find the code that makes this change.
The command that does this can be found in the context menu on the watch “s1[6]".

O+ 9 0 =% %|H¥| e

Expression Value

= g1 ‘This "54" is a random number'

51 [ﬂ m
g8 Add Ctrl+A

% Properties Ctrl+E
~ Enabled
Delete Ctrl+D

I

Disable All
Enable All
Delete All

=

72

Inspect
Evaluate/Modify
Create Data/Watch Breakpoint ... b

Copy Name

Copy Value (quoted) Shift+Ctrl+C
Copy RAW Value Ctrl+C
Copy Data-Address Ctrl+Alt+C

Copy entire entry
Copy all entries

“Create Data/Watch Breakpoint” will open a new dialog. That dialog is also available from the “Run”
menu “Add Breakpoint” > “Data/Watch Breakpoint” and from the breakpoint dialogs “Add”
button’s dropdown.

Blaise Pascal Magazine 117 2024 @ 71

THE LAZARUS DEBUGGER

" , ARTICLE PAGE 3 /5
PART 7: Change happens — Waiting for it

Watch action ® Write (O Read (O Read/Write
Watch scope @) Global () Declaration
[~] Enabled

Watch:

Condition: |

Hitcount: |0

Auto continue after: D (ms)

Group: |

Actions:
[Break
[C] Enable Groups

[] Disable Groups

[] Eval expression

[JLog Message

[JLog Call Stack 0 > (frames limit. 0 - no limits)

[[] Take a Snapshot

Help [ok | cancel

In this case all the options have been pre-filled, and we can keep them as they are.
We want the debugger to keep track of changes (“write” action) to the value “s1[6]”.
And when the value changes the debugger should pause the app and tell us which line it happened.

We will go through the other details, once we have seen the feature in action.

Pressing “OK” will create a “Watchpoint” or “Data-breakpoint”. Watchpoints are listed with other
breakpoints in the breakpoint window.

-9 I =|FED RE
State Filename/Address Line/Length Condition Action Pass Cou... Group
'@ ?(0n) s1[6] Global / Write Break 0

Blaise Pascal Magazine 117 2024 @ 72

THE LAZARUS DEBUGGER ARTICLE PAGE 4 /5
PART 7: Change happens — Waiting for it

All that remains for us to do is to run (F9) the application. And as we do, the debugger will right
away inform us:

The Watchpoint for "s1[6]" was triggered.

The debugger will show us the project paused on line 20

Result := True;
We have to keep in mind, that in order to know the statement that changed the value, the
debugger must have executed it already. So it will show us the next statement below the one that
made the change.

The offending statement therefore is at line 19
Srch = ''"'';

And indeed that clearly is a mistake. We shouldn't assign a value to the source.

Instead of
if Dst”*
Src”
it should be
if Src”®
Dst”*

'"' then begin

Ty,
’

'"' then begin

Ty .
’

As promised the debugger has found the offending line for us. We can fix the bug, and our project
correctly outputs:

Initial value: This "54" is a random number

With double quotes: This "54" is a random number

With single quotes: This '54' is a random number

FINE TUNING - THE SETTINGS

For the above debug session we have just filled in the watched expression and left all settings at
their defaults. Most of the settings, are the same as for breakpoints and those have been described
in the last article.

However we do have “Watch action” with the options “Read”, “Write” and “Read/Write". “Write" is
by far the most common action. It tells the debugger to react only if the application writes data to
the memory of the variable. That is any data written, even if the new data is identical to the existing
data, which means the value does not change.

“Read” on the other hand tells us when the application reads the memory. That may be useful if we
have a variable that the app is not supposed to use, but maybe does access via a pointer.

Then the app may not write, but just use the value. And “Read” will catch that. In most cases like
this it would be better to use the “Read/Write” option. Since if the app shouldn't access the value,
then it should do neither read, nor write.

The other option that we need to look at is “Watch Scope”. This is currently not supported by all
debuggers. The GDB backend does support this, but the FpDebug backend does not.

This can be of use, if a watchpoint is set on a local variable. Once the procedure owning the
variable returns, the memory is no longer reserved for the variable, and another procedure will
eventually put a different variable there. Since watchpoints work on the memory where the
variable is/was, they will then be triggered by changes or access to the new variable using the
same memory. Setting “Scope” to “Local” means the GDB based debugger will notice when the
procedure is exited, tell you about it and clear the watchpoint.

Blaise Pascal Magazine 117 2024 @ 73

THE LAZARUS DEBUGGER ARTICLE PAGE 5 /5
PART 7: Change happens — Waiting for it

FINE-PRINT - ABOUT "THE DATA"

So here we go, there are a few caveats. To start with, what watchpoints can and can't do is
actually determined by your hardware. The following applies to what you get, if you have a modern
Intel or AMD CPU. With FpDebug you are currently limited to those anyway, with GDB you can
debug code for other target CPUs, but then may get different availability of watchpoints.

There are a maximum of 4 watchpoints available, and each of them can cover up to a pointer-
size area of memory. Actually, that is 1, 2 or 4 bytes on 32bit machines, and 1, 2, 4 or 8 on 64bit
machines.

For that reason in the above example we could not have watched the entire text of the string.

Its length exceeded the 8 bytes by far. Instead we picked a single character. However, there is a
2nd caveat hidden here. It is possible to add a string (Ansistring) as watchpoint.
Ansistrings internally have a pointer to the text. And a watchpoint would then act on that
pointer. Predicting what a watchpoint would react to in this case, requires some knowledge of
the internal workings of Ansistrings.

Similar traps lay ahead with objects. Here too, variables contain a pointer to the instance. And so
the same rules apply. However, in some cases this may be useful, namely if we want to know when
a variable is changed to point to a different instance: "MyVar := SomeOtherObj;”. This
assignment changes the pointer in “MyVar”.

Watchpoints can be used for ordinal types such as numbers, booleans, enums.And they
can be used for small sets too. And while it is often not possible to monitor an entire object or
record, individual fields can be monitored, just like individual chars in a string can be.

FINE LINE - WHERE EXACTLY DOES THE APP PAUSE

One small note to end the article. Watchpoints aren't always exact. Well they are in terms of
assembler. They will always stop at the asm instruction right after the one that makes the change.
That is to say, when they stop, the change has just been made.

In the Pascal source that does not always mean the next line of Pascal code. The change could
happen in the middle of the asm instructions belonging to a line of Pascal code, and then the
debugger shows you the line that makes the change. If however it happens at the very end of the
asm belonging to that line, then the debugger will show you the next line of Pascal code. So you
may have to look one line further up.

Watchpoints are only valid during the debug session in which they were created. When you start
the debugger the next time, addresses may have changed, and the debugger will not activate any
existing watchpoints. You will need to delete them and create them again.

Blaise Pascal Magazine 117 2024 @ 74

Database Workbench 6.5
Now with SQLite support

UPSCENE
Database Workbench

________-----------------..

-
OprT
J

Consistent user interface, modern code editors, Unicode enabled,
HighDPI aware, ER designer, reverse engineering, meta data browsing,
visual object editors, meta data migration, meta data compare,

stored routine debugging, SQL plan visualizer, test data generator,
meta data printing, data import and export, data pump, Grant Manager,
DBA tasks, code snippets, SQL Insight, built in VCS, report editor,
database meta data search, numerous productivity tools

and much more...

for SQL Server, Oracle, MySQL, MariaDB, Firebird, InterBase, NexusDB and PostgreSQL

\
= p S C e n e Database tools for developers

www.upscene.com

CONTROLLING THE BROWSER USING WEBASSEMBLY ARTICLE PAGE 1/ 14
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.
BY MICHAEL VAN CANNEYT

\
7;? Stirter ixpert
LS g —— —
AP

ABSTRACT

WebAssembly modules have no access to the world outside the webassembly virtual machine,
except through the APIs that are made available from the host environment. The Browser has lots
of APIs, and in this article we show how to make use of all possible Browser APIs in WebAssembly.
Moreover we will show that you can use these APIs as if you were programming Javascript directly.

® INTRODUCTION

The WebAssembly support of FreePascal has been introduced in some previous articles:

FreePascal can compile your pascal code to WebAssembly, and the resulting webassembly file can be
run in any hosting environment.

The most used hosting environment is still the browser. Still, many efforts are underway to make
webasssembly usable in dedicated containers: this offers the possibility to create safe sandboxed
environments for your programs.

Your programs will be safe and sandboxed, because a webassembly can only communicate

with the world outside the webassembly through the APIs that are made available by the hosting
environment.

The webassembly standard does not specify what APIs a hosting environment needs

to expose, it only describes how these APIs can be exposed.

In order for a FreePascal program to run, it requires the host environment to expose the WASI API to
the webassembly. This API is managed separately by the WebAssembly committee, and offers some
limited services: file access, getting the time and so on.

It provides just the calls that allow the FPC team to implement the SysUtils unit, which provides
these basic services to your pascal program.

Inversely, a webassembly module can export some functions, which can be called from the hosting
environment.

This situation is shown for the browser in figure 1 on page 2 of this article: the Javascript in a web
page can load a webassembly module. The webassembly module imports some routines made
available by the Javascript (the blue arrow), and exports some functions which can be called from
Javascript (the green arrow).

In the browser, calling a webassembly function suspends the javascript execution flow:

the Javascript waits for the called webassembly function to finish, before it resumes execution.

It also means no event handlers will be executed while the Webassembly is executing.

Running a complete program in WebAssembly simply means calling the main function
of the application, which must of course be exported from the webassembly;
In pascal this means the program begin..end block will be executed.

BROWSER

Javascript }

WebAssembly 1 ’ $

Figure 1: Import and export of functions from and to a webassembly module

Blaise Pascal Magazine 117 2024 @ 76

USING WEBASSEMBLY
ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

CONTROLLING THE BROWSER M .?.S, ARTICLE PAGE 2 / 14

® THE JOB FRAMEWORK

The browser has hundreds of APIs available in Javascript, these APIs are standardized and described in the

form of interfaces. For a webassembly program running in the browser, it would be interesting to have

access to the full browser API: This would allow the Webassembly program to do everything that can be

done in Javascript, with the additional advantages that no-one can read the code, and that for

computationally intensive tasks, the webassembly executes faster than Javascript.

Free Pascal now offers a way to access the APIs of the browser: The Javascript Object Bridge or JOB for short.

This development was sponsored by Tixeo, a company interested in porting their software to the browser.

The JOB mechanism (or API) offers a way to create a proxy interface or class in WebAssembly, for any

Javascript API. This means that for every class available in Javascript, you can create a class in

WebAssembly that will have the same declaration as its counterpart in Javascript.

Whenever you create an instance of a proxy class in WebAssembly, this will automatically create its

counterpart in Javascript. When you call a method or set a property on the proxy class, this will call the

method or set the property on the Javascript counterpart of the proxy class. All this is transparent for the

webassembly programmer: to the webassembly, it is as if he is creating and using browser Javascript

classes in WebAssembly. Schematically, this looks like figure 2 on page 3 of this article. JOB does the

following things to make this possible:

e You can create a Javascript object, and get a reference to this new object.

e You can get a reference to an existing Javascript object.

e Using this reference, you can call the methods of the object or set its properties as if you were manipulating
a native Pascal object. To illustrate this, in Javascript you can set the caption of a button as follows:

WebAssembly Javascript

TJSBrowser = Class(TProxy) Browser = Class(Object)
function fetch(options) : TJSPromise function fetch(options) : Promise
property document : TJSDocument; document : Document;

end;

Figure 2: Webassembly WA

proxy classes for
Javascript classes

document.getElementById("mybutton").innerText="Press me"}
when using JOB, in your webassembly Pascal program you can write
document.getElementById('mybutton’).innerText:="Press me’;

Which is of course a one-to-one translation of the Javascript code. To understand what happens, let
us analyse this code. First of all, the ‘document’ variable is used. The document is exposed in the
browser. using JOB, we can define an interface and instantiate a variable:

Type
// The API we want to use.
IJSDocument = interface(IJSNode)
function getElementById(const aElementId: UnicodeString): IISElement;
end;

// A class that implements this API
TJSDocument = class(TJSNode)

function getElementById(const aElementId: UnicodeString): USElement;
end;

var
JSDocument i IUSDocumenty
initialization
JSDocument:=TJSDocument.JOBCreateGlobal(‘document”);
end.

Blaise Pascal Magazine 117 2024 @ 77

USING WEBASSEMBLY

ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

CONTROLLING THE BROWSER m 4?,? ARTICLE PAGE 3 /14

The JOBCreateGlobal call will retrieve a reference to the document instance in Javascript,
and uses it to create an instance of the TdSDocument proxy for the Document class.
The getElementById method is implemented as follows:

function TJSDocument.getElementById(const aElementId: UnicodeString): USElement;

begin
Result:=InvokeJSObjectResult('getElementById’,
[aElementId],
TJSElement) as IJSElement;
end,

The InvokeJSObjectResult method callis part of the JOB API, and it executes a method in Javascript:
the name of the method to call must be specified, as well as any arguments that the method needs.

Since the result will be an object, the Javascript side of JOB will return simply a reference to the resulting
object in Javascript (internally, this is an integer). To convert this reference to an actual class instance,
the class of the object is specified (TJSElement):

An instance of this class will be created, passing it the reference returned by the Javascript side of JOB.
When the getElementById call returns, the result is a 1JSElement interface.

On this result, the innerHTML property can be set. This is also handled by JOB:

All properties of a Javascript object can be represented by JOB as native pascal properties:

Type
IJSElement = interface(1JSNode)
function _GetinnerHTML: UnicodeStringy
procedure _SetinnerHTML(const aValue: UnicodeString);
property innerHTML: UnicodeString read _GetinnerHTML write _SetinnerHTML;
end,;

TJSElement = class(TJSNode)

function _GetinnerHTML: UnicodeStringy

procedure _SetinnerHTML(const aValue: UnicodeString);

property innerHTML: UnicodeString read _GetinnerHTML write _SetinnerHTML;
end,;

The implementation of the Read/write accessors is quite simple:

function TJSElement._GetinnerHTML: UnicodeString;
begin

Resulti=ReadJSPropertyUnicodeString('innerHTML");
end,;

procedure TJSElement._SetinnerHTML(const aValue : UnicodeString)j;
begin

WriteJSPropertyUnicodeString('innerHTML ,avValue);
end,;

The use of interfaces make sure that when an (intermediate) object is no longer needed, the object
also released on the Javascript side. To make all this possible, on the Javascript side, the JOB API
consists of (currently) 11 APl methods. When these 11 methods are implemented, the webassembly
can use proxy classes to execute any method on any object in the browser.

A default Javascript implementation for JOB has been developed using PAS2JS (naturally), but one
could write this API in plain Javascript as well. The JOB technology is implemented in 2 units:

Job,js for the webassembly program: it implements the various JOB calls that handle encoding a
call to the Javascript side of things, sends the call description to the Javascript environment
and when the call returns, it retrieves the result and converts it, if needed, to an object instance.
Job Browser for the PAS2 program. This implements the decoding of a call, executes the call on the
Javascript object, and when the call returns, it encodes the result and sends it back to the
WebAssembly.

There is a third (shared) unit which contains some common constants and types that make up the JOB API.

Blaise Pascal Magazine 117 2024 @ 78

CONTROLLING THE BROWSER P
USING WEBASSEMBLY ‘?TES

ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.
® WEBIDL2PAS REVISITED

In the above code examples, we showed how to access arbitrary methods and properties of some
Javascript objects. The examples made use of an interface and a class that implements this
interface. It makes clear that for every method you wish to call and for every property you wish to
get or set, a small piece of ‘glue’ code needs to be created: a proxy object for every Javascript
object. If all classes and APIs of the browser must be encoded like this, this is a lot of work.

You could call the JOB methods directly, in that case no classes and no glue code needs to be
produced. The disadvantage of that approach is that there is no type safety, and no code
completion if you want to code in the IDE. You also will need to manage the lifetime of the objects
explicitly.

Luckily, there is no need to code all these proxy classes. This task can be automated. All browser
APIs are standardized by the W3C committees using a IDL (Interface Definition Language) called
WebIDL. All browser creators use these IDL files to implement their Javascript APIs.

The Mozilla foundation maintains these files, they are available at:

https://hg.mozilla.org/mozilla-central/file/tip/dom/webidl

ARTICLE PAGE 4 /14

oron:
https://github.com/mozilla/gecko-dev.git

There are some really minor differences between these archives, most likely due to the time it takes
to synchronize. As you can see in these archives, there are more than 700 files, representing all the
APIs made available by the browser.

In a previous article on Pas2js, the webidl2pas tool that comes with Free Pascal and

PAS2JS was discussed. This tool can transform a .webidl file to a Pascal external class definition that
can be used by Pas2JS. The tool has been adapted so it can now also create the proxy classes to
access all the browser APIs from webassembly.

By downloading and concatenating all .webidl files from the above sources and applying some
small patches (the files are not perfect, and one or two constructs are not possible in Pascal),

a pascal unit can be produced that describes all these APIs.

Such a file has been committed to the FPC git repository: job web (the file is located in packages/
wasm-job/examples). The file is huge. The interface section is about 80.000 lines long and contains
roughly 1600 interface declarations, and a similar amount of classes.

This represents all the available browser APIs:

g BROWSER

Javascript & DOM

JOB_web

WebAssembly

. J

Figure 3: The various layers used in webassembly to use the browser APIS

Blaise Pascal Magazine 117 2024 @ 79

USING WEBASSEMBLY

ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

CONTROLLING THE BROWSER m 4?}? ARTICLE PAGE 5/ 14

by using this file in your webassembly program, you have direct access to all possible browser APIs.
Diagrammatic, the architecture of a web application wishing to use the Javascript
and DOM APIs using JOB looks like figure 3 on page 6.

® AJAVASCRIPT CAMERA APPLICATION

To make all this a little more understandable, we'll create an example: a web page where we have a
video element, connected to the camera, and a canvas where we can create a picture (a still) of
what the camera is showing. Basically, a camera application as you would have it on your
smartphone.

We will make this application first in Javascript, then in PAS2JS and lastly we'll make it using a
webassembly program. We'll show how the code is similar at each stage.

The HTML for this webpage will be the same in all 3 cases.

The actual program will be in the camera.js javascript file:

<'!doctype html>
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Video capture still - Javascript</title>
<link rel="stylesheet" href="css/bulma.min.css">
<link rel="stylesheet" href="css/camera.css">
<script src="camera.js" type="application/javascript"></script>
</head>
<body>
<div class="container">
<hl class="title is-1">Capture still from video</hl>
<div class="columns">
<div class="camera column">
<video id="video">Video stream not available.</video>
</div>
<div class=" column">
<canvas id="canvas" ></canvas>
</div>a
</div>
<div class="box columns is-centered">
<div class="column is-3">
<button id="start" class="button is-info"></button>
<button id="still" class="button is-link"></button>
</div>
</div>
</div>
</body>
</html>

As usual we use some Bulma CSS classes to format the page.
There are 4 elements which are important, so they have an id attribute:

video avideo element, which will show the camera feed.

canvas a canvas element, which will show the still.

start a button to start the camera feed. When pressed, this will ask for permission to use the
camera. Note that this button does not show a caption, it will be set in code.

stil a button to create a still (photo) from the camera feed.
Similarly, the caption for the button will be set in code.

The id attribute is used to get a reference to the elements when the page is loaded,
in the camera.js javascript program:

Blaise Pascal Magazine 117 2024 @ 80

USING WEBASSEMBLY

ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

CONTROLLING THE BROWSER m 4?}? ARTICLE PAGE 6 / 14

JAVASCRIPT CODE Var video = null;
var canvas = null;

var context = null;
var photo = null;

var startbutton = null;
var stillbutton = null;
function startup() {
video = document.getElementById(’video’) ;

canvas = document.getElementById(’canvas’) ;
context = canvas.getContext(’2d’);

startbutton = document.getElementById(’start’);
startbutton.innerText = ’'Start video’;
startbutton.addEventListener (’click’, start video);

stillbutton = document.getElementById(’still’);
stillbutton.innerText = ’'Create still’;
stillbutton.addEventListener (’click’, createstill);

}
window.addEventListener ('’ load’, startup);

NOTE how a reference to each of the 4 elements is stored in a variable.
We also store context for the canvas, this context is used later to draw on the canvas.
The startvideo event handler is called when the user clicks the 'start’ button:

JAVASCRIPT CODE function startvideo(ev) {
navigator.mediaDevices.getUserMedia ({
video: true,
audio: false

})

.then (function (stream) {
video.srcObject = stream;
video.play() ;

b

.catch (function (err) {
console.log("An error occurred: " + err);

H
}
The getUserMedia call will ask for permission to use the camera. This function
returns a promise, and when the promise resolves, the stream is coupled to the video element.
Lastly, the ‘click’ handler for the 'still’ button draws the current video frame on the canvas:

JAVASCRIPT CODE function createstill (ev) {
canvas.width = video.clientWidth;
canvas.height = video.clientHeight;
context.drawImage (video, 0, 0, video.clientWidth, video.
clientHeight) ;
}

And that's all there is to creating a camera program using the browser. You can

load this page from a webserver using the browser, or you can open it by double clicking
the file in the file explorer: your default browser will open and show the

application. In both cases, the program will function.

Blaise Pascal Magazine 117 2024 @ 81

USING WEBASSEMBLY

ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

CONTROLLING THE BROWSER m ,?,g, ARTICLE PAGE 7 /14

Pascal Code

W5

Pascal Code

Pascal Code

piy

—PAS235

©® THE CAMERA APPLICATION IN PAS2JS

In a first step, we will code the camera application in PAS2JS.

This will allow us to transform the Javascript to PASCAL, without concerning ourselves with the
details of using WEBASSEMBLY.

The first thing to do is to add the mandatory script tag for running a PAS2JS application to the HTML:

<script>
window.addEventListener(’load’, rtl.run);
</script>

Then we translate our program piece by piece. We will put all code in a class,
it will become apparent in the next example why this is necessary.

TCameraApp = class

video : TOSHTMLVideoElementy
canvas : TOSHTMLCanvasElement;
context : TJSCanvasRenderingContext2D;

startbutton : TISHTMLElement;
stillbutton i@ TISHTMLElement;

function StartStream (Js : gsvalue) : JSValue;
function DoError (Js : gsvalue) : JSValue;
Procedure StartVideo (Event : TJSEvent);
Procedure CreateStill (Event : TJSEvent);
procedure Runjy

end,

This class declares the same variables and functions as our Javascript code.

The main difference is of course that Pascal is a strongly typed language, and we must specify the
types of all variables, method arguments and function results.

The main program simply creates an instance of this class and calls the Run method:

With TCameraApp.Create do
Run;
The run method looks suspiciously familiar:
Procedure TCameraApp.Runy
begin
video i=TJSHTMLVideoElement(document.getElementById('video”));

canvas :=TJSHTMLCanvasElement(document.getElementById('canvas’));
context :=TJSCanvasRenderingContext2D(canvas.getContext(’2d"));

startbutton:=TJSHTMLElement(document.getElementById('start’));
startbutton.innerText:='Start video';
startbutton.addEventListener(‘click’, @startvideo);

stillbuttoni=TJSHTMLElement(document.getElementById('still"));
stillbutton.innerText:='Create still’;
stillbutton.addEventListener('click’, @createstill);

end,;

As you can see, this method is an almost copy-and-paste of the main javascript method.
The biggest difference is the typecasts, which are of course needed to keep
the Pascal compiler happy.

The startvideo callback is slightly different. PAS2JS’ Web unit contains a typed defintion of the
constraints argument to the getUserMedia call.

Using an instance of this class allows us to make sure that the correct elements are specified.

We also don't use anonymous methods (although this would be possible),

but use named functions to handle the various possible outcomes of the promise:

Blaise Pascal Magazine 117 2024 @ 82

USING WEBASSEMBLY

ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

CONTROLLING THE BROWSER m 4?,? ARTICLE PAGE 8 / 14

Pascal Code

W

Procedure TCameraApp.StartVideo(Event: TJSEvent);
var
constraints i TJSMediaConstraintsjy
begin
constraintsi=TJSMediaConstraints.new;
constraints.video:i=Truey
constraints.audio:i=Falsey
Window.navigator.mediaDevices.getUserMedia(constraints)
._then(@StartStream)
.catch(@DoError)
end,;

The startStream method is executed when the promise resolves correctly. The promise resolved
result (JS) must be typecast to the correct class before we can assign it to the srcObject property of
the video element:

Function TCameraApp.StartStream(JS : JSValue) : JSValuej

begin
Resulti=Undefined;
video.srcObject:=TJISHTMLMediaStream(JS);
video.play();

end;

Other than that, the code is identical to the Javascript implementation. The same
is true for the DoError method:

Function TCameraApp.DoError(JS : JSValue) : JSValue;
begin

Resulti=Undefined;

console.log('An error occurred: ’ + String(JS));
end;

Lastly, the ‘click’ event handler of the still button is again almost a copy and
paste of the corresponding Javascript code.
Procedure TCameraApp.CreateStill(Event: TJSEvent);
begin
canvas.widthi=video.clientWidth;
canvas.heighti=video.clientHeight;
context.drawImage(video, 0, 0, video.clientWidth, video.clientHeight);
end,
And with this the demo application is translated to pascal.
The workings of this application are no different from the pure Javascript version,
and the Pascal code is - disregarding its Pascal nature - the same as the Javascript code.

6 THE CAMERA APPLICATION IN WEBASSEMBLY

Lastly, we come to the part that is the focus of this article: the webassembly program.
To make this application using webassembly, we need to create actually 2 applications:
the webassembly loader program, and the webassembly program itself.

The former is a small boilerplate application, created with PAS2JS. It is a generic program that can
be used to load any webassembly program that uses JOB to communicate with the browser APls.

The webassembly program is actually a library:

in the initialization, the necessary callbacks are set up and then it needs to return control to the
browser in order for the Javascript event loop to be run. The program logic is implemented in
TMyApplication. This class is a descendant of TBrowserWASTHostApplication.

The TBrowserWASIHostApplication class, in turn, is a TCustomApplication descendant which
allows you to start a WebAssembly module written in Free Pascal: it has been introduced in an
earlier article on FPC Webassembly support. The class needs very little methods: a constructor,

the DoRun method, and an OnBeforeStart method. Note the JOB Browser unit in the uses clause:
this unit contains the TIsSObjectBridge class, which is the implementation of the JOB mechanism:

Blaise Pascal Magazine 117 2024 @ 83

USING WEBASSEMBLY

ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

CONTROLLING THE BROWSER m ,?,g, ARTICLE PAGE 9/ 14

Pascal Code

W

Program camera,
{Smode obijfpc}

uses
JS, Classes, SysUtils, Web, WasiEnv, WasiHostApp, JOB Browser, JOB Shared;

Type

TMyApplication = class(TBrowserWASIHostApplication)
Private

FJOB: TJSObjectBridgey;
function OnBeforeStart(Sender: TObject;
aDescriptor: TWebAssemblyStartDescriptor): Boolean;
Public
constructor Create(aOwner : TComponent); overridej
procedure DoRun; overridey
end;
The TJSObjectBridge is the class that registers the needed JOB functions in the webassembly.
Under normal circumstances, only 1 property of this class needs to be set in order for it to do its
work: the WasiExports property.
Other than that it performs its work completely in the background.
So, we create an instance of TJSObjectBridge, pass it the WasiEnvironment so it can register
itself with the Webassembly modules that are loaded later on, and store a reference to it in FJOB:
Constructor TMyApplication.Create(aOwner: TComponent);
begin
inherited Create(aOwner);
FJOB:=TJSObjectBridge.Create(WasiEnvironment);
RunEntryFunctioni='_initialize';
end;

The last line in this function sets RunEntryFunctionto initialize.

This must be done because our webassembly module is a library:

The default run entry point (used for programs) is _start.

For a library, only the initialization of the library must be performed,

and the exported function that handles this initialization is called _initialize.

In the DoRun method, we simply call StartWebAssembly, passing it the name of the
created webassembly function

Procedure TMyApplication.DoRun;

var
wasm = Stringy

begin
Terminatej
// Allow to load file specified in hash: index.html#mywasmfile.wasm
Wasm:=ParamStr(1);
if Wasm="" then
Wasmi='wasmcamera.wasm'}
StartWebAssembly(Wasm,true,@0OnBeforeStart);

end,

The ParamStr (1) retrieves the first name after the hash sign in the URL.

If set, then it is interpreted as the name of the webassembly file to load. If not set, we use
‘wasmcamera.wasm’ as the name.

The StartWebAssembly function will load the requested webassembly and executes

the run entry function. (in our case, _initialize). The last parameter is an event which is
executed right before calling the run entry function:

this allows the caller to do extra initialization after the webassembly module was loaded,
but before the start function is called.

The event handler sets the WasiExports property of the TdSObjectBridge instance

to the list of exported functions from the webassembly:

Blaise Pascal Magazine 117 2024 @ 84

USING WEBASSEMBLY

ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

CONTROLLING THE BROWSER m ‘?'? ARTICLE PAGE 10 / 14

Pascal Code Function TMyApplication.OnBeforeStart(Sender: TObject;
f aDescriptor: TWebAssemblyStartDescriptor): Boolean;
begin
?,iﬁ FJOB.WasiExportsi=aDescriptor.Exported;
P Resulti=true;
end,

The JOB framework needs a single exported function which it uses to call callback functions (event
handlers) in webassembly. It searches this function in the list in WasiExports.

All that is left to do is to create and initialize an instance of our application class and call the Run
method, the usual code needed when using the application class:

var
Application : TMyApplication;

begin
Applicationi=TMyApplication.Create(nil);
Application.Initializey
Application.Runy

end.

With this, the loader for our webassembly module is finished. NOTE that there is no code specific to
our camera application: this is completely generic code that can be used to load any webassembly

module which needs the JOB framework. So now we turn to the code for our webassembly module,
which is implemented as a library. It starts out in the usual way:

library wasmcameray
{Smode objfpc}

{Sh+}

{Scodepage UTF8}

uses SysUtils, Variants, Job.Js, JOB Webj

Note that it uses the Job . Js unit with the implementation of the webassembly side of the JOB
mechanism, and the JOB WEB unit, which was generated by the webidl2pas tool. Then it defines
the TCameraApp class:

type
TCameraApp = class

Video: USHTMLVideoElement;
Canvas: IJSHTMLCanvasElement;
StartButton: USHTMLButtonElement;
StillButton: USHTMLButtonElement;
Contexti IISCanvasRenderingContext2Djy
function StartStream(const Res : Variant) & Variant;
function DoError(const Res : Variant) : Variant;
procedure StartVideo(Event: IJSEvent);
procedure CreateStill(Event: JSEvent);
procedure Runy

end;

As you can see, this class is virtually identical to the class for the PAS2JS program. The only thing
that changes are some types: Instead of classes (using prefix TJS) we use interfaces (using prefix
13S). The PAS2JS JSValue is replaced with variant:

both correspond to the any type in the IDL descriptions of the APIs. The Run method,

which actually will initialize our application, is almost a copy of the pas2js code:

Procedure TCameraApp.Runy

begin
Video:=TJSHTMLVideoElement.Cast(JSDocument.getElementById('video"));
Canvas:=TJSHTMLCanvasElement.Cast(JSDocument.getElementById('canvas’));
Context:=TJSCanvasRenderingContext2D.Cast(Canvas.getContext(’2d"));

StartButton:=TJSHTMLButtonElement.Cast(JSDocument.getElementById('start”));
StartButton.InnerHTML:='Start video’;
StartButton.addEventListener('click’, @StartvVideo);

StillButtoni=TJSHTMLButtonElement.Cast(JSDocument.getElementById('still”));
StillButton.InnerHTML:='Create still’;
StillButton.addEventListener(‘click’, @CreateStill);

end,

Blaise Pascal Magazine 117 2024 @ 85

USING WEBASSEMBLY

ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

CONTROLLING THE BROWSER m .?,g, ARTICLE PAGE 11/ 14

NOTE the calls to the cast class method in order to do a typecast from one interface type

(in this case IISElement) to another interface type.

This is needed in order to be able to do some reference count housekeeping. A regular typecast
would result in wrong reference counts and could lead to objects being destroyed in Javascript
when they're still used in the webassembly.

Other than that, the code is identical to the PAS2JS code or the Javascript code:

no trickery is needed to set the callbacks, a real pascal event handler can be used.

It should be noted that all event handlers are declared with ‘'of object’, meaning that only
methods of classes can be used as callback handlers, plain routines cannot be used.

The Startvideo callback handler also looks surpisingly familiar:

Pascal Code Procedure TCameraApp.StartVideo(Event: IJSEvent);
} var
7 constraints i TISMediaStreamConstraints;
0,' begin
P constraintsi=TJSMediaStreamConstraints.Create;

constraints.video:i=Truey
constraints.audio:=Falsej
JSWindow.navigator.mediaDevices.getUserMedia(Constraints)
._then(@StartStream)
.catch(@DoError)
end,

Except for a constructor that is named Create, as opposed to the customary New in PAS2JS, the code
is identical.

The getUserMedia returns a promise, and when this is resolved StartStream is called,

which is again a copy of the PAS2JS method:

function TCameraApp.StartStream(const Res : Variant) : Variantj
var
Stream : [USMediaStream;
begin
Stream:=IJSMediaStream(Res);
Video.srcObject i= Stream;
Video.play();
end,

In case of an error, doError is called. Again, no change in code:

Function TCameraApp.DoError(const Res : Variant) : Variant;
begin

writeln('Error accessing the webcam: '+string(Res));
end,

Video capture still - Javascript — Mozilla Firefox
File Edit View History Bookmarks Tools Tabs sharing devices Help

Video capture still - Javascript X |+ v

< C @ ® O D 520 localhost:3000 B ¥ Qsearch L OE % FTT @£ %@ O 3 » =

Capture still from video

Figure 4: The webassembly camera program at work

Blaise Pascal Magazine 117 2024 @ 86

USING WEBASSEMBLY

ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

CONTROLLING THE BROWSER m ,?,g, ARTICLE PAGE 12 / 14

Pascal Code

WS

The code for the Createstill method, is also unchanged:

Procedure TCameraApp.CreateStill(Event: IJSEvent);

begin
Canvas.widthi=Video.clientWidth;
Canvas.heighti=Video.clientHeightj
Context.drawImage(Video,0,0,Video.ClientWidth,Video.ClientHeight);

end,

All that is left to do is to export a callback function which the JOB framework needs
(JOBCallBack, implemented in the Job.Js unit), and to create an instance of
our camera application class:

Exports
JOBCallbacky

begin
With TCameraApp.Create do
Run,
end.
For all practical purposes, the webassembly program can be coded as the javascript version or PAS2JS
version would be coded. The result of all this work is shown in_figure 4 on page 11 of this article.

@ USING CUSTOM OBJECTS

JOB is used to give access to all the browser APIs. However, is it also possible to use custom objects

created in PAS2JS or any other Javascript API from any Javascript framework?

The answer is 'Yes, of course’. You can perfectly code a webassembly proxy for a PAS2JS pascal
class or a Javascript class. If a .webidl exists for the Javascript class, the proxy code could be
generated by the webidl2pas tool.

Javascript classes have a function that serves as the constructor.

If this is a globally registered function, the JOB framework will find the function:

it looks for the constructor function in the global (window) scope.

All that is needed is to declare the name of this function in the webassembly proxy class.

For PAS2JS classes, you can specify a constructing function in the host environment.
Given the following class implemented in PAS2JS:

TMyObject = cClass(TObject)
private
fa! String; external name 'a’;
public
Constructor Create(aValue : string);
Property a ! String Read fa write faj
end,

constructor TMyObject.Create(aValue: string);
begin

fai=avaluey
end,;

You can create a constructor function to create a Javascript instance of this function.
The constructor function accepts the name of the requested object, and the parameters for the
constructor which are provided in an array of Jsvalue (variants, for all practical purposes).

In the host application presented earlier, this would mean adding a method as follows:

Function TMyApplication.CreateMyObject(const aName: String;
aArgs: TJSValueDynArray): TObject;
begin
Result:=TMyObject.Create(string(akrgs[0]));
end,;

Blaise Pascal Magazine 117 2024 @

87

USING WEBASSEMBLY

CONTROLLING THE BROWSER m 4?'? ARTICLE PAGE 13 / 14

ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

Pascal Code

W5

NOTE that because the aName parameter contains the requested class name, you can use a single
constructor function to construct many classes.

Registering the constructor function with the JOB framework is done using the
RegisterObjectFactory call of the TISObjectBridge class:

FJOB.RegisterObjectFactory('MyObject’,@CreateMyObject);

You can do this call right after creating the TJSObjectBridge class.
If some Javascript class does not register itself in the global scope, then the JOB implementation
will not find it without help. You can register a function that creates a regular Javascript object in a
similar manner as for a Pascal class:
function TMyApplication.CreateBrowserObject(const aName: String;
aArgs: TJSValueDynArray): TJSObject;

begin

Result:i=TJSObject.New;

Result['Aloha’]:=string(aArgs[0]);
end,

In the above example, a plain Javascript ‘Object’ instance is created,
but in fact any Javascript object can be returned.
This constructor function must also be registered with the RegisterJSObjectFactory call:

FJOB.RegisterJSObjectFactory('MyBrowserObject’,@CreateBrowserObject);

The reason that two different calls are needed is that, from an Object Pascal point of view,
the Javascript TJSObject inheritance tree is distinct from the Object Pascal TObject inheritance tree.

After these calls, when the webassembly part of JOB needs to create an instance of MyObject or a
MyBrowserObject, the correct registered function will be called to create an instance.

The necessary housekeeping will be done as it is done for Browser-provided objects: associate an
ID with the object, and return that ID to the webassembly.

The webassembly proxy interface and class for the TMyObject class look as follows:

1JSTestObj = Interface (IJSObject)
['{DE03E9A4-3960-4090-A3FA-387B61ESAEA9}']
function GetStringAttr @ UnicodeString;
procedure SetStringAttr(const avalue : UnicodeString);
property StringAttr : Unicodestring Read GetStringAttr
Write SetStringAttry
end,;

TMyTestObj = Class(TJSObject,lJSTestObi)
constructor Create(a: String);
class function JSClassName: UnicodeString; override;
function GetStringAttr i UnicodeString;
procedure SetStringAttr(const aValue : UnicodeString);
property StringAttr : Unicodestring Read GetStringAttr
Write SetStringAttr;
end,

The implementation of the proxy class is simple. The JOBCreate method of TJSObject can be
used to construct a new object. In order to do its work, it needs to know the class name of the
Javascript class.

It expects the JSClassName class function to return the correct class name,

so we override that function and let it return the name we used to register our

constructor function:

Blaise Pascal Magazine 117 2024 @ 88

USING WEBASSEMBLY

ACCESSING THE BROWSER APIS FROM WEBASSEMBLY.

CONTROLLING THE BROWSER m 4?,? ARTICLE PAGE 14 /14

Pascal Code

WS

SOURCE CODE

class function TMyTestObj.JSClassName: UnicodeString;
begin

Result:='MyObject’;
end,

constructor TMyTestObj.Create(al String);
begin

Inherited JobCreate([a]);
end,

The JOBCreate method accepts parameters as an array of const, which are encoded and sent to
the browser side. The implementation of the property getters and setters are simple:

function TMyTestObj.GetStringAttr: UnicodeStringy
begin

Result:=ReadJSPropertyUnicodeString(’a’);
end,;

procedure TMyTestObj.SetStringAttr(const avValue: UnicodeString);
begin

WriteJSPropertyUnicodeString(’a’,avalue);
end,;

Similarly named ReadJsProperty* and WriteJSProperty* calls exist for all simple Pascal types,
you must choose the function that corresponds to the type of the property in your Javascript class.

NOTE that the name of the field is given as ‘a’: this is the Javascript name of the field in the Pascal
class: it was forced to ‘a’ using the external name 'a’ modifier in the class declaration.
Without this modifier, ‘£a’ would need to be used.

If a property must be set using a setter/getter, then you must adapt the proxy code
accordingly, of course: you must then code a call to the getter and setter.

The class is now ready for use in your webassembly program:

var
T : USTestObj;

begin
Writeln('Creating TMyTestObJj object’);
T:=TMyTestObj.Create('solo’);
Writeln('Property : /,T.StringAttr);

end,

The expected output is of course ‘solo’ for the property value. The SOURCE CODE that
demonstrates this is included in the PAS2JS suite of demos, under the demo/wasienv/job/simple
directory. or you can download it from your Blaise Pascal Magazine code page:
https://www.blaisepascalmagazine.eu/en/your-downloads/

® CONCLUSION

With the JOB technology, it is now possible to use all browser APIs in a webassembly program
without having to resort to lots of import/export routines: a list of 11 functions is sufficient to
create and use every possible browser object. To the best of the author's knowledge, currently the
only other compiled language — compilable to WebAssembly — that offers this possibility is Rust.

As indicated above, the job web unit is large. This is somewhat of a disadvantage:

the compiler takes a lot of time compiling this unit, well over 1 minute.

The reason is the use of interfaces, which result in a lot of hidden code to call methods on an
interface, and the resulting unit is well over 65Mb. While the linker removes all unused code and
your program will contain only the needed code, the unit must be compiled (tuckily only once) and
this takes time.

4 4 4

Blaise Pascal Magazine 117 2024 @ 89

Fast Reports

Reporting must be Fast!

F

Create professionally designed reports
with minimal effort with FastReport VCL.

Create professionally designed reports with minimal effort with FastReport VCL.

Wil

TR
il i
i

Multiple graphical elements for information visualization, export filters to 30+
formats, easy integration with data, secure storage. FastReport VCL, with its
simplicity, convenience and small distribution size, is able to provide proper
functionality and speed on any modern computer.

In the latest version 2024 .2:

A new package with visual components TfrTreeView. Presentation of data
in an intuitive way.

Support for GeoJSON and TopoJSON formats in the FastReport VCL Maps
object.

Lazarus support in FastQueryBuilder. Integration into Lazarus projects and
data workflow improvements.

Try the demo today to save time and resources on report creation.

www.fast-report.com

N
PLA

A UNIVERSAL

CAbAPPLICATION
E 1

THE BRO

NG
ATIV
N

2
10} c
AS or b L=
h I
oL O
c ®© @
B |

O v 2
— So5 v _ — £&
<L £ o ZZ27 .
Uy it Wi<€Z 0 gg3s

S~ = r.rlu Sml
N 88328 o H_ 1L =532

W hEx O +
Ll 33358 UUDx<(<C

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 1/ 17

&y z:;’. BY MICHAEL VAN CANNEYT
P

ABSTRACT
At the end of the year 2022, ’;‘\
Project Fresnel was announced: N 1))
a new graphical interface for Pascal applications, {70 E‘
based on CSS. Since then, work has been steadily progressing ! -
on this new framework.
In this article an overview of what is possible today is presented. \

O INTRODUCTION

Project Fresnel was announced in this magazine a little over 1.5 years ago: Issue 107/108.
Work was started immediately, and work on project Fresnel has not stopped since.
As a reminder, the main goals of project Fresnel were:

e To create a set of controls (or widgets) that are streamable, so descendents of TComponent:
the widgets can be manipulated in the IDE.

Layout is determined completely by CSS.

Multiple drawing backends must be supported.

No dependency on the Lazarus LCL.

Fresnel-Based Forms can coexist with LCL forms in a native application.

The end goal is a Ul framework that will allow to create an application Ul once, and let it run on any OS
and in the browser. Conceptually, the architecture of such an application is depicted in figure 1 on page
1 of this article.

The application code only uses the Fresnel API to display the graphical user interface, other functionality is
implemented on top of the operating system API. Fresnel components use the Fresnel backend to do the actual
drawing.

A Fresnel backend uses the graphical API of the operating system — or a library that makes the drawing easier —
to do the actual drawing.

Fresnel components do not access the APIs underlying the backend.

This ensures that Fresnel components will work with any backend. Several backends can be implemented,

and when running your application, you choose the backend in function of the operating system for which you're
compiling your application.

In this article, we report on the progress made on each of these goals.

FRESNEL API

Fresnel Backend
Operating System UI API

Figure 1: A Fresnel application

Blaise Pascal Magazine 117 2024 @ 92

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 2 /17

€SN /

& e

P ?vT
»P

® WIDGETS OR CONTROLS

A basic set of controls (widgets) has been
developed:

ViewPort This essentially encapsulates the visible
portion of a form. It is the toplevel control
in a Fresnel graphical window, and has a stylesheet
associated with it that determines the
style of the elements in a form.

Form is a descendent of a viewport. This is a viewport which
can exist by itself.

Div is a basic building block of a graphical Ul:
a box for which you can specify sizes, borders, background and
foreground colors etc.

Span is similar to a Div but has different layout flow behaviour:
spans will be placed next to each other (iinline’ display, in CSS terms).

Label Is exactly what the name implies: it resembles a Div but allows you to specify a caption
to be shown in the box.
Image A component to show an image.

This means that today you can do the following

Div2:=TDiv.Create (Self) ;
with Div2 do
begin
Name:='Div2’ ;
Parent:=Bodyl;
Style:='border-color: black; height:50px; '+
’position: absolute; border: 2px; '+
’left: 30px; top: 100px; width: 50px; '+
"height: 60px;’;
end;

As you can see, the layout of the component is determined by the Style property.

Furthermore, these controls can be installed in the IDE, and you can create a Fresnel Form in the designer.

This part is still experimental. To do so, you need to recompile the Lazarus IDE with the trunk version of Free Pascal,
as project Fresnel requires the use of some units that are not yet present in the released version of Free Pascal..

FresnelLCLControl -

Select style sheet

Label1Caption

L

8

Figure 2: Using stylesheet 1

Blaise Pascal Magazine 117 2024 @ 93

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 3 /17

€SN /

& e

P ?VT
2P,

©® CSSLAYOUT
The primary goal of project Fresnel
is to have the layout determined by CSS.
CSS originated in the browser, and became a
powerful tool for creating good-looking Uls which is
used in all browsers. Prior to starting Project Fresnel, Free
Pascal already had a CSS parser available. This parser was
extended to make it more robust, and an engine was developed

to determine the €SS properties that are applicable to a given widget
(control).

So today, we can specify the €SS of a control using the Style property, or using

the style sheet of the viewport: the stylesheet can be specified in the StyleSheet property.
Viewport.Stylesheet.LoadFromFile('style2.css”);

Figures 2 on page 2 and figure 3 on page 4 show the same application, but with a different
stylesheet loaded. As expected, the controls adjust their properties (and location) according to
what is specified in the CSS.

Needless to say, there is still a lot of work to be done: there are many CSS properties,

and currently only the most basic properties are implemented: enough to create simple layouts,
without too much of the special effects that make €SS such a powerful mechanism.

FresnelLCLControl =

Select style sheet | | =

Figure 3: Using stylesheet 2

O FRESNEL EVENT HANDLING

In the LCL, the event handlers such as onClick, OnMouseMove can be assigned in the Object Inspector.
The same is true for Fresnel widgets:

Fresnel is designed from the start to be RAD-enabled. While not specifically specified in the goals of Fresnel, the
occasion was to used to address some of the shortcomings of the VCL and LCL event mechanisms,

and a complete redesign of the event mechanism was put in place.

The first thing to mention about the new event mechanism is that the signature of the event handlers is different
from in the LCL. The LCL uses the following notification event handler (with slight variations):

TNotifyEvent = procedure(Sender: TObject) of object;

Here, sender is the component instance from which the event originates. You need to typecast the sender to
access its properties. The basic event handler in Fresnel looks like this:

TEventHandler = Procedure(Event : TAbstractEvent) of object;

Blaise Pascal Magazine 117 2024 @ 94

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 4 / 17

- | ® FRESNEL EVENT HANDLING - CONTINUATION
& ?VT
»P

The Event parameter is of
type TAbstractEvent, which looks like this:

TAbstractEvent = Class(TObject)
// Sender of the event
Property Sender : TObject Read FSender Write FSender;
// Event ID used for create
Property EventID : TEventID Read FEventID;
end;

The Sender is still available as a member of the event.

Depending on the actual event, a descendent of TAbstractEvent is passed on,
which contains the necessary information pertaining to the event. For instance, the
mouse events all descend from TFresnelMouseEvent :

TFresnelMouseEvent = Class(TFresnelUIEvent)

Public
Property ControlX : TFresnelLengthy
Property ControlY : TFresnelLengthy
Property PageX : TFresnellLength;
Property PageY : TFresnelLengthy
Property ScreenX : TFresnelLengthy
Property ScreenY : TFresnelLengthy
Property X : TFresnellength;
Property Y : TFresnelLengthy
Property Buttons: TMouseButtonsy
Property Button i TMouseButtony
Property ShiftState : TShiftState;
Property Altkey : Booleany
Property MetaKey : Boolean;
Property CtrlKey : Boolean;
Property ShiftKey i Boolean;

end;

As you can see, a lot more information is available.
But there is more: for every event, multiple handlers can be registered. The basic Fresnel component exposes
a EventDispatcher property, which is of type TEventDispatcher:

TEventSetupHandler = Procedure(Event : TAbstractEvent) of object;
TEventSetupCallBack = Procedure(Event : TAbstractEvent);
TEventSetupHandlerRef = Reference to Procedure(Event : TAbstractEvent);

TEventDispatcher = class(TPersistent)
// Various_forms to register an event handler
Function RegisterHandler(aHandler : TEventCallback;
aEventName : TEventName) ! TEventHandlerItem;
Function RegisterHandler(aHandler : TEventHandler;
aEventName : TEventName) ! TEventHandlerItem;
Function RegisterHandler(aHandler : TEventHandlerRef;
aEventName : TEventName) : TEventHandlerItem;
// Dispatch an event.
// Calls the registered handlers for that event,
// in the order they were registered.
// Returns the number of handlers that were called;
Function DispatchEvent(aEvent : TAbstractEvent) : Integer;
end;

This is roughly modeled after many other event dispatching mechanisms in other toolkits (Gtk, Qt) and in the browser.
There are 2 things to note about this mechanism:

® You can register multiple handlers for the same event. Behind the scenes, setting the onc1ick handler will use the
event dispatcher to set one ‘click’ event handler. Setting the event handler to Ni1 will remove the handler from
the dispatcher.

® Event handlers no longer need to be object methods. It can also be an anonymous method,
or a plain procedure or a local procedure.

At the moment, you still need to typecast the Event to get to the properties, but a mechanism using generics to
register a correctly typed event handler will be put in place.

Blaise Pascal Magazine 117 2024 @ 95

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 5 /17

& s;‘,@(7v§» p
{ T

® BACKENDS
Another important goal for Project
Fresnel is that it must be cross platform
and must support different drawing backends:
the widgets or controls are not aware of the backend
in use to draw them.

All they get is a canvas on which they can draw themselves if

so required. (form) and the events sent by the operating system,
and the second service is to provide a canvas to draw on. These two
services are defined independently and can be coded independently.

A backend needs to provide two services: The first is to manage the top-level windows
This means that you could have a backend (for example Gdk3/Gtk3, to manage the
windows and events) that uses various drawing backends (Skia or Cairo).

Currently, 3 working backends for the Fresnel widgets exist, and a 4th is in the works:

LCL This was the first backend created for Fresnel. The fresnel controls are drawn
on an LCL Canvas. This can be a canvas that is embedded in a LCL form on a
TFresnelControl: this is a control that embeds the Fresnel viewport;
all drawing happens within this control. It can also be a Fresnel LCL form:
a form that is completely standalone. Events are generated by the LCL and are transformed into
Fresnel events. It is this backend that is used when designing a Fresnel form in the IDE.

Gtk3 using Skia The Gtk3 backend is a backend which relies on the Skia library to render the Fresnel controls.
Skia is a fast 2D library by Google which runs on various platforms (all major OSes and mobile devices).
By creating a Skia drawing backend, the Fresnel framework should run on all platforms that Free Pascal,
Skia support. Skia by itself does not offer event handling, so it is paired with Gtk3,
which is also cross-platform.

WebAssembly Lastly, a WebAssembly backend is made. Free Pascal supports creating webassembly binaries,
and these binaries can be run in the browser.
A Fresnel backend was made which uses the browser canvas and the browser events to deliver the
needed functionality to Fresnel. It will be presented in the rest of this article.

More backends can of course be made:
Using one of the existing backends, it should not be difficult to create a backend that sits directly on top of the OS’
native Ul mechanisms:

e LCL backend with a Skia renderer backend.

® WinApi backend with a Skia renderer backend.

® WinApi backend with a WinApi renderer backend.

® WinApi backend with a BGRA renderer backend.

e Apple Cocoa backend with a Metal renderer backend.

e Apple Cocoa backend with a Skia renderer backend.

One such backend which is planned by the FPC team is PAS2JS:
This would allow running a Fresnel application as a Javascript application.

~PASZ3S

Blaise Pascal Magazine 117 2024 @ 96

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 6 /17

& s’v“} 7,? ¢
(7) 3

® COMPILING FRESNEL
To compile Fresnel, the development
version of FPC is needed: Fresnel uses some
mechanisms which are available only in the development
version of FPC (for example, the CSS parser).
Fresnel itself is implemented in a series of lazarus packages.
You can compile Fresnel and use without it the lazarus packages,
if you so desire.

FresnelBase this package contains the basics of Fresnel:
the controls, the CSS handling, the event mechanism and
the rendering backend specification
(it is defined as an interface definition). This package does not
depend on the LCL - this was one of the design goals.

FresnelLCL This contains the LCL backend for Fresnel: a renderer that can render a
Fresnel form on a form or in a LCL control.

FresnelDsgn Installing this package allows you to to design a Fresnel form in the Lazarus IDE,
as you would design a LCL form: You can add Fresnel forms to a
standalone Fresnel application or a LCL application and drop Fresnel elements onto the
fresnel Forms and use the Object Inspector to set properties like the Style property.

Then there are 3 other packages that provide other backends:

fresnel This package automatically chooses a backend depending on some defines.
On linux it will choose the Gtk and Skia backend to provide a window and an event mechanism.
The drawing itself is done using Skia. This is still a work in progress.

fresnelwasm This package contains the webassembly part of the WebAssembly backend.
The webassembly backend needs two parts:
one in webassembly, one in the browser
This package contains the webassembly side of the Fresnel webassembly backend.

p2jsfresnelapi This package contains the javascript part of the WebAssembly backend, it must be used in the
browser host application that loads the Fresnel Webassembly program.

@ A FRESNEL APPLICATION USING THE LCL

As an example, we'll show a Fresnel application using an LCL formand a TFresnelLCLControl to hostthe
Fresnel controls. The main form’s published section only contains an * onCreate’ handler, the rest is added manually:

TMainForm = class(TForm)

procedure FormCreate(Sender: TObject);
private

Bodyl: TBodyy

Divl, Div2: TDivy

Imgl : TImagey

Spanl: TSpan;

Fresnell: TFresnelLCLControl;

labell @ Fresnel.controls.TLabel;
public

procedure CreateControls(ViewPort: TFresnelViewport);
end,;

In the OnCreate event, we create the LCL TFresnelLCLControl that will host all Fresnel controls.
We set it to take all available space, and load a stylesheet:

Blaise Pascal Magazine 117 2024 @ 97

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 7 /17

QEShg 9 \T . @ A FRESNEL APPLICATION USING THE LCL - CONTINUATION 1
< >3 .v)
nP,

procedure TMainForm.FormCreate(Sender: TObject);
begin
Fresnell:=TFresnelLCLControl.Create(Self);
with Fresnell do
begin
Name:='Fresnell’;
Aligni=alClienty
Viewport.Stylesheet.LoadFromFile('stylel.css’);
Parenti=Selfy
end;
CreateControls(Fresnell.Viewport);
end;

In the CreateControls method, we create the Fresnel Controls:

Procedure TMainForm.CreateControls(ViewPort : TFresnelViewport);

Function CreateControl(aClass : TFresnelElementClass;
aName : String;
aParent : TFresnelElement = nil) : TFresnelElement;
begin
if aParent=Nil then
aparent:i=Bodyly,
Result:=aClass.Create(Self);
Result.Name:=aNamey;
Result.parenti=aParent;

end;

begin
Bodyl :=TBody(CreateControl(TBody,'Bodyl’,ViewPort));
Divl :=TDiv(CreateControl(TDiv,'Div1"));
Spanl :=TSpan(CreateControl(TSpan,’Spanl’));

labell :=TLabel(CreateControl(TLabel,'Labell’));
Labell.Captioni='LabellCaption’;

Div2 :=TDiv(CreateControl(TDiv,'Div2"));
Imgl :=TImage(CreateControl(TImage,'Imgl’));
Imgl.Image.LoadFromFile('image.png”);

end;

Note that we do not need to set any position or color properties. This is all taken care of by the CSS.
The Image property of the TImage widget deserves some extra attention.
This property is of class TImageData, which is defined as follows:

TImageData = class(TPersistent)

Public
Constructor Create(aOwner : TComponent); virtual;
Destructor Destroy; override;
Procedure LoadFromFile(const aFilename : String);
Procedure SaveToFile(const aFilename : String);
Procedure LoadFromStream(const aStream : TStream;

HandleriTFPCustomImageReader
Procedure SaveToStream(const aStream : TStream;
Handler:TFPCustomImageWriter = Nil);

Procedure Assign(Source : TPersistent); override;
Property Data : TFPCustomImagey
Property ResolvedData : TFPCustomImage;
Property Width @ Word;
Property Height i Wordy
Property HasData : Booleany

Published
Property FileName : String;
Property ImageName : Stringjy
Property Imagelist : TBaseCustomImagelListy
Property ImagelIndex i Integery

end;

Blaise Pascal Magazine 117 2024 @ 98

Nil);

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 8 /17

o | @ A FRESNEL APPLICATION USING THE LCL - 2
SN Y
P,
e LCL and VCL use two

approaches to specify an image:
directly through a TGraphic or indirectly
using an Imagelist and an ImageIndex property.
Which one is used depends on the actual control.
In Fresnel, these two approaches have been combined in

one single class: TImageData. Thus, every Fresnel control that

needs to specify an image, has both mechanisms enabled.

The TImageData offers also a third mechanism to load images:
a ImageName, which is used to look up an image by name in a central image
store. The central image store can look up image files by name, and can handle
multiple sizes and multiple screen resolutions. It caches the images in memory.

Thus Imgl.Image.ImageName:="image’; would look for an image file using a standard
format (".png’) in a standard set of directories. Both the format and the directory structure are
globally configurable. This mechanism makes it easy to configure a set of standard images for an
application. The images are loaded and kept in memory using Free Pascal’'s TFPCustomImage class,
which can handle many image formats by default. The main program file for our program looks like
any other program:
program StylesheetDemo;
{Smode objfpc}{SH+}
uses Interfaces, // this includes the LCL widgetset
Forms, MainUnit;

begin

RequireDerivedFormResource:=True;

Application.Scaled:i=True;

Application.Initialize;

Application.CreateForm(TMainForm, MainForm);

Application.Runy
end.

StylesheetDemo (/home/michael/projects/fresnel/demo/StyleSheet) - Lazarus IDE v3.99 (debu

File Edit Search View Source Project Run Package Tools Window Help HTML Editor

(] vy iR B 2 < Standard Additional Common Controls Dialogs DataControls Data Access System Misc LazControls DCPciphers DCPhashes
DeveeElz=s |k HFREeamEEY @ BB =]E & BEE
Object Inspector, Project group demo x Source Editor
ObjectInspector Project group demo Ev € 23
MainForm: TMainForm v MainUnit ¥
Properties Ve Functien CreateControl(aClass : TFresnelElementClass;
aName : String;
< Properties Events Favorites * aParent : TFresnelElement = nil) : TFresnelElement;
BiDiMode bdLeftToRic - begin
+ Borderlcons [bisystemM 2 if aParent=Nil tI Style sheet demo - o
BorderStyle bsSizeable ~ aparent:=Body1
Q@ Result:=aClass.C
> o Q@ Result.Name:=aNa
Caption Style sheet 2 Result.parent:=a
+/ ChildSizing (TControlCh o end; Label1Caption
Color I:‘cheFaut a| begin
+/ Constraints (TSizeConst a Body1:=TBody(Creat
Cursor crDefault @ Divl::TDiv(CreateC‘ I
DefaultMonitor dmaActiveFo @ Spani:=TSpan(Creat{

. . [labell:=TLabel(Crei
L A= =D [Labell.Caption:="Li
DockSite (False) -] Div2:=TDiv(CreateC
DoubleBuffered (False) @ Imgl:=TImage(Creat(

DragKind dkDrag [Imgl.Image.LoadFrol
@] end;
DragMode dmManual
Enabled (True) procedure TMainForm.|
+/|Fonk (TFont)
var
FormStyle FsNormal R i .

: L : Tstrings; Figure 4: The styles demo -
Height 508 It looks like any other Lazarus application.
Fielptontex: J 81: 21 Running the application will result in an application
HelpFile a a 2

| x Messages Wakches Search R |00k|ng |Ike ﬂgure 4 on page 10

HelpKeyword
Compile Project, Target: ,n’hcme,.v‘r{
HelpType htContext P o 4 el L |

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 9 /17

€SN /

& e

P ?VT
P,

O USINGTHE
WEBASSEMBLY BACKEND

To run a fresnel program in a webassembly
backend, you need two programs. One is the
webassembly program itself, the other is the Javascript
program that loads the Webassembly file in the browser.
This Javascript program we create of course with PAS2JS.
We'll start with the webassembly program itself. Due to the nature of
webassembly, the fresnel program must be created as a library:
As explained in the article on using the browser’s API, when the browser runs a
webassembly program, it suspends the Javascript execution. As long as the
webassembly program runs, no event handlers will run. So, we need to create a library
that initializes the application, and then returns control to the browser, so it can start
receiving events. The events are processed in the fresnel tick callback which is called at
regular intervals by the browser, although this mechanism may change in the future.
This method must be exposed by the library:
library basicjy
uses
nothreads, fresnel.forms, fresnel.wasm.app, form.main, fresnel.wasm.apij;

procedure ___fresnel tick (aCurrent,aPrevious i double);

begin
fresnel.wasm.api._fresnel_tick(aCurrent,aPrevious);
end,;

exports
__fresnel tick;

begin
Application.HookFresnelLogi=True;
Application.Initializey
Application.CreateFormNew(TMainForm,MainForm);
Application.Run;

end

The first line in the initialization of the library sets up a hook: the fresnel log will be written to standard output, and will
show up in the browser console. The rest of the application startup code looks the same as a standard Lazarus LCL

application. The CreateForm has been replaced with CreateFormNew so the CreateNew constructor of the form is
called: Currently there are no resources in the webassembly (this is being worked on). Calling CreateNew makes sure no

resources are loaded.
To demonstrate that the events mechanism works as expected also in the browser, our main form will also hook some
events. For this reason, we define an enumeration to select the events that we want to listen to.

Type
THookEvent = (heClick,heMouseMove,heMouseUp,heMouseDown,heMouseEnter,
heMouseLeave,heFocus,heFocusIn,THookEvents = set of THookEvent;

{ TMainForm }

TMainForm = cClass(TFresnelForm)
private
procedure HookAllFresnelComponents;
procedure LogEventData(Event: TAbstractEvent);
procedure LogMouseEvent(Event: TFresnelMouseEvent; LogData: Boolean);
Public
procedure DoClick(Event: TAbstractEvent);
procedure DoGeneralEvent(Event: TAbstractEvent);
procedure DoMouseMove(Event: TFresnelMouseEvent);
constructor CreateNew(aOwner : TComponent); overridej
procedure HookEvents(aEl: TFresnelELement; Publ: Boolean);
end,;
var
MainForm : TMainForm;

const

NQEH@@R@&M”{E&)%@Q@@OkEvent)..High(THoz@t)]; 100

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 10 / 17

QESHg 7 ‘i» . ©® USING THE WEBASSEMBLY BACKEND CONTINUATION 1
iy
‘1?

The form is populated in the same
way as our LCL version, in our constructor,
we call Create-controls. This time we pass Self
as the viewport, since the Fresnel form is the actual viewport:

constructor TMainForm.CreateNew(aOwner : TComponent);

const
GlobalStyle = ’div {padding: 2px; border: 3px; margin: 6px;}’;
begin
Inherited CreateNew(aOwner);
Width :=640;
Height:=480;
Stylesheet.Texti=GlobalStyle;
CreateControls(Self);
HookAllFresnelComponentsy
end,

NOTE that the Width and Height of the form are set: The form is the only component which has a width and
height property - this is logical, since it is the top-level control. We'll come to the last line shortly, they hook all
fresnel events for all controls on the form. Note that we only set the globally applicable CSS styles in

the StyleSheet property:

these styles will be used for all controls, in addition to the €SS styles specified in the ‘Style’ property of each
control. In CreateControls, we demonstrate that the €SS styles can also be directly applied to the controls by
setting the style property:

Procedure TMainForm.CreateControls(ViewPort : TFresnelViewport);

Function CreateControl(aClass : TFresnelElementClass; aName : String;j
aParent ! TFresnelElement = nil) : TFresnelElement;

begin
if aParent=Nil then
aparent:=Bodyly
Resulti=aClass.Create(Self);
Result.Name:=aName;
Result.parenti=aParent;

end;

begin
Bodyl :=TBody(CreateControl(TBody,'Bodyl’,ViewPort));
Divl :=TDiv(CreateControl(TDiv,'Div1"));

Spanl :=TSpan(CreateControl(TSpan,’Spanl’));
labell :=TLabel(CreateControl(TLabel,’ Labell’));
Labell.Captioni='LabellCaption’;

Div2 :=TDiv(CreateControl(TDiv,'Div2"));
Imgl :=TImage(CreateControl(TImage,"Imgl’));
Imgl.Image.LoadFromFile('image.png’);

/] Apply styles
Bodyl.Style :='border: 2px; border=color: blue;’;
Divl.Style i="background-color: bluej border-color: blackj height:50px;’;
Spanl.Style :='width: 50px; height:70px; background=color: red; "+
"porder: 3pxj border-color: blackj margin: 3px;’;
Labell.Style :='background-color: green; '}
Div2.Style i1="border-color: black; position: absolute; border: 2px; '+
" left: 30px; top: 100px; width: 50px; height: 60px;’;
Imgl.Style :="border-color: red; height:50px; position: absolute; '+
'border: 2px; left: 150px; top: 200px; width: 48px; height: 48px;’;
end;

Basically, this is the contents of the style sheet used in our previous example, but applied directly to the controls. To
demonstrate events, we set some event handlers on the events. The HookAl1lFresnelComponents simply loops
over all controls and calls HookEvents

Blaise Pascal Magazine 117 2024 @ 101

PROJECT FR

ainForm.HookAllFresnelC

TComponenty
: Integery
UsePublished i Boolean;

begin
UsePublishedi=Falsej
HookEvents(Self,UsePublished);
For I:=0 to ComponentCount=1 do
begin
C:=Components[I];
if C is TFresnelElement then
HookEvents(C as TFresnelElement,UsePublished);
end;
end,

The UsePublished p
Specifying True wil
mechanism of the e\
procedure TMainForm.HookEvents(aEl: TFresnelELement; Publ : Boolean);

begin
if Publ then
begin
aEl.OnClick i=@DoClick}
aEl.OnMouseMove :=@DoMouseMove;
aEl.OnMouseEnter :=@DoMouseMove}
aEl.OnMouseleave :=@DoMouseMove;
end
else
begin

aEl.AddEventListener(‘click’,@DoGeneralEvent);
aEl.AddEventListener(‘mousemove’,@DoGeneralEvent);
aEl.AddEventListener(‘mouseenter’,@DoGeneralEvent);
aEl.AddEventListener(‘mouseleave’,@DoGeneralEvent);
aEl.AddEventListener(’'focus’,@DoGeneralEvent);
end;
end;

The general event ha
logs the event and

procedure TMainForm.DoGeneralEvent(Event: TAbstractEvent);
begin
LogEventData(Event);
If Event is TFresnelMouseEvent then
LogMouseEvent(Event as TFresnelMouseEvent,False);
end;

The logging events do little

procedure TMainForm.LogEventData(Event: TAbstractEvent);
const
Fmt = 'Event class %s type: %s, sender : %s’;
var
S & String;
begin
if Event.Sender=Nil then
i="(ni1)’
else
begin
Si=Event.Sender.ClassName;
if Event.Sender is TComponent then
S:=TComponent(EVent.Sender).Name+’ ("+5+");
end;
Application.Log(etInfo,Fmt,[Event.ClassName, Event.EventName, S]1);
end;

Blaise Pascal Magazine 117 2024

(@S

PROJECT FR

procedure TMainForm.LogMouseEvent(Event: TFresnelMouseEvent; LogData : Boolean);

const
Fmt = 'Mouse Event (X: %f, Y: %f, Button: %s, Buttons: %s) ’;
var
Btn,Btns : String;
begin
If LogData then
LogEventData(Event);

Btn :=GetEnumName(TypeInfo(TMouseButton),Ord(Event.Button)) ;

Btns :=SetToString(PTypelInfo(TypeInfo(TMouseButtons)),Longint(EVent.Buttons),True);

Application.Log(etInfo,Fmt, [Event.ControlX,Event.ControlY,Btn,Btns]);
end;

Note the use of RTTI to cc
Some event handlers ha
DoMouseMove event

procedure TMainForm.DoClick(Event: TAbstractEvent);
begin

Application.Log(etInfo,”You clicked "+ (Event.Sender as TComponent).Name);
end;

procedure TMainForm.DoMouseMove(Event: TFresnelMouseEvent);
begin

LogMouseEvent(Event,True)
end;

Pas2JS Browser project options
Create initial HTML page
Mainktain HTML page
|| Run RTL when all page resources are Fully loaded
|| Let RTL show uncaught exceptions
|| Use BrowserConsole unit to display writeln() output
Use Browser Application object

Run WebAssembly program:

[pasic.wasm l

|| Create a javascript module instead of a script

Run

© Location on Simple Web Server SMameOnly(5(ProjFile)) hd |

| Skart HTTP Server on port 3022

. Use this URL to start application

|| Execute Run Parameters

With this, our webassembly application is fi
The differences (events, styles) were simply add

Blaise Pascal Magazine 117 2024

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 13 / 17
“ 54
(O]

THE WEBASSEMBLY LOADER

To run our webassembly program in the browser,
we need a Javascript program that loads the webassembly

in the browser, provides it with the image file and finally that

provides the Fresnel canvas.
To this end, we create a "Web Browser application’ in the IDE.
In the dialog that appears, we check the ‘Use Browser Application object’
and ‘Run Webassembly program’ options and enter a filename, as in_figure 5
on page 12.
Setting these options will create a skeleton project which we can adapt to our
needs. We'll rename the application class to TFresnelHostApplication. The
wizard will have added in the DoRun method a call to StartWebAssembly with the
filename we entered. We'll need to change that.

The first thing to do is to provide the necessary Fresnel APl methods to the webassembly.
The PAS2JS WebAssembly hosting environment has a mechanism to do this:

to provide APIs to a webassembly module, a descendant of the TImportExtension class must

be created and instantiated.

Such a descendant has been made for the Fresnel API, a class called TWasmFresnelAPI.

This class is implemented in the fresnel.pas2js.wasmapi, part of the P2jsfresnelapi package.

All that we need to do is to create an instance of the TWasmFresnelAPI class, passing the WASI
environment to the constructor. We do this in the constructor of our application class:

constructor TFresnelHostApplication.Create(aOwner: TComponent);

begin
inherited Create(aOwner);
FFresnelApii=TWasmFresnelApi.Create(WasiEnvironment);
FFresnelAPI.LogAPICalls:i=Truejy
FFresnelAPI.CanvasParenti=TJSHTMLElement(document.getElementById('desktop”));
RunEntryFunctioni="_initialize’}

end,

Since our Webassembly module is a library, the function to execute when running it, is not the usual start as for a
program, but initialize, which simply executes the initializations sections of the units included in the library and the
main library routine.

We set 2 properties on the FresnelAPI instance

®. We choose to log the API calls (Every API call is logged to the screen)
® We set the parent element for the canvas: for every Fresnel form, a HTML canvas is allocated.
All these canvases are positioned below the CanvasParent element.

©® FILESYSTEM SUPPORT FOR WEBASSEMBLY

The Fresnel application loads an image from file using the usual Object Pascal file handling mechanisms.

How can we provide this file ?

The WASI standard provides all the API calls to open files and read data from files, as well as directory listing mechanisms.
It is up to the hosting environment to provide an implementation of these calls.

The Pas2JS webassembly hosting environment has implemented these API calls, and uses a plugin mechanism to handle
the actual reading from file.

The browser offers a standardized API to access the computer’s filesystem in a sandboxed manner:
https://developer.mozilla.org/en-US/docs/Web/API/FileSystem

Blaise Pascal Magazine 117 2024 @ 104

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 14 / 17

eSn f @ FILESYSTEM SUPPORT FOR - CONTINUATION 1
S ?.i‘)
WP,

This basically
reserves a (hidden) directory
for use of your web application.
Your application can only access files and
directories inside this directory, and these
directories are private to each webpage This API would
seem ideal to provide a filesysem to a webassembly.
However, there is a catch: the filesystem API is an asynchronous API.
The WASI API is synchronous, and this means that currently,
the filesystem API is not usable.
So something else must be found. Before the FileSystem API was generally
available, a pure Javascript implementation of a FileSystem emulation was created,
called BrowserFS. It was modeled after the NodeJS filesystem API.
This implementation is now known as ZenFsS:
https://github.com/zen-f£fs
The ZenFS API comes with various backends that are synchronous:
InMemory : Stores files in-memory. This is cleared when the webpage is closed.
WebStorage : Stores files in local or session storage.

This means the filesystem can be persisted, even when the webpage is closed.

PAS2JS comes with the necessary units to make use of this API, and here is a plugin for the WebAssembly hosting
mechanism to provide a filesystem. So, how to use the ZenFsS filesystem to provide an image file to the webassembly
module? Before starting the webassembly, we load the necessary files from the webserver, and store them in our
in-browser filesystem emulation.

Since loading the files from the server is asynchronous, this loading needs to be completed before we can start the
webassembly. The ZenFS filesystem needs to be initialized. This initialization is also asynchronous, so we must wait for it
to complete before we can start our webassembly program. To make our life a little easier, we will introduce an
asynchronous method:

procedure RunWasm ; asyncy
This means we can use await in the RunWasm method to let the filesystem initialization finish before calling
StartWebAssembly. The code from the DoRun method generated by the application wizard in Lazarus
is replaced with the following:
procedure TFresnelHostApplication.DoRuny
begin
RunWasm;y
end,;

The actual work now happens in RunWasm, which starts by initializing the ZenFsS file system. The initialization means that
you tell ZenFS where to mount various file systems, similar to the way this happens on a typical unix or linux operating system.
You can use various filesystems at the same time, but for our needs, we'll mount a single filesystem using WebStorage:

procedure TFresnelHostApplication.RunWasm;
var

aCount & Integery
begin

Terminateyj

await(tjsobject, ZenFS.configure(

new(
['mounts’, new([
'/’, DomBackends.WebStorage

1))
)
)i

FSi=TWASIZenFS.Create,

WasiEnvironment.FSI=FS;

aCount:=await(LoadFiles);

Writeln('Loaded ‘,aCount,’ files.");
StartWebAssembly('basic.wasm’,true,@0OnBeforeStart,@OnAfterStart);

end,

Blaise Pascal Magazine 117 2024 @ 105

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 15 / 17

@5Shg 9 g» @ FILESYSTEM SUPPORT FOR - CONTINUATION 2
© 1 "
After the ZenFS

filesystem is initialized, we
create an instance of the WASIZenFS
class, and assign it to the WasiEnvironment.
Before starting the webassembly, we load the
needed files into our virtual filesystem using LoadFiles.
As mentioned before, this is an asynchronous call, so we wait
for it to complete.
Lastly, the webassembly is started, specifying 2 callbacks: one to be
executed before, one to be executed after the start of the webassembly.

Before diving into these calls, let's see how we can load files into our browser
-based filesystem. The TWasiHostApplication class offers 3 calls to preload
files from the server into the filesystem emulation:
function PreloadFiles(aFiles : TPreLoadFileDynArray) : TPreLoadFilesResult; asyncj
function PreLoadFiles(aFiles : Array of string) : TPreLoadFilesResultj asyncj
function PreloadFilesIntoDirectory(aDirectory: String;
aFiles: array of string): TPreLoadFilesResultj asyncjs

As you can see, all calls are asynchronous. The first call is the raw download mechanism.
You specify the files to preload using an array of records:
TPreLoadFile = record

url @ Stringy

localname : string;
end,;

The URL contents will be downloaded and put into the local filesystem as a file with the given path and name. (NOTE
that if you specify directories, you must create any directories before loading files into them) The second form of the
PreLoadFiles call accepts an array of strings.

This should be an even amount of strings, where each pair is a URI and a local filename: these are simply transformed
into an array of TPreLoadFile records. The PreLoadFilesIntoDirectory is a utility function that stores all
downloaded files in a single directory. The LoadFiles function uses this latter utility function, and is really simple:

function TFresnelHostApplication.LoadFiles: Integer;

const
Files : TStringDynArray = (‘image.png’,’stylel.css’,’style2.css’);

var
Res: TPreLoadFilesResult;
I : Integery
begin
resulti==1;
Res:i=await (PreloadFilesIntoDirectory(’/’,Files));
For I:=0 to Length(Res.failedurls)=-1 do
With Res.failedurls[i] do
Writeln('Failed to preload file: ‘,url,’ : ",error);
Resulti=res.loadcount;
end,;

The TPreLoadFilesResult gives info about the number of loaded files and any errors that may have occurred.
All that remains to be discussed are the 2 callbacks that were passed to the StartWebassembly call.
The onBeforeStart event is called before the webassembly is started, and we use it to pass the functions that are
exported from the webassembly to the Fresnel API:
function TFresnelHostApplication.OnBeforeStart(Sender: TObject;
aDescriptor! TWebAssemblyStartDescriptor): Boolean;

begin

FFresnelApi.InstanceExportsi=aDescriptor.Exported;

Resulti=true;
end,;

Blaise Pascal Magazine 117 2024 @ 106

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 16 / 17

@55 9 ‘T @ FILESYSTEM SUPPORT FOR - CONTINUATION 3
< {w
» P,

The fresnel API
needs access to the exported
functions in order to call the timer
function fresnel tick. Thisis exactly
why the onAfterStart event handler is needed:
once the webassembly module has been initialized, we start
the fresnel timer:

procedure TFresnelHostApplication.OnAfterStart(Sender: TObject;
aDescriptor: TWebAssemblyStartDescriptor);
begin
Writeln('Starting timer”);
FFresnelApi.StartTimerTick;
end,

Last but not least, we need the main program code to set the ball rolling. This looks like
any Free Pascal or Lazarus code, with a small addition to set up the console output:

the WriteLn statements from the webassembly are caught and displayed in the browser
console log, but also in a special HTML element (with id "pasjsconsole”):

var
Application i TFresnelHostApplicationy
begin
ConsoleStylei=DefaultCRTConsoleStyle;
HookConsoley

Application :=TFresnelHostApplication.Create(nil);
Application.Initializey
Application.Runj;

end

With this, the loader program is finished. All we need now is a HTML page which will execute the code. We need 2
special tags in the HTML: one is the parent for the canvas (with id “desktop”) and one is needed to display the output of
the WritelLn statement. We also need to load ZenFS : 2 Javascript files are needed: browser .min. js. This is the core
ZenFS module. browser .dom. £s. This is the ZenFS module that allows to store files in the browser local storage.

Add some CSS styling with Bulma CSS to the mix, and this is our web page:

<!doctype html>
<html lang="en">
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Fresnel - Webassembly Backend</title>
<link href="bulma.min.css" rel="stylesheet">
<script src="browser.min.js"></script>
<script src="browser.dom.js"></script>
<script src="fresnelhost.js"></script>
</head>
<body style="background-color: yellow">
<div class="container">
<hl class="title is-3">Fresnel WebAssembly Backend</hl>
<div class="columns">
<div class="column">
<hl class="title is-5">Fresnel graphical interface:</hl>
<p>This demo demonstrates a Fresnel Program compiled in WebAssembly,
using a custom canvas backend.</p>
<div id="desktop" style="min-height: 480px;">
</div>
</div>
<div class="column">
<hl class="title is-5">Webassembly console output:</hl>
<div class="box" id="pasjsconsole"></div>
</div>
</div>
</div>
<script>
rtl.showUncaughtExceptions=true;
window.addEventListener("load", rtl.run);
</script>
</body>
</html>

Blaise Pascal Magazine 117 2024 @ 107

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE ARTICLE PAGE 17 / 17

QESH, t @ FILESYSTEM SUPPORT FOR - CONTINUATION 4
S ?v?\
P o

When all this is
loaded in the browser, the
application will look like figure 6 on
page 17. Note the yellow background on the
HTML body. This is done to demonstrate clearly that
the fresnel background (white) is observed when showing
an image with transparency, such as the lazarus icon.

File Edit View History Bookmarks Tools Help

Fresnel - Webassembly Backend X | +
C @ e O D s 127001 ¥ Q search OB % TT O & * & H 3 » =
Fresnel WebAssembly Backend
Fresnel graphical interface: Webassembly console output:

This demo demonstrates a Fresnel Program compiled in WebAssembly, using a custom
canvas backend

Label1Caption

log[etDebug] TCustomFresnelForm.WSMouseXY El=TMainForm PagePos=(558,2%8) ControlPos=
log[etInfo] Event class TFresnellMous eEvent type: MouseMove, sender : (TMainForm)
log[etInfo] Mouse Event (X: .00, : 298.00, Butto mbLeft, Buttons: [])

log[etInfo] Event class TFresnellMouseMoveEvent type: MouseMove, sender : (TMainForm)
log[etInfo] Mouse Event (558.00, Y: 298.00, Butten: mbLeft, Buttons: [])

log[etDebug] TCustomFresnelForm.WSMouseXY El=TMainForm PagePos=(576,2%98) ControlPos=(576,298)
log[etInfo] Event class TFresnelMouseMoveEvent type: MouseMove, sender : (TMainForm)
log[etInfo] Mouse Event (X 76.00, Y: 298.00, Button: mbLeft, Buttons: [])

log[etInfo] Event class TFresnelMouseMoveEvent type: MouseMove, sender : (TMainForm)
log[etInfo] Mouse Event (X: 576.00, Y: 298.00, Butten: mbLeft, Buttons: [])

log[etDebug] TCustomFresnelForm.WSMouseXY El=TMainForm PagePos=(611,298) ControlPos=(611,2%8)
log[etInfo]l Event class TFresnelMouselMoveEvent type: MouseMove, sender : (inForm)
log[etInfo] Mouse Event |(611.00, : 298.00, Butto: mbLeft, Buttons: [])

log[etInfo] Event class TFresnelMouseMoveEvent type: MouseMove, sender : (TMainForm)
log[etInfo] Mouse Event (X: 611.00, Y: 298.00, Button: mbLeft, Buttons: [])

log[etDebug] TCustomFresnelForm.WSMouseXY El=TMainForm PagePos=(634,298) ControlPos=(634,298)

log[etInfo] Event class TFresnelMouseMoveEvent type: MouseMove, sender : (TMainForm)
log[etInfo] Mouse Event (X: 634.00, Y: 298.00, Button: mbLeft, Buttons: [])
log[etInfo] Event class TFresnelMouseMoveEvent type: MouseMove, sender : (TMainForm)

log[etInfo] Mouse Event (X: 634.00, Y: 298.00, Button: mbLeft, Buttons: [])

log[etDebug] TCustomFresnelForm.WSMouseXY El=TMainForm PagePos=(646,296) ControlPos=(646,2

log[etInfo] Event class TFresnelMouseMoveEvent type: MouseMove, sender : (TMainForm) 4

log[etInfo] Mouse Event (646.00, Y: 296.00, Butto mbLeft, Buttons: [])

log[etInfo] Event class TFresnellMouseMoveEvent type: MouseMove, sender : (TMainFormr
CONCLUS'ON q[etInfo] Mouse Event (X: 646.00, : 296.00, Button: mbLeft, Buttons: [])
In this article, we've shown that
the goals that were outlined for
project Fresnel are attainable:

We have 3 working backends,
a CSS-driven layout, multiple platforms,
a powerful event mechanism. With the Skia renderer available,

there should be no problem to create a universal graphical application which runs on all native platforms and in the
browser. All this using a single codebase, and running at native speed. And obviously, all this using your favourite
programming language: Object Pascal.

Blaise Pascal Magazine 117 2024 @ 108

PROJECT FRESNEL: THE TIME IS NOW - AN UPDATE

TSy '

A

NI 7VT
WP,

APPENDIX

code can be downloaded here
https://gitlab.com/freepascal.org/lazarus/fresnel

Fresnel
This repository contains the sources for Project Fresnel

What is project Fresnel ?

Project Fresnel is a new Ul paradigm* for Lazarus projects.

Instead of using LCL controls, CSS-based custom drawn controls will be used to create your Ul.
*In science and philosophy, a paradigm is a distinct set of concepts or thought patterns, including

theories, research methods, postulates, and standards for what constitute legitimate contributions
to a field. The word paradigm is Greek in origin, meaning "pattern."

Why is this project needed ?

The design of the VCL and LCL is old. In the browser, UX (User eXperience) and Ul have evolved
far beyond what the LCL has to offer, largely thanks to the strength of CSS.

The choice for €SS as a mechanism for lay outing and display is therefore logical.

This will also allow to reuse existing €SS frameworks.

What's with the name ?
Ul is about look and feel. Look and feel means light.
FRESNEL is a French Physicist who made important contributions to the wave theory of light.

Goals of project Fresnel:

100% Pascal code.

Create a set of controls that are independent of the LCL.

The layout and look of the controls are governed by CSS.

A Lazarus application must be able to run LCL forms alongside 'Fresnel’ forms.
This will ensure easy porting.

Different drawing backends must be possible.

Skia:
To use Skia4Delphi you must put the library into the library path:

Linux 64bit: export LD LIBRARY PATH=fresnel/
bin/Binary/Shared/Linux64

Macos X64: export DYLD_LIBRARY_PATH=fresne1/
bin/Binary/Shared/0SX64

For more insight in Fresnel see also the article of
Issue 107/108 Page 65 of Blaise Pascal Magazine

Blaise Pascal Magazine 117 2024 @ 109

fi@ BIFAISESPASCAL«> MAGAZINESIH Y,

Multi platform /O y / Pas2ls /
Web Apps
ws & Linux

NG
\\\\\\
o

LAZARUS HANDBEOOK 2 §
LAZARYUS AANDBOOK 7

'.

(G
'.
(G

LAZARUS HAN

DOWNLOAD MAG)N
EX VAT AND SHIPPING PRICE: € 75,0(

110
https://www.blaisepasc tegory/books/

https://www.blaisepascalmagazine.eu/product-category/books

Donate for Ukraine and get a freelicense at:

https://componentsd4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

If you are from Ukrainian origin you can get a free Subscription for Blaise Pascal
Magazine, we will also give you a free pdf version of the Lazarus Handbook. You need to
send us your Ukrainian Name and Ukrainian email address (that still works for you), so
that it proofs you are real Ukrainian. please send it to editor@blaisepascal.eu and
you will receive your book and subscription P

BLAISE PASCAL «> MAGAZINE &

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2)s / [a2
! - '
“‘ “ i

Databases / CSS Styles / Progressive Web Apps
Android / 10S / Mac / Windows & Linux

Blaise Pascal

COMPONENTS
DEVELOPERS

Donate for Ukraine and get a free license at:
https://components4developers.blog/2022/02/26/
donate-to-ukraine-humanitarian-aid/

COMPONENTS
DEVELOPERS

DOHD

DONATE FOR
UKRAINE

AND GET A

FREE LICENSE AT:;

https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

kbmMW Professional and Enterprise

NEW EDITION V. 5.23

O ETIEDIE

NEW EDITION V. 7.99.00 o

Standard and Professional Edition
Std/Pro v. 1.52.00 released

5.23.00 is a release with containing new stuff, refinements and bugfixes, openSSL v3 support,
WebSocket support, further inprovements to SmartBind, new high performance hashing algorithms,
improved RemoteDesktop sample and much more.

This release requires the use of kbmMemTable v. 7.98.00 or newer.

RAD Alexandria supported o New: full Web-socket support.
[] Win32, Win64, Linux64, Android, 10S 32, I0S 64 and The next release of kbomMW Enterprise Edition will
OS X client and server support include several new things and improvements.
o Native high performance 100% developer defined One of them is full Web-socket support.
application server [) New 18N context sensitive internationalisation framework to
[) Full support for centralised and distributed load make your applications multilingual.
balancing and fail-over (] New ORM LINQ support for Delete and Update.
[] Advanced ORM/OPF support including support of Comments support in YAML.
existing databases o New StreamSec TLS v4 support (by StreamSec)
[] Advanced logging support Many other feature improvements and fixes.
[) Advanced configuration framework
[] Advanced scheduling support for easy access to Please visit http://www.components4developers.com
multi thread programming for more information about kbmMW
[] Advanced smart service and clients for very easy
publication of functionality
[) High quality random functions.
[] High quality pronounceable password generators.
(High performance LZ4 and J peg compression) High speed, unified database access (35+ supported
(] Complete object notation framework including full database APIs) with connection pooling, metadata and
support for YAML, BSON, Messagepack, J SON and XML data caching on all tiers
[) Advanced object and value marshalling to and from o Multi head access to the application server, via REST/AJAX,
YAML, BSON, Messagepack, JSON and XML native binary, Publish/Subscribe, SOAP, XML, RTMP from
[4 High performance native TCP transport support web browsers, embedded devices, linked
) High performance HTTPSys transport for Windows. application servers, PCs, mobile ~devices, Java systems
[] CORS support in REST/HTML services. and many more clients
[Native PHP, Java, OCX, ANSI C, C#, Apache Flex client () Complete support for hosting FastCGl based applications
support! (PHP/Ruby/Perl/Python typically)
kbmMemTable is the fastest and most feature rich in memory table ® Native complete AMQP 0.91 support (Advanced Message
for Embarcadero products. ° 8uew|n% Proté)%ol) d brandable Remote Deskt ith
[Easily supports large datasets with millions of records omple ﬁ.en HDen'd secgre ratrw av'e er;no € Deskiop wi
4 Easy data streaming support near realtime HD video, 8 monitor support,)
. 4 . texture detection, compression and clipboard sharing.
[] Optional to use native SQL engine PY Burnalins HomV IS e Pratiestornrl sl s dhs e
[J Supports nested transactions and undo UQ Ingtf ”1 Sl ?1 LILHES e55|ort1ab|w f'c E'S b S aj =
[] Native and fast build in M/D, aggregation/grouping an dmc%s €ature rich in memory table tor tmbarcadero
range selection features products.
[] Advanced indexing features for extreme performance

.: COMPONENTS
DEVELOPERS

PDODSD

ADVERTISEMENT

	HUMOR:
	DBWorkbench:
	Editor:
	PUTS Delphi:
	|PUTS Treeview:
	INTEL:
	Debugger:
	Webassembly:
	FRESNEL:

