
1Blaise Pascal Magazine 112 2023

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /

Blaise Pascal

BLAISE PASCAL MAGAZINE 112
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

Report Cannon ball simulation
The Castle Game Engine, the bad way to play chess:

3d physics fun using castle game engine
H-BOT, H shaped robot: a simulated robot

make and use your own robot
Pythagorean triples

Debugging in FPC-Lazarus part 3
Executing Programs on the server in PAS2JS

long-running processes on the server

2Blaise Pascal Magazine 112 2023 2

Publisher: PRO PASCAL FOUNDATION in collaboration © Stichting Ondersteuning Programmeertaal Pascal

Pascal is an imperative and procedural programming language, which Niklaus Wirth designed (left
below) in 1968–69 and published in 1970, as a small, efficient language intended to encourage good
programming practices using structured programming and data structuring. A derivative known as Object
Pascal designed for object-oriented programming was developed in 1985. The language name was chosen
to honour the Mathematician, Inventor of the first calculator: Blaise Pascal (see top right).Niklaus Wirth

Blaise Pascal

BLAISE PASCAL MAGAZINE 112
Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

From your editor Page 4
Humor: from our technical advisor Jerry King Page 5
Report Cannon ball simulation Page 7
By Max Kleiner

The Castle Game Engine, the bad way to play chess: Page 27
3d physics fun using castle game engine
By Michalis Kamburelis

H-BOT, H shaped robot: a simulated robot Page 12
make and use your own robot
By David Dirkse

Pythagorean triples Page 21
By David Dirkse

Debugging in FPC-Lazarus part 3 Page 46
By Martin Friebe

Executing Programs on the server in PAS2JS Page 54
long-running processes on the server
By Michael van Canneyt

ARTICLES

CONTENT

Barnsten Delphi Products Page 72
Components for Developers Page 76
David Dirkse computer math/games in Pascal Page 25
Database Workbench Page 53
Help for Ukraine Page 75
Lazarus Handbook Pocket Page 11
Lazarus Handbook Pocket + Subscription Page 45
Lazarus Handbook PDF + Subscription Page 11
LIBRARY Internet Library Page 52
LIBRARY Lib Stick Page 20
Nexus DB 20 years Page 26
New subscription model Page 19
PDF Viewer 2023 Blaise Pascal Library USB stick Page 20
Subscription 2 year Page 73
Superpack 6 Items Page 74

Watch our Blaise Pascal Artificial Gallery:
https://www.blaisepascalmagazine.eu/pascal-portray-gallery-1/

ADVERTISING

https://www.blaisepascalmagazine.eu/pascal-portray-gallery-1/
https://www.blaisepascalmagazine.eu/pascal-portray-gallery-1/

3Blaise Pascal Magazine 112 2023 3

Subscriptions (2023 prices) TOTAL

€ 348Printed Issue (8 per year) ±60 pages :
Electronic Download Issue (8 per year) ±60 pages :

Member and donor of

COPYRIGHT NOTICE

Subscriptions can be taken out online at www.blaisepascal.eu or by written order, or by sending an email to office@blaisepascal.eu
Subscriptions can start at any date. All issues published in the calendar year of the subscription will be sent as well.
Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
Subscriptions can be paid by sending the payment to: ABN AMRO Bank Account no. 44 19 60 863 or by credit card or PayPal
Name: Pro Pascal Foundation (Stichting Ondersteuning Programeertaal Pascal)
IBAN: NL82 ABNA 0441960863 BIC ABNANL2A VAT no.: 81 42 54 147 (Stichting Ondersteuning Programmeertaal Pascal)
Subscription department Edelstenenbaan 21 / 3402 XA Ĳsselstein, Netherlands Mobile: + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

Editor - in - chief
Detlef D. Overbeek, Netherlands Tel.: Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavor to ensure that what is published in the magazine is correct, we cannot
accept responsibility for any errors or omissions.
If you notice something which may be incorrect, please contact the Editor and we will publish a
correction where relevant.

All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless
otherwise noted and may not be copied, distributed or republished without written permission. Authors agree that code
associated with their articles will be made available to subscribers after publication by placing it on the website of the
PGG for download, and that articles and code will be placed on distributive data storage media. Use of program listings
by subscribers for research and study purposes is allowed, but not for commercial purposes. Commercial use of
program listings and code is prohibited without the written permission of the author.

Member of the Royal Dutch Library KONINKLĲKE BIBLIOTHEEK

CONTRIBUTORS

WIKIPEDIA
Internat. excl. VAT

€ 200
€ 64,22

Internat. incl. 9% VAT

€ 218
€ 70

Shipment

€ 130

Marco Cantù
www.marcocantu.com
marco.cantu @ gmail.com

Stephen Ball
http://delphiaball.co.uk
DelphiABall

Dmitry Boyarintsev
dmitry.living @ gmail.com

Michaël Van Canneyt
,michael @ freepascal.org

Holger Flick
holger @ flixments.com

David Dirkse
www.davdata.nl
mail: David @ davdata.nl

Benno Evers
b.evers @
everscustomtechnology.nl

Bruno Fierens
www.tmssoftware.com
bruno.fierens @ tmssoftware.com

Wagner R. Landgraf
wagner @ tmssoftware.com

Mattias Gärtnernc-
gaertnma@netcologne.de

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

John Kuiper
john_kuiper @ kpnmail.nl

Vsevolod Leonov
vsevolod.leonov@mail.ru

Andrea Magni
www.andreamagni.eu andrea.
magni @ gmail.com
www.andreamagni.eu/wp

Paul Nauta PLM Solution
Architect CyberNautics
paul.nauta @ cybernautics.nl

Kim Madsen
www.component4developers.com
kbmMW

Boian Mitov
mitov @ mitov.com

Detlef Overbeek
- Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Siegfried Zuhr
siegfried @ zuhr.nl

Anton Vogelaar
ajv @ vogelaar-electronics.com

Danny Wind
dwind @ delphicompany.nl

Jos Wegman
Corrector / Analyst

Jeremy North
jeremy.north @ gmail.com

4Blaise Pascal Magazine 112 2023

From your editor
Hi,
In this issue we have something very special to read and use: Castle Game Engine.
Michalis Kamburelis is the developer for that engine and it works under Lazarus and under
Delphi as well.
This engine can let you create not only beautiful games but also 3d objects.
That is a very nice sort of development.
We are busy to integrate that into Web assembly and PAS2JS so we could use it eventually
even on the web.
I already started to think of making a normal Desktop Application that integrates some
elements of the Game Engine.
Especially for supporting the user (User-Interface) it might become very interesting.

At this moment we are very deep into developing Fresnel (The alternative for the LCL of
Lazarus) and Michael van Canneyt and Mattias Gärtner are working very hard on that.
We try to get that done by the time I will be in Backnang -Stuttgart / Heidelberg – area at
the 22scd-24th of September this year.
(https://www.blaisepascalmagazine.eu/lazarus-konferenz-2023-in-backnang-22-09-2023-24-09-2023/)

Mattias tries too build something for Skia and Michael will create the extra (mouse events)
for the library.
That is already an enormous step toward making Lazarus colourful.
Finally we want to do something that has no multiple OS compiler available:
Color setting as you wish – on whatever platform,
independent of the colour-scheme of the to be used OS.
Martin Friebe is continuing the very much enhanced Debugger for Lazarus. Please try, its
very interesting and helpful. There are about six or seven more articles to come so it is like
a course in debugging.

These new developments will be integrated into the next Lazarus Handbook as well.
Speaking about books: We will publish two new books:
1. Learning to program with FreePascal and Lazarus – it is a totally new written book
 with a lot of simple lessons so that you will be able to create any program you want.
2. Creating Pas2Js Apps, in Delphi and in Lazarus.

We will write about details in the next edition of Blaise Pascal Magazine.

5Blaise Pascal Magazine 112 2023

From our technical advisor Jerry King

6Blaise Pascal Magazine 112 2023 6Blaise Pascal Magazine 110 2023

LAZARUS HANDBOOK PRICE: € 25,00
POCKET PACKAGE (2BOOKS) EXCLUDING VAT AND SHIPPING

https://www.blaisepascalmagazine.eu/product-category/books/

7Blaise Pascal Magazine 112 2023

Starter Expert

maXboxmaXbox

 maXbox Starter 112

Report Cannonball Simulation
Article Page 1 / 4

maXbox

Today we make a detour into
the world of ballistics, simulation & training.

One of my friends on Delphi for Fun gave me the idea to port the executable to a
script for windows 11 as a preparation for the 64bitbox.

So ballistics is the study of the motion of projectiles, such as bullets, shells, and
rockets, in our script we deal only with balls. It is a branch of mechanics that deals with

the behavior of objects in motion. Ballistics can be divided into three main categories:
internal ballistics, external ballistics, and terminal ballistics.

So I translated the Delphi program with a few improvements into that script:

Of course we can simulate a cannonball using a physics simulation software or in our case integrate
that model with Pascal. This simulation allows you to blast a ball out of a cannon and challenge
yourself to hit a movable target. You can set parameters such as angle (elevation), initial speed
(powder charge), and mass (gravity), and explore the vector representations.

http://www.softwareschule.ch/examples/cannonball.txt

http://www.softwareschule.ch/examples/cannonball.txt

8Blaise Pascal Magazine 112 2023

maXboxmaXbox

 maXbox Starter 112

Report Cannonball Simulation
maXbox

Article Page 2 / 4

The interesting thing is that this simulation shows how the motion of a projectile like a cannonball is
fundamentally the same as the orbit of a celestial body like the moon!
The rotate and translate routines developed are used here to elevate the cannon. The ball movement
loop is similar to a Bouncing Ball program with the addition of a horizontal component.
Initial velocities in the X and Y direction are proportional to the cosine and sine of the elevation angle
respectively.
The barrel is a bit tricky; We do assume that the cannonball inside the barrel is "rolling up a ramp" with
the component of gravity acting parallel to the barrel being the force acting to reduce the velocity of the
cannonball in both x and y directions, so we keep an eye on the distance function:

Also an explainable
statistic is part of the script, as summary or detailed

(our standard case which hit the target):
Summary of study case

Barrel Len 87, Angle 45.0, Initial V 24.0, gravity 1.0

Time in barrel 3.8 seconds
X distance at end of barrel 61.5

Y distance at end of barrel 61.5
Time to top of freeflight arc 15.1, 18.9 total

X distance to top of freeflight arc 226.5, 288.1 total
Height above barrel to top of freeflight arc 113.3, 174.8 total

Time to reach ground from max height 18.7, 37.6 total
X distance from top of freeflight arc to end 281.4, 569.5 total

http://www.softwareschule.ch/examples/cannonball.txt

http://www.softwareschule.ch/examples/cannonball.txt

9Blaise Pascal Magazine 112 2023

maXboxmaXbox

 maXbox Starter 112

Report Cannonball Simulation
maXbox

Article Page 3/ 4

Once we have the point rotated to the desired angle relative to then origin, Translate() can move the
point by adding the new x and y origin coordinates to the x and y values of the point of type TPoint.
The other logic is to determine whether the cannonball has hit the target, which is movable by a track bar.
“Collision detection” is a common (and also complicated) problem in most animated graphics apps.
The implementation is checking if the distance from the center of the cannonball is less than its radius
from the left or top edges of the target after each move or hit.
The problem is that, for low angles, a horizontal movement may take the ball from one side of the target
to the other side in one loop increment, so we never know that we went right through it!
A funny thing is the storage of cannonballs;
Spherical objects, such as cannonballs, can be stacked to form a pyramid with one cannonball at the top,
sitting on top of a square composed of four cannonballs, sitting on top of a square composed of nine
cannonballs, and so forth.

procedure rotate(var p:Tpoint; a:float);
{rotate a point to angle a from horizontal}
var t:TPoint;
begin
t:=P;
p.x:=trunc(t.x*cos(a)-t.y*sin(a));
p.y:=trunc(t.x*sin(a)+t.y*cos(a));

end;

procedure translate(var p:TPoint; t:TPoint);
{translate a point by t.x and t.y}
Begin
p.x:=p.x+t.x;
p.y:=p.y+t.y;

end;

 Two Procedures, Rotate and Translate, do the rotation of points. Rotation about an
origin point of (0,0) is rather straightforward as we can see from the code below:

function distance(p1,p2:TPoint):float;
begin
result:= sqrt(sqr(p1.x-p2.x)+sqr(p1.y-p2.y));

end;

http://delphiforfun.org/Programs/bouncing_ball.htm

http://delphiforfun.org/Programs/bouncing_ball.htm

10Blaise Pascal Magazine 112 2023

maXboxmaXbox

 maXbox Starter 112

Report Cannonball Simulation
maXbox

Article Page 4 / 4

In PyGame for example,
collision detection is done using Rect objects. The Rect object

offers various methods for detecting collisions between objects. Even the collision
between a rectangular and circular object such as a paddle and a ball can be detected

by a collision between two rectangular objects, the paddle and the bounding rectangle of
the ball. Now we can summarize the theoretic results in a procedure of our statistic:

By the way I asked ChatGPT how can I program cannonball in Pascal and the answer:
To program a cannonball in Pascal, you can use the following steps:

1. Define the initial position and velocity of the cannonball.
2. Calculate the acceleration of the cannonball due to gravity.
3. Update the velocity and position of the cannonball using the calculated acceleration.
4. Repeat step 3 until the cannonball collides with an object or reaches a certain height.

In this example code snippet, CircleRectCollision() is a custom function that detects collision between a
circle and a rectangle. You can modify this function to suit your needs; the main part of the script has only 4
procedures:
 processmessagesOFF; loadStatForm(); loadmainForm(); UpdateImage();

https://en.wikipedia.org/wiki/Ballistics http://www.softwareschule.ch/examples/
cannonball64.txt

{************* TheoreticalCalc **********}
procedure TheroreticalCalc;
var
root,T1, Vf, Vxf, Vyf, X1,Y1 : float;
TTop, Xtop, Ytop, Tlast, VyLast, Xlast, floor : float;

begin
with {stats.}amemo1.lines do begin
clear;
add(format('Barrel Len %d, Angle %6.1f, Initial V %6.1f, gravity %6.1f',

 [barrellength,180*theta/pi,v1,g]));
if g = 0 then g := 0.001;
root := v1*v1 - 2*g*sin(theta)*Barrellength;
if root>=0 then begin
T1 :=(v1 - sqrt(root))/(g*sin(theta+0.001));
Vf := v1 - g*sin(theta)*T1;
Vxf :=Vf*cos(theta);
Vyf :=Vf*sin(theta);
X1 :=Barrellength*cos(theta);
Y1 :=Barrellength*sin(Theta);
floor:=(origin.y+ballradius)-groundlevel;
{out of barrel, Vx remains constant, Vy := Vyf- g*DeltaT}
{Vy=0 then Vyf-g*Ttop=0 or Ttop=Vyf/g}
Ttop:=Vyf/g;
{x distance at top} Xtop:=Vxf*Ttop;
{height at top = average y velocity+ time} Ytop:=(Vyf + 0)/2*TTop;
{Time to fall from ytop to groundlevel, descending part of projectiles path}
{speed when ball hits ground}
TLast:=sqrt(2*(Y1+YTop-floor)/g);
Xlast:=Vxf*TLast;
add(format('Time in barrel %6.1f seconds',[T1]));
add(format('X distance at end of barrel %6.1f',[X1]));
add(format('Y distance at end of barrel %6.1f',[Y1]));
add(format('Time to top of freeflight arc %6.1f, %6.1f total',[Ttop,T1+Ttop]));
add(format('X distance top of freeflight arc %6.1f, %6.1f total',[Xtop,X1+Xtop]));
add(format('Height above barrel to top of freeflight arc %6.1f, %6.1f total',

 [Ytop,Y1+Ytop]));
add(format('Time to reach ground from max height %6.1f, %6.1f total',

 [TLast,T1+Ttop+TLast]));
add(format('X distance from top of freeflight arc to end %6.1f, %6.1f total',

 [XLast,X1+Xtop+XLast]));
end else add('Velocity too low, cannonball does not exit barrel');

end;
end;

http://www.softwareschule.ch/examples/cannonball.64txt

11Blaise Pascal Magazine 112 2023 6Blaise Pascal Magazine 110 2023

LAZARUS HANDBOOK
POCKET + PDF AND
SUBSCRIPTION
ex Vat and Shipping

Price: € 75,00

https://www.blaisepascalmagazine.eu/product-category/books/

ADVERTISEMENT

INTRODUCTION:
The Picture below shows a HBot (H shaped robot).
These robots are widely used in gantries,(A Gantry Robot is an automated industrial system that
can also be referred to as a Cartesian Robot or a Linear Robot.) manufacturing such as SMD pick-
and-place, packaging and laser cutting. But also unexpected applications were found: T-shirt folding,
chess playing, tattoo machine. Advantages of this robot type are cost effectiveness, portability and ease
of control.

Please take a look at the Youtube video (see figure 2)
https://www.youtube.com/watch?app=desktop&v=NgGiu_0x7tg

Figure 3: a very good example website
Here you can get more information about the H-shaped Robots
https://www.sagerobot.com/gantry-robots/

12Blaise Pascal Magazine 112 2023

H-BOT, H SHAPED ROBOT:
A SIMULATED ROBOT

Starter Expert

PAGE 1/7

Figure 1: HBot

Figure 2: The video cover

There is one single belt which ends are attached to the pen.

13Blaise Pascal Magazine 112 2023

H-BOT, H SHAPED ROBOT:
A SIMULATED ROBOT

PAGE 2/7

Motor 1 moves counter clockwise,
motor 2 moves clockwise, the same distance.
Pen P moves upward.

Here is a video about a totally different application:
https://www.youtube.com/watch?v=Ztm-PrCzxos

Figure 3: Mushroom handling

Figure 4: Motors and guide bar

Pictured below (reduced) is the simulated robot, implemented as a plotter. At the left and right top
are two fixed motors operating independently and driving a single belt. As the motors rotate clockwise
or counter clockwise, the pen moves in a horizontal , diagonal or vertical direction.

Horizontal pen movement.

14Blaise Pascal Magazine 112 2023

H-BOT, H SHAPED ROBOT:
A SIMULATED ROBOT

PAGE 3/7

Motor 1 moves clockwise,
motor 2 also moves clockwise, the same amount.
PenP moves horizontally to the right.
Diagonal pen movement
Is the result of both vertical and horizontal movement.
For pen
Up = Left motor CCW d ; Right motor CW d (distance)
Right = Left motor CW d; Right motor CW d
--
add actions
Diagonal UP = Right motor CW 2d
Diagonal right up movement by distance d is the result of a 2d
distance turn by motor 2.
The motor 1 movements cancel each other.
Summarizing:

For diagonal movement only one motor moves.
The belt movement is doubled:
it is the sum of horizontal and vertical movement.

Figure 6: Actions

Figure 5: Horizontal Pen movements

15Blaise Pascal Magazine 112 2023

H-BOT, H SHAPED ROBOT:
A SIMULATED ROBOT

PAGE 4/7

SIMULATOR USAGE, BUTTONS AND INDICATORS

THE SIMULATOR PROGRAM
General considerations
- Movement must be realistic:
 smooth without flickering
- Moving parts must be visible as such
- Buttons must show the principle of
 operation

The HBot is pictured in a paintbox on
the main form. However, this is not
sufficient because erasing the picture
before drawing the updated situation
causes irritant flickering.
This is avoided by assembling the HBot
in a bitmap (mapX) and using copyrects
to transfer changed areas of mapX to
paintbox1
.
Some areas of the screen are painted
once and do not change.

This background is painted in mapA.
Parts of A are transferred to mapX. Also
the pen draws in mapA.
Moving wheels have attached spokes or
a line mark to indicate movement.
Purple dots are painted on the belt to
show movement.

TIMING
Updating the screen after a (one pixel)
move takes some time.
This time is displayed.
After updating the screen the processor
has to wait for a certain time for the
required speed.
A blue bar displays the percentage of
time needed for a one pixel update.

Typical time is less than 800 microseconds.

AREAS AND BITMAPS

MapA : bitmap with motors and B areas
with vertical guides, wheels and belt.
Area E is for drawing and shows a
coordinate system.
Map A is copied to mapX
Map C: bitmap holding horizontal guide
bars and wheels. Is copied to mapX.
Map D : pen holder. Is copied to mapX.
MapX is (partial) copied to paintbox1 to
become visible after adding spokes to the
wheels and adding dots to the belt.

Figure 7: The program use

Figure 8: The mapping

16Blaise Pascal Magazine 112 2023

H-BOT, H SHAPED ROBOT:
A SIMULATED ROBOT

PAGE 5/7

TO MOVE THE PEN WITHOUT DRAWING:
Right mouse button down on the sphere, move in chosen
direction. Release mouse button if pen reaches position.
Use left mouse button to move the pen for drawing.
A mouse down event on the sphere causes the movebusy flag to
set.
The movebusy flag enables mouse move events.
The pen control paintbox is divided in cells, the cell number is
translated to the direction code (xdircode).

Picture Right shows four paintboxes with added on-enter and on-
leave events. Code is provided by unit2. These paintboxes are
created at run time.

A left mouse button down on the top half of the L button moves the
left top motor counterclockwise. The bottom half causes clockwise
motion. These actions reverse for the right mouse button.
The R paintbox operates in a similar way, now causing clockwise
motion for a mouse button down on the top part.
The L+R buttons activate both motors moving either in the same or
in opposite directions.

Delphi code For details, please refer to the source code.
Units
- Unit1 : simulator control, constants, variables, painting procedures.
- Unit2 : TDav7ELbox is a Tpaintbox with enter leave events added and
 is used for motor control buttons.
- Timer_unit: code to turn CPU ticks into a microseconds clock for speed control.
- Demo_unit: supplies 3 demos to illustrate HBot operation.

Unit1 procedures and functions
PaintmapA, paintmapC, paintmapD, paintLeftMotor, paintRightMotor : self explanatory.
PaintB : paint area B on mapA.
PaintE : paint coordinate system on mapA.

procedure paintchain(mp: Tbitmap;x1,y1,x2,y2 : word);
// paint belt on bitmap mp (x1,y1) (x2,y2)

XpartialToBox; //area of mapC, B areas paintbox, these are the updated rectangles of mapX

procAWheelmovement; //place spokes on wheels in B areas.

procCwheelmovement; //add spoke to small wheels in C area.

procBeltMovement; // add purple dots on belt
For the last three procedures, the place of the spokes or dots is calculated from the position of the pen.
(0,0) is the center of area E.
The coordinates on E are (-320,-320) left top to (320,320) right bottom.
The procBeltMovement code is lengthy because the belt is divided into horizontal and vertical stretches and
also the arcs around the wheels.

MOVING THE PEN.
This simulator project is for educational purposes.
For that reason there are two ways to move the pen:
1. By controlling the motors and observe pen motion.
2. By controlling the pen and observing the motors.

Figure 9: The motor control

Figure 10: The pen control

17Blaise Pascal Magazine 112 2023

H-BOT, H SHAPED ROBOT:
A SIMULATED ROBOT

PAGE 6/7

Right pictured are the paintbox cells and right the direction
code is displayed.
Procedure procXpainting
is called which sets the moveflag and continuously calls
procedure procmove as long as the moveflag is set.
Procmove takes care of the speed. For single motor
operations, the time out period is doubled because the motor
has to turn twice the distance moving the pen in a diagonal
way.
Procmove calls procedure moveControl to calculate the
new pen position (penPosX,penPosY) , update mapX and
copy parts of mapX to paintbox1 on form1.
If outer bounds of the E area are reached procMove clears
moveFlag and pen motion stops.

THE DEMO UNIT
Three demos are provided. The demo buttons have tags 1..3 and share the
OnClick event. A demo button click calls procedure startdemo(demoNr).

DEMO 1:
Plots the parameter function
X = 150(sin(8t)+sin(t))
Y = 150(cos(8t)+cos(t))
Where t runs from 0…2*pi in 500 steps.
For each value of t, x and y are calculated and procedure movetoXY is
called to draw a line to the new (x,y) position.

DEMO 2:
Is similar to demo1 but the function is
X = 500(sin(9t)*cos(9t)*sin(7t))
Y = 275(sin(9t)*cos(7t))
Procedure movetoXY(x,y)
This procedure subsequently calls procedure procmove(direction)
to reach pen position (x,y);
This is done by calculating values Xstep and Ystep first and then
incrementing x (by Xstep) and y (by Ystep);
Difference must be made between horizontal and vertical line orientation.

Figure 11: The paintbox cells

Figure 12: horizontal orientation

Figure 13: vertical orientation

18Blaise Pascal Magazine 112 2023

H-BOT, H SHAPED ROBOT:
A SIMULATED ROBOT

PAGE 7/7

DEMO 3:
This demo plots some lines of text.
Text is preset in array demotext together with the coordinates of the first character,
the font height and of course the character string.
Procedure startdemo(3) calls procedure painttextline(line nr) for each
line of text .
Painttextline calls procedure drawdemochar(x,y) for each character of the line.
Drawdemochar finally calls movotoXY(x,y) and procmove(direction).
Remains to explain how the parameters for procedures movetoXY () and
procmove() are calculated.
A bitmap called scanmap (width=60, height=60 pixels) is erased for each
character with a black background. Then the character is painted in scanmap with
pencolor red and background white. The black color indicates the boundaries of
the character.

SCANMAP

Drawdemochar has variables scanX, scanY and x, y which point to pixel positions
of scanmap.
First scanX and scanY are set to 0;
Then function scanChar(var scanX,scanY) : Boolean;is called.
This function scans the scanmap (left to right, top to bottom) to find a red pixel and
return true after that red pixel is set to white.
ScanX,scanY point to the first red pixel found.

Next drawdemochar lowers the pen to set a dot. x is set to scanX , y is set to scanY
and function subscan(var x,y; var dir) : Boolean is called.
This function searches for neighbour red pixels of x,y.
If found, true is returned together with the direction code needed for the call to
procedure procmove() to step the pen.
Also x,y coordinates are updated to reflect the last red pixel position.
If subscan returns false, scanChar is called again to continue the search for remaining
red dots, starting at scanX,scanY.
The roman font is used to paint the characters in scanmap.
The GoDemoFlag must be true for textdrawing to continue.
A click on the stop button clears the flag, ending the demo.

Figure 14: drawing a character

8 2022 Blaise Pascal Magazine 112 2023

THE NEW SUBSCRIPTION
MODEL OF
BLAISE PASCAL MAGAZINE

USE WHERE EVER THE INTERNET IS AVAILABLE

1. SUBSCRIPTION: PER YEAR - NOTHING CHANGES ISSUES STARTING AT THE LATEST
 ISSUE AVAILABLE +1 YEAR / CODE INCLUDED € 70,00 FOR ALL COUNTRIES
2. INTERNET (LIBRARY) USE FOR ALL MAGAZINES FROM 1- THE LATEST ISSUE € 50,00
 FOR ALL COUNTRIES
3 LIB-STICK USB-CARD: ALL ISSUES / CODE INCLUDED. SAME INTERFACE AS THE
 INTERNET LIBRARY.€ 120,00 FOR ALL COUNTRIES

https://www.blaisepascalmagazine.eu/product-overview/

https://www.blaisepascalmagazine.eu/product-overview/

8 2022 Blaise Pascal Magazine 112 2023

LIB-STICK ON USB CREDIT CARD
BLAISE PASCAL MAGAZINE
LIB-STICK USB-CARD: ALL ISSUES / CODE INCLUDED. SAME INTERFACE AS THE
INTERNET LIBRARY € 120,00

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /

Blaise Pascal

BLAISE PASCAL MAGAZINE 112
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

Chat.gpt Bard: Create a Pascal-rabbit?
Delphi 12 Yukon Release

Interview with the new Communication manager Ian
Barker.H-BOT, H shaped robot: a simulated robot

Pythagorean triples
Debugging in FPC-Lazarus part 3

The new Lazarus Version 3.0 RC 2

21Blaise Pascal Magazine 112 2023

PYTHAGOREAN TRIPLES

Starter Expert

PAGE 1/4

In a right angled triangle, the square of the
hypothenuse c equals the sum of squares of the
right angled sides a and b.
Calculations with above formula usually result in roots,
numbers that only may be approximated.
Some values of a and b however result in an integer value of c,
such as
- 3,4 c=5
- 5,12 c=13
(3,4,5) and (5,12,13) are called Pythagorean triples.
The question arises: are there more triples?
This Delphi project was written to find all triples below 1000.

ANALOGOUS TRIPLES
(3,4,5) being a triple involves that also (6,8,10), (9,12,15) ..
are triples of similar triangles.
A simple criterion GCD(a,b) = 1 eliminates these
analogous triples

function GCD(a,b : word) : word; //greatest common divisor
var h : word;
begin
repeat
if a < b then
begin
h := a;
a := b;
b := h;
end;
a := a mod b;
until a = 0;
result := b;
end;

INTRODUCTION
In secondary school students are
confronted with the theorem of Pythagoras:

This function uses the Euclidean lemma:
GCD(a,b) = GCD(a mod b,b).

Example: GCD(77,21) = GCD(14,21)=GCD(21,14)=GCD(7,14)=GCD(14,7)=GCD(0,7)=7

Time measurement.
A microseconds timer component is added to the project.
To find the real processing time without the burden of reporting (memo1.lines.add(string))
detected triples are first stored in array ptriples[]

type TP3 = record
a,b,c : word;
end;

…
var p3nr : byte; //sequence number of triple

ptriples : array[1..200] of TP3;

The project presented here has three selectable procedures to find Pythagorean triples.

22Blaise Pascal Magazine 112 2023

PYTHAGOREAN TRIPLES PAGE 2/4

METHOD NR 1.
 Uses no floating point operations and a preset table of squares.

Var squares : array[1..1500] of dword;
…
procedure presetsquares;
var i : word;
begin
for i := 1 to 1500 do squares[i] := i*i;
end;

SUMMARY:
Var c2 : dword;

…
{a and b are incrementing variables in nested repeat..until loops}
C2 := squares[a] + squares[b];
C := b;
{a third nested repeat..until loop increments c}
If c2 = squares[c] then …. //report a,b,c as new triple

This is the slowest method. Processing time is over 100 milliseconds.

23Blaise Pascal Magazine 112 2023

PYTHAGOREAN TRIPLES PAGE 3/4

METHOD2
procedure p3method2;
var a,b : word;

a2,b2 : dword;
c : single;

begin
form1.proctimer.start;
for a := 1 to 998 do
begin
a2 := a*a;
for b := a+1 to 999 do
begin
b2 := b*b;
c := sqrt(a2 + b2);
if frac(c) = 0 then
if GCD(a,b) = 1 then addtriple(a,b,round(c));

end;
end;
form1.proctimer.stop;
end;

This method has two nested for loops to increment a and b.
It uses floating point operations sqrt() and frac() to
calculate the square root and extract the fraction.
If frac(V) = 0, the value v is integer.
Processing time is around 40 milliseconds.

METHOD3
This method does not search for triples but uses formulas that yield triples.
Below is the theory:

a,b,c are replaced by x,y.

24Blaise Pascal Magazine 112 2023

PYTHAGOREAN TRIPLES PAGE 4/4
Each combination where x<> y generates a triple.
Processing time is 85 microseconds. Unlike methods 1. and 2
were a and b were systematically incremented, the triples have
to be sorted to obtain the same result sequence.
A simple exchange sort procedure is used.
Sorting time is not measured.

Please refer to the source code for details.

Here are pictures showing
of the project at work.

Method selection
A simple label is used as a button.
On the canvas of it’s parent (Form1)
edges are painted which change color
on an enter/leave event.

A left click on the
label selects the next
method, a right click
selects the lower
method.

25Blaise Pascal Magazine 112 2023

ADVERTISEMENT

https://www.blaisepascalmagazine.eu/product-category/books/

3

27Blaise Pascal Magazine 112 2023

Starter Expert

Overview of this article
� Introduction
� The Real Introduction
❸ Download and install the engine
❹ Create your first project
❺ Optionally tweak the editor preferences

❻ Learning to design 3D items in a viewport
❼ Design a 3D chessboard with chess pieces
❽ Using physics in the editor
❾ Summary

� INTRODUCTION
I remember my first book about chess, when I was a kid. It was a book teaching young people how to
play chess. The first chapter started with a tale about children playing chess incorrectly:
they didn’t know the rules, so they put chess pieces randomly on the chessboard, and flicked them with
their fingers towards the other side. The wooden chess pieces flew in the air, bashed with each other.
Eventually most of the chess pieces fell off the chessboard onto the floor. The person with the last chess
piece remaining on the chessboard was the winner.

That was naturally a bad way to play chess. In the second chapter of the book, an adult came,
told children that they play chess wrong, and taught them the right way — how each figure moves,
how the king is special, what it means to check and then mate your opponent.
The book overall was great, and it’s likely responsible for my love for chess (the proper version of the
game, with rules instead of flicking objects) to this day.

That being said… Don’t you want to play some day this "incorrect" version of chess, the children’s version,
where nothing else matters except just sending each chess piece flying toward the other side?

In this series of articles we will go back in time, erase our hard-earned knowledge about how to really
play chess, and implement a simple 3D physics fun application where you can flick chess pieces using
physics. You can treat it as a game for 2 people — just play it on a computer, and let each player use the
mouse and keyboard in turn.

ARTICLE PAGE 1 / 18
BY MICHALIS KAMBURELIS

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

28Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

� THE REAL INTRODUCTION

The real purpose of this article is to be an entertaining but also useful introduction
to using Castle Game Engine.
Castle Game Engine is a cross-platform (desktop, mobile, consoles) 3D and 2D game
engine. We will learn how to make a game for desktops (Linux, Windows, macOS, FreeBSD).
In the first part of the article we will show how to design a 3D chessboard and chess pieces using
Castle Game Engine editor and how to use physics. In the next part, we will do some coding in Pascal to
implement the game logic. In future articles we’d like to show also development for other platforms
(like Android and iOS) and future plans (like the web platform).

You can use FPC or Delphi to develop the application presented here. In our engine, we are committed to
perfect support for both of these Pascal compilers. Though note that with Delphi, you can right now
target only Windows (all the platforms are available with FPC).

Castle Game Engine features a powerful visual editor to design your games, in 2D or 3D. Just like Delphi and
Lazarus visual libraries, it’s all based on a simple RAD concept: you can design a functional application
easily visually but at the same time everything you do is actually using Pascal classes and properties.
So all your knowledge gained from using the editor is also useful when you need to write some Pascal
code. You will use the same classes and properties in Pascal that you’ve seen in the visual editor.

The engine is free and open-source. Use it to develop open-source or proprietary applications.
You can distribute them to friends in any way, you can publish them on Steam, Itch.io, Google Play (Android),
AppStore (iOS), your own website — everywhere.

ARTICLE PAGE 2 / 18

29Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

❸ DOWNLOAD AND INSTALL THE ENGINE

Start by downloading the engine from our website:
https://castle-engine.io/download .

Choose the version suitable for your operating system.

● On Windows, the recommended download is a simple installer. Just run it.

● On Linux, just unpack the downloaded zip file to any directory you like.
● Follow our website for more detailed instructions and other platforms.

Once installed, run the Castle Game Engine editor.

● If you used the installer on Windows, then the shortcut to run Castle Game Engine
 has already been created for you.

● If you unpacked the engine a zip file, then run the binary castle-editor from the
 subdirectory bin where you have unpacked the engine.

If you encounter any issue, consult our
manual on https://castle-engine.io/install .

ARTICLE PAGE 3 / 18

https://castle-engine.io/download

30Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

❹ CREATE YOUR FIRST PROJECT
Let’s create a new project. Click on the "New Project" button, choose the
"Empty" project template, configure the project name and directory as you
wish, and click "Create Project".

In response, we will create a new directory with a few project files that define your
project data and initial Pascal code.

ARTICLE PAGE 4 / 18

31Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

❹ CREATE YOUR FIRST PROJECT / CONTINUED

You can explore the files in your project using the bottom panel of the editor.
You can also just explore them using your regular file manager — there’s nothing special
about this directory, these are normal files and directories.

The most important files and directories are:
● code is a subdirectory where we advise to put all Pascal source code (units) of your
 application. Initially it contains just 2 units, GameInitialize and GameViewMain.

● data is a subdirectory where you should put all the data that has to be loaded at
 run-time by your application. All the 3D and 2D models, textures, designs have to
 be placed here if you want to use them in your game. Initially it contains the design
 called gameviewmain.castle-user-interface (and, less important,
 CastleSettings.xml and README.txt files).

The general idea is that the initial application (created from the "Empty" template)
contains just a single view called Main. A view is a Castle Game Engine concept that
represents something that can be displayed in a Castle Game Engine application.
You use it typically quite like a form in Delphi or Lazarus. It is a basic way to organize
your application.

● Every view can be visually designed. Just double-click on it, in the "Open Existing View"
 panel or in the "Files" panel (when you’re exploring the data subdirectory).

 This allows to visually design the contents of the
 gameviewmain.castle-user-interface file. The file has an extension

.castle-user-interface because a view is a special case of user interface in
Castle Game Engine.

 In larger applications, you can have multiple views. Also, in larger applications,
 you can visually design some user interface elements that are not views, but are just
 reusable pieces of a user interface. All these files have the extension
 .castle-user-interface and can be visually designed using the editor.
 The views have, by convention, a name like gameview*.castle-user-interface.

● Every view has also an accompanying Pascal unit. The unit is named like the view,
 but without the .castle-user-interface extension. So in our case, the unit is
 called gameviewmain.pas. The unit contains the Pascal code that should be
 executed when the view is displayed. It defines a class that has virtual methods to
 react to various useful events (like view being started, or user pressing a key
 or a mouse button).
 You will often add more methods to it, to implement your application logic.

See https://castle-engine.io/view_events and
https://castle-engine.io/views to learn more about the views in our engine.

To be clear about the terminology used throughout our engine:

��A design is a name for a file you can visually design using our editor.
 A design can be a file with extension:

 ● .castle-user-interface (user interface, can be loaded to a class descending
 from TCastleUserInterface)

 ● .castle-transform (3D or 2D transformation, can be loaded to a class
 descending from TCastleTransform)

 ● .castle-component (any other component; can be loaded to a class
 descending from TComponent)

ARTICLE PAGE 5 / 18

https://castle-engine.io/view_events
https://castle-engine.io/views

32Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

❹ CREATE YOUR FIRST PROJECT / CONTINUED

��A user interface design is a specific case of a design file.
 It is a file with .castle-user-interface extension.

� A view is a specific case of a user interface design.
 By convention it is called like gameview*.castle-user-interface.

You’re probably itching to start actually doing something after this lengthy introduction.
Let’s get to it.

As a first thing, make sure that everything works. Use the big "Compile And Run" button
(key shortcut F9) and watch as the project is compiled and run. The result will be
boring — dark window with FPS (frames per second) counter in the top-right corner.
FPS are a standard way to measure your application performance.

❺ OPTIONALLY TWEAK THE EDITOR PREFERENCES

Once things work, you may want to tweak them by going to editor "Preferences".
In particular:

��The editor by default uses a bundled version of latest stable FPC (Free Pascal Compiler).
 If you’d rather use your own FPC installation or Delphi, configure it in the preferences.

��To edit the Pascal files, the editor by default tries to auto-detect various
 Pascal-capable IDEs and editors, like Lazarus, Delphi, Visual Studio Code.
 If you prefer to configure a specific editor, choose it in the preferences.

More details about the editor configuration can be found in our manual on
https://castle-engine.io/install .

The editor can use any Pascal compiler and any text editor. We deliberately don’t put any
special requirements on what you can use. Though we make sure to support the
popular choices perfectly. In particular, we have a dedicated support for using Visual
Studio Code with Pascal (and Castle Game Engine in particular), see
https://castle-engine.io/vscode .

ARTICLE PAGE 6 / 18

https://castle-engine.io/install
https://castle-engine.io/vscode

33Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

❻ LEARNING TO DESIGN 3D ITEMS IN A VIEWPORT

If you haven’t already, open the main view in the editor.

You can double-click on it in the "Open Existing View" panel or in the "Files" panel (when
you’re exploring the data subdirectory).

The initial view is mostly empty.

It has a root component Group1, which is an instance of TCastleUserInterface.
This component will contain everything else we design.

And it has a label LabelFps (an instance of TCastleLabel class). At run-time, this
label will display the FPS counter.

Let’s add more content to it. First of all, to display anything in 3D, you need a viewport.
A viewport is a way to display 3D or 2D content. It is an instance of TCastleViewport
class. Add it to the design by right-clicking on the Group1 component and choosing "Add
User Interface → Viewport (3D)" from the menu that appears.

ARTICLE PAGE 7 / 18

34Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

The result should look like this:

Following this, drag the new Viewport1 component above the LabelFps in the Hierarchy
panel (on the left). This way the FPS counter will be displayed in front of the viewport.

Now play around in the 3D view. There are 3 objects in 3D world:
Camera, called just Camera1, determines what the user will actually see once the game
is run.
Light source makes things lit (bright). The initial light source is called PointLight1 and it
is an instance of TCastlePointLight, which is a simple light that shines in all directions
from a given 3D position.
Rectangle representing a ground called a Plane1.
Mathematically speaking, it’s not a plane, it’s a rectangle — however calling this a "plane"
is a convention used by a lot of 3D software.

❻ LEARNING TO DESIGN 3D ITEMS IN A VIEWPORT / CONTINUATION

ARTICLE PAGE 8 / 18

35Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

Click and hold the right mouse button over the viewport to look around.
Use the AWSD keys to move. Use the mouse scroll (while holding the right mouse
button pressed) to increase or decrease the movement speed.
Play around with moving the items. Drag the 3D axis to move any object.
Play around with adding new 3D items. Right-click on Items component inside the
Viewport1 and from the context menu add primitives like "Box", "Sphere", "Cylinder".

Move them around, delete them (with Delete key), duplicate (with Ctrl+D key).
Change some properties. On the right side, you can see an object inspector, familiar to
any Lazarus and Delphi user. Adjust the properties, for example change the Size of the
Plane1 to be much bigger. Click on "… " (3 dots, called Ellipsis) button at the "Color"
property of any primitive (like a plane, a box, a sphere…) to change the color.

If you get stuck, consult our manual, in particular https://castle-engine.io/
viewport_and_scenes and https://castle-engine.io/viewport_3d are
helpful to learn basic 3D manipulation.

7. DESIGN A 3D CHESSBOARD WITH CHESS PIECES
Above we learned to design a 3D world composed from simple primitives, like boxes
and spheres.
But this isn’t a way to create realistic 3D graphics. In most 3D graphic applications, the
content is created using a specialized 3D authoring tool, like Blender. 3D artist creates a
mesh (a set of vertexes, connected to form edges and polygons), assigns materials
and textures, and exports the resulting object to a file that can be read by a game
engine — like a glTF (*1) file.
Castle Game Engine has great support for glTF. See https://castle-engine.io/
gltf

On Castle Game Engine side, our most important component to display a 3D model is
TCastleScene. It’s a big component, playing central role in our engine (in one way or
another, it is actually responsible for all of 3D and 2D rendering in our viewport).
Using it is simple: you create an instance of TCastleScene and set its URL property to
point to the model you want to display (like a glTF file). The TCastleScene class
descends from the TCastleTransform class, and as such you can move, rotate and
scale the TCastleScene instances. Alternatively, you can also drag-and-drop the glTF
file from the "Files" panel to the viewport, editor will then automatically create a
TCastleScene instance that loads the given model.

ARTICLE PAGE 9 / 18

https://castle-engine.io/viewport_and_scenes
https://castle-engine.io/viewport_and_scenes
https://castle-engine.io/viewport_3d
https://castle-engine.io/gltf
https://castle-engine.io/gltf
https://castle-engine.io/gltf

36Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

We support a number of 3D and 2D model formats, not only glTF. They are listed on
https://castle-engine.io/creating_data_model_formats.php .
If you are capable of creating your own 3D models, for example in Blender, you can
now make a detour: design a 3D model in Blender and export it to glTF using our
instructions on https://castle-engine.io/blender .
Or you can use some ready-made stuff:
● There’s a number of high-quality 3D content on the Internet, available also for free
 and on open-source-compatible licenses. We collect useful links on

https://castle-engine.io/assets.php .
● Our engine also features an integration with Sketchfab, to allow you to search and
 download from a vast repository of free 3D models without leaving our editor.
 See the https://castle-engine.io/sketchfab documentation.
Here’s a sample — battle-hardened cat model, from Sketchfab, right inside our editor:

ARTICLE PAGE 10 / 18

Credits: The "Cat" 3D model was done by Muru (https://sketchfab.com/muru) and is available on Sketchfab
(https://sketchfab.com/3d-models/cat-16c3444c8d1440fc97fdf10f60ec58b0) on CC-BY-4.0 license.

https://castle-engine.io/creating_data_model_formats.php
https://castle-engine.io/blender
https://castle-engine.io/assets.php%20.
https://castle-engine.io/sketchfab%20documentation.
https://sketchfab.com/muru
https://(https://sketchfab.com/3d-models/cat-16c3444c8d1440fc97fdf10f60ec58b0

37Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

NOTE
For our silly physics game, it actually completely doesn’t matter how you will arrange
them. You also don’t need to position and rotate them perfectly. Have fun :)

● Finally, we have a ready set of 3D models for the chessboard and all chess pieces,
 that you can use for this demo.
To use the last option, download the 3D models from https://github.com/castle-
engine/bad-chess/releases/download/chess-models/chess-models.zip .
They were made based on open-source Blender model published on
https://blendswap.com/blend/29244 by Phuong2647.
Unpack the resulting archive anywhere under the data subdirectory of your project.
Then simply drag-and-drop the *.gltf files onto the viewport. Move and duplicate
them as needed, to arrange them into a starting chess position.

This is an example result:

 glTF (*1) is a standard file format for three-dimensional scenes and models. A glTF file uses one of two
 possible file extensions: .gltf (JSON/ASCII) or .glb (binary). Both .gltf and .glb files may
 reference external binary and texture resources. Alternatively, both formats may be self-contained by
 directly embedding binary data buffers (as base64-encoded strings in .gltf files or as raw byte
arrays in .glb files).
An open standard developed and maintained by the Khronos Group, it supports 3D model geometry,
appearance, scene graph hierarchy, and animation. It is intended to be a streamlined, inter-operable format for
the delivery of 3D assets, while minimizing file size and runtime processing by apps. As such, its creators have
described it as the "JPEG of 3D."

WIKIPEDIA

ARTICLE PAGE 11 / 18

https://github.com/castle-engine/bad-chess/releases/download/chess-models/chess-models.zip
https://github.com/castle-engine/bad-chess/releases/download/chess-models/chess-models.zip
https://blendswap.com/blend/29244

38Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

Once you’ve designed the chessboard and put chess pieces on it, also make sure to
adjust the lights to make everything nicely bright (but not too bright).
Finally, adjust the camera so that user sees a nice view of the board when the
application starts. When you select a camera component (like Camera1, if you haven’t
renamed the default camera), the editor shows a small window with camera preview.
You can click "Pin" in this window to keep observing the world from this camera.
There are basically 2 ways to manipulate the camera:
��Move and rotate the camera just like any other 3D object. Look at the camera
 preview to judge whether the camera view looks good.
��Or, alternatively, navigate in the editor and then use the menu item
 "Viewport → Align Camera To View" (key shortcut Ctrl + Numpad 0) to make the camera
 view match the current view in the editor.

Once you have a nice view, make sure it all works: compile and run the application again.

ARTICLE PAGE 12 / 18

39Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

ARTICLE PAGE 13 / 18

❽ USING PHYSICS IN THE EDITOR

Now that the proper chessboard with chess pieces is designed, let’s use physics to
make things crazier.

Castle Game Engine has a support for rigid body physics. This means that:

● Objects can be affected by forces.
 The force that works automatically is gravity, pulling objects down (in the direction of
 the negative Y axis, by default).
 You can also define additional forces from code, to e.g. push things along an
 arbitrary direction. Your own forces can realize a range of real-life effects, like wind,
 explosions, spinning tornadoes, etc.

● Collisions between objects are automatically detected and resolved.
 That is, by default the objects will bounce off each other.
 It is also possible to detect collisions in code and react to them in any way
 (e.g. an enemy may explode when it collides with a rocket).

● You can also connect certain objects using joints.

We will not explore all these features in our article, but we will show you how to enjoy
the basics. To learn more about the possibilities, read our manual
https://castle-engine.io/physics and play with demo's in the examples/physics/
subdirectory of the engine. Here’s a screenshot from one of the demos, showing
explicit application of physics forces:

https://castle-engine.io/physics

40Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

Castle Game Engine physics internally uses Kraft, a physics engine developed in Pascal by
Benjamin 'BeRo' Rosseaux.

Any component descending TCastleTransform, including primitives (like TCastleBox)
or scenes loaded from models (TCastleScene) or a group of other objects
(TCastleTransform with children) can be a rigid body for the physics engine that
participates in the collision detection and resulting movement. The object needs to
have two behaviors:

��TCastleRigidBody behavior makes the component a rigid body.
 It defines common physics properties, like whether the object is affected by gravity
 and the initial movement speed.

��A collider, which stands for any component descending from the abstract class
 TCastleCollider. Many collider shapes are possible, like TCastleSphereCollider,

TCastleBoxCollider and TCastleMeshCollider.

 Using the TCastleMeshCollider results in most precise collisions, but the colliding
 object must be static which means that other objects will bounce off this object,
 but the object with TCastleMeshCollider will not move itself.

The term behavior we used above is a special mechanism in Castle Game Engine to
attach additional functionality to a TCastleTransform. Behaviors are a great way to
define various functionality that enhances given game object. There are various built-in
behaviors and you can also define your own.
See https://castle-engine.io/behaviors for more information.

After this overview, you’re ready to actually use physics in our chess game.

Right-click on the component representing the chessboard. From the context menu
choose "Add Behavior (Extends Parent Transform) → Physics → Collider → Mesh".
In response, you will notice that 2 components have appeared in the component tree:
MeshCollider1 and RigidBody1.
That’s a convenience feature of the editor: adding a collider also adds a rigid body
component.

ARTICLE PAGE 14 / 18

https://castle-engine.io/behaviors

41Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

Next choose any chess piece. Right-click on it and from the context menu choose
"Add Behavior (Extends Parent Transform) → Physics → Collider → Box". Note that we use a
simpler collider for the chess piece, which is also dynamic. This will allow the chess
piece to actually fall down on the board.

Finally move the chess piece to a more dramatic position, above the board, so that it
will fall down when the physics will start.

ARTICLE PAGE 15 / 18

42Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

We are ready to run physics. One way would be to just run the application,
using the "Compile And Run" as you’ve done before. But there’s a quicker way to
experiment with physics: run physics simulation by using the green play icon at the
header of the editor (or menu item "Physics → Play Simulation", key shortcut Ctrl+P).

Do this and watch in awe as the pawn falls on the board.

Remember to finish the physics simulation when you’re done (press the green stop
button, or again menu item "Physics → Play Simulation", key shortcut Ctrl+P).
Editing the design during the physics simulation is allowed (and it’s a great way to
experiment with various physics settings) but the changes are not saved when physics
simulation is running. That’s because physics typically moves the objects, and you don’t
want to save this position resulting from physics interactions. So be sure to stop the
physics simulation before doing any persistent changes to the design.

To get more spectacular results:

● Add physics colliders to more chess pieces.

● Move the chess pieces to more interesting positions, so that multiple pieces will
 fall down from above on multiple other chess pieces.

● You can also duplicate (key shortcut Ctrl+D) the chess pieces
 (it will duplicate the whole selected object, including physics behaviours if any).
 That s an easy way to have a lot of physical objects that bounce off each other.

After each change, just play and stop physics simulation again.

Make sure that the initial position of all rigid bodies does not make some pair collide
with each other right at the start. If the two objects will collide at start, physics engine
may (sometimes quite explosively) move them away from each other.

This is a sample result:

ARTICLE PAGE 16 / 18

43Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

One last thing remains to learn in this (first) part of the article:
how to flick the chess piece?

� ��From Pascal code you can use various methods to apply a force on a rigid body.
 More about this in the next article part.
 You can also experiment with the example application
 examples/physics/physics_forces/ if you’re impatient.

� ��Or you can set a specific LinearVelocity on a rigid body component.

We will use the latter approach, as it can be trivially done and tested in the editor.

 ● Select the chess piece. Any chess piece you want to "flick"
 (throw across the board).

 ● Make sure it has a collider and rigid body components
 (if not, add them, as above).

 ● Select the TCastleRigidBody component of it,
 and find the LinearVelocity property in it.

 ● Set LinearVelocity to any large non-zero vector, like -100 0 0.
 This means we have a velocity of 100 units per second in the
 negative X direction.

Run the physics simulation and watch the mayhem.

ARTICLE PAGE 17 / 18

44Blaise Pascal Magazine 112 2023

CASTLE GAME ENGINE
THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING CASTLE GAME ENGINE (PART 1)

❾ SUMMARY
We have designed a 3D application using Castle Game Engine with a bit of physics.
We didn’t yet write any Pascal code to do any interactions - this will be done in the next part
of the article.
If you want to download a ready application, resulting from this, go to
https://github.com/castle-engine/bad-chess . The subdirectory project of
that repository contains the final working demo of this. It will be extended in the next
part of the article.
I hope you had fun doing this demo and exploring the possibilities of Castle Game Engine.
If you have any questions or feedback about the engine, don’t be shy!
Speak up, ask and share your comments on our forum https://forum.castle-
engine.io or Discord https://castle-engine.io/talk.php .

ARTICLE PAGE 18 / 18

https://github.com/castle-engine/bad-chess
https://forum.castle-engine.io
https://forum.castle-engine.io
https://castle-engine.io/talk.php

45Blaise Pascal Magazine 112 2023 Blaise Pascal Magazine 107/108 2022

LAZARUS HANDBOOK (PDF)
+SUBSCRIPTION 1 YEAR

SPECIAL OFFER € 75
Ex Shipping

● Lazarus Handbook
● Printed in black and white
● PDF Index for keywords
● Almost 1000 Pages
● Including 40 Examples
● Blaise Pascal Magazine
● English and German
● Free Lazarus PDF Kit Indexer
● 8 Issues per year
● minimal 60 pages
● Including example
 projects and code

+

ADVERTISEMENT

46Blaise Pascal Magazine 112 2023

PART 3: CALLING IT – THE STACK

By Martin Friebe

1. program FindRepeat;
2. uses Math;
3.
4. const
5. TESTDATA = 'Test a random text. Repeat: a random text';
6.
7.
8. function EqualSubText(AText: Ansistring; AStart1, AStart2, AMaxLen: Integer): AnsiString;
9. var
10. EqualLen: Integer;
11. begin
12. EqualLen := 0;
13. while (AMaxLen > EqualLen) and (AText[AStart1 + EqualLen] = AText[AStart2 + EqualLen]) do
14. inc(EqualLen);
15.
16. Result := copy(AText, AStart1, EqualLen);
17. end;
18.
19. (* DoFindLongestRepeat
20. AStart1: Iterates over all potential start positions for the first match of the text
21. AMaxSearchLen1: Count of chars up to the start of for the second match
22. AStart2: Iterates over all potential start positions for the second match of the text
23. Must always be greater the AStart1
24. (or equal, which will be handled by "AMaxSearchLen1 = 0")
25. AMaxSearchLen2: Count of chars up to the end of the string
26. *)
27. function DoFindLongestRepeat(AText, AFound: Ansistring;
28. AStart1, AMaxSearchLen1,
29. AStart2, AMaxSearchLen2: Integer
30.): Ansistring;
31. var
32. EqualTxt: String;
33. begin
34. Result := AFound;
35.
36. EqualTxt := EqualSubText(AText, AStart1, AStart2, Min(AMaxSearchLen1, AMaxSearchLen2));
37. if Length(EqualTxt) > Length(Result) then
38. Result := EqualTxt;
39.
40. if AMaxSearchLen2 > 1 then
41. Result := DoFindLongestRepeat(AText, Result,
42. // AStart2 increases, so there is one more char available after AStart1
43. AStart1, AMaxSearchLen1 + 1,
44. // And there is one char less after AStart2
45. AStart2 + 1, AMaxSearchLen2 - 1
46.)
47. else
48. if AStart1 < Length(AText) - 1 then begin
49. Result := DoFindLongestRepeat(AText, Result,
50. // AStart2 is set equal to AStart1, so AMaxSearchLen1 will be 0

THE LAZARUS DEBUGGER PAGE 1/6

FROM WHERE WE CAME
The last part of the series has taught us how we can step in and out of functions.
We watched what happened in the outer function, and then looked for more
details by stepping into another function. This time we will expand our view.
We will debug a function, but instead of stepping out to see what happens in the
caller, we will get the debugger to show us the caller’s data while we are still in the
current function. As usual we explore all this by debugging a small sample project.

Starter Expert

47Blaise Pascal Magazine 112 2023

THE LAZARUS DEBUGGER PAGE 2/6

The code is a recursive example on how to find the longest non-
overlapping reoccurring substring. It iterates all combinations of two start-
points (“AStart1” and “AStart2”) and checks for a matching substring on each
of them.
For the given test data we expect the result: “ a random text” (with leading
space).
When we run it, it will print
" a random "

It somehow misses the last word “text”.

As before, we start our debug session by running to a breakpoint.
Line 38 might be a good candidate to start. It will pause each time a
potential result is found. So when the partial result “ a random “ is assigned,
we can look at the available data and check if it reveals any clues.
After starting the project with F9 and hitting the breakpoint, we have a look
at the value of “EqualTxt”. We can do so in the locals or watches window,
and we will see it is “e”.
As this is not the match we are interested in, we run (F9) again.
As we hit the breakpoint for the 2nd time, “EqualTxt” will be shown as “ a
random “.
This is the value that got mistakenly printed as the longest repeated match.
We will look at the values that are involved in the call to “ EqualSubText”.

51. AStart1 + 1, 0,
52. // AStart2 will be 1 more than AStart1 was,
53. // so there will be 1 char less to search after AStart2
54. AStart1 + 1, AMaxSearchLen1 - 1
55.); 56. end;
57. end;
58.
59. function FindLongestRepeat(AText: Ansistring): Ansistring;
60. begin
61. Result := DoFindLongestRepeat(AText, '',
62. 1, 0, // AStart1 equals AStart2: There are 0 chars between
63. 1, Length(AText) // AStart2 has the entire string
64.);
65. end;
66.
67. begin
68. writeLn('"' + FindLongestRepeat(TESTDATA) + '"');
69. readln;
70. end.

CONTINUATION

48Blaise Pascal Magazine 112 2023

THE LAZARUS DEBUGGER PAGE 3/6

The values for “AStart1” and “AStart2” look correct.
Checking the 2 max-lengths “AMaxSearchLen2” may be worth checking. 10 is
only the length to the end of the returned value in “EqualTxt”. But we know
the “TESTDATA” has more text after that. So the value should be larger.
We can check that “TESTDATA” has 41 chars. So if “AStart2” is at 28, then
there should be 14 remaining chars. 41 – 28 + 1 (“+ 1” as the last char
needs to be included).
“AMaxSearchLen2” has been passed as a parameter by the calling function.
To find out more, we need to know what happened in the caller.

THE CALL STACK WINDOW
As announced in the introduction the debugger can help us with this.
Ctrl-Alt-S or the menu “View � Debug Windows � Call stack” will open the
Call-stack window.

Before we continue tracking the wrong value, let’s have a look at the
contents of the new window and what information it provides.
The top line is line 38 (column “Line”) at which our app is currently paused.
The line below is showing from where the current invocation of
“DoFindLongestRepeat” was called. As we are in a recursion, the function did
call itself. However, the call was invoked from line 41.
Looking at all the columns in the grid.
� The first column shows, if the line has a breakpoint. In our case this
 applies to line 38. But had we had a breakpoint at line 41,
 it would be shown on the other lines.
� The 2nd column “I…” (Index) is a running number, showing us how many
 calls we are away from the top. This can be useful,
 when scrolling through a very long list.
� “Location” and “Line” are the unit (filename) and line-number.
 If they aren’t known, an address may be shown.
� “Function” is the name of the routine. In case of a method it will be in the
 “classname.method” notation. This column also contains the values of

the parameters passed. (Please see the note on params and locals
 in the section “The full stack”)

We will go into more details later on.

Looking at the code

Result := DoFindLongestRepeat(AText, Result,
AStart1 + 1, 0,
// AStart2 will be 1 more than AStart1 was,
// so there will be 1 char less to search after AStart2
AStart1 + 1, AMaxSearchLen1 - 1

);

49Blaise Pascal Magazine 112 2023

THE LAZARUS DEBUGGER PAGE 4/6

VALUES FROM THE OUTER CALLERS
Before we explore all the features of the callstack we will use the current view
to trace the value of “AMaxSearchLen2”.
The argument-values to the call on each line are given in the same order as
the parameters are declared in the source. So “AMaxSearchLen2” is the last
value in the list.

For the top line – representing the function in which the project is currently
paused – we have “5, 23, 28, 10” for “AStart1, AMaxSearchLen1, AStart2,
AMaxSearchLen2”. So as we saw “AMaxSearchLen2”=10.
And for the direct caller we have “5, 22, 27, 11”. The caller had checked for
repeated text at the position one char earlier (“AStart2”=27) and it had up to
11 chars (“ AMaxSearchLen2”) to check. Comparing the caller's total of
“27 + 11” with the current “28 + 10”, both functions are the same amount short
of the actual full length of the text.
Looking down through the stack on each line “AStart2” goes one down,
 and “AMaxSearchLen2” goes one up. However, we only see the top 10 callers,
and the relevant information may be further away. We can get more lines, if
we press the button, or use the “Max 10” drop-down. Lets use the
“Max 10” drop-down and select 50 entries.
(If we need more we need the button)
We scroll down until we find a break in the pattern of +/-1.
This happens for the caller from line 49.

Looking at index 23 called by 24, we can see that “AStart1” was incremented
to 5 (where the first occurrence of “ a random text” starts),
and “AStart2” set to start from 5 too. Checking at index 24 we find that “AStart2”+”
AMaxSearchLen2” = “38 + 1” = 39.
Not the full length, but 1 more than “27 + 11” = 38.
So during this call we lost 1 char from “AMaxSearchLen2”.

THE FULL STACK
Now that we solved the issue in the example project, let’s take some more
time to explore the stack window. We also should look at a few names often
used in this context.
The stack itself has its name from the equally named data structure, also
known as a “LiFo Stack”. It is a feature many CPU's have. When a function is
called, the CPU stores (pushes) the current execution address onto the
stack, so it can later retrieve it to continue execution in the callers code.
Many calls can be nested, and when they return, the addresses are retrieved
in reverse order (Last-in, First-out).
The stack often holds more than just the address for the return. It also holds
the values of local variables. This memory on the stack is called a “stack frame”.

The name “Frame” or “Stack-frame” is often used to refer to an entry
in the stack window.

During the above debug exercise we have seen the values of the function-
parameters for each frame listed in the stack. The frame also contains local
variables.
The stack window allows us to select any frame as “current”. To do this we
select the frame using the mouse or keyboard, and then click the green
arrow button:
Once a frame is “current” other debug windows (like Watches and Locals)
will show their content according to that frame. If we made the frame at
index 1 current, then Locals would show the values for that frame, so
instead of showing “AStart2”=28 for the top frame, it would show “AStart2”=27.

NOTE: The parameters and local variables of any frame are shown with
their current values. Often that is the value they had at the time the
call was made. However, if the called function has changed the local
value, then it will show that modified value.

50Blaise Pascal Magazine 112 2023

THE LAZARUS DEBUGGER PAGE 5/6

The code assumes that “AStart1 + AMaxSearchLen1” (ignoring the matching
+/-1) covered the entire string from “AStart1” to the end of the string, so
that the values can be used for “AStart2” and “AMaxSearchLen2”.
But actually, they only covered the string up to before “AStart2”, which was
at the last char of the string. So “AMaxSearchLen1” is already one less than
the remaining string length. There is no need to subtract 1. The correct
code should be:

Result := DoFindLongestRepeat(AText, Result,
// AStart2 is set equal to AStart1, so AMaxSearchLen1 will be 0
AStart1 + 1, 0,
// AStart2 will be 1 more than AStart1 was,
// so there will be 1 char less to search after AStart2
AStart1 + 1, AMaxSearchLen1 // no “-1”

);
Re-running the project with this change yields the expected

" a random text"

51Blaise Pascal Magazine 112 2023

THE LAZARUS DEBUGGER PAGE 6/6

Making “FindLongestRepeat” the current frame, and we can see that the
locals window no longer shows AStart.../AMaxSearchLen variables.
The locals show “AText” instead, which is the parameter passed to
“FindLongestRepeat”.
We also see that we can trace back all the way to the program's
“begin...end.” block shown as “$main”. And the index tells us, that our
recursion is a 175 calls deep at the time of hitting the breakpoint.

Sometimes stack traces are much deeper than that, and in that case using
the button to reach the bottom of the stack can be tedious.
In this case the blue up/down buttons can help to navigate quickly to
the top and bottom. And the edit field with the button can be used to
enter any index and show frames starting from it.
On the topic of navigation, the stack window also allows us to navigate in
the source code. Double clicking any line in the stack (or using the
button) will bring up the code in the source editor.
Of course only, if the stackframe has a source-file and line-number.
The button will copy all entries to the clipboard. And the power button
will freeze the currently shown entries. When power is off, the stack
window will not update when you step/run the application. In case you
want to keep the current frame list as a reminder or something like that.

SUMMARY
The callstack can be used to inspect locals from any caller. It can also show
us who called the current function.

� Open the Stack Window:
● Ctrl-Alt-S
● Menu: View → Debug windows → Call stack

� Select a frame as “current”
●

� Increase amount of shown frames
●
● “Max 10” Drop-down

In the next article: Part 4: TAKING A LOOK – WATCHES

If we show enough frames, we can see callers other that “DoFindLongesRepeat”

8 2022 Blaise Pascal Magazine 112 2023

https://library.blaisepascalmagazine.eu/

THE NEW INTERNET

READ WHERE EVER THE INTERNET IS AVAILABLE

BLAISE PASCAL LIBRARY 2023
JUST OPEN ANY BROWSER (CHROME, SAFARI, EDGE, FIREFOX, OPERA, DUCKDUCKGO)
AND LOGIN: YOU WILL HAVE ALL ISSUES AVAILABLE - 6500 PAGES. FOR ALL ISSUES
STARTING AT NR1 UP TO THE LATEST ITEM. YOU NEED A VALID SUBSCRIPTION
ONLY € 50,00 - VALID THROUGH ONE YEAR

53Blaise Pascal Magazine 112 2023

maXboxmaXbox

54Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN
By Michael Van Canneyt

ABSTRACT
In this article we show how to give the user of a browser-based program
feedback from long-running processes on the server, using 2 components:
one in PAS2JS, one in Free Pascal/Lazarus.

� ARCHITECTURE
The solution we present here consists of 2 components. One component
which is used on the server, and which can be used to start a process,
capture its output and poll for the status of the process. The other
component takes care of the polling process on the client.
These components are ignorant of the communication mechanism between
browser and server, this means that they do not implement the actual RPC
calls used to start the process: There are many possible mechanisms,
and some may be more suitable for your purpose than others.
The components are called TProcessCapture for the server part and
TProcessCapturePoller for the client (PAS2JS) part. The server part takes
care of executing a program and redirecting the output to a file, the client
part implements the polling mechanism and some callbacks to handle the
actual server calls and the result. We’ll demonstrate both components with
a simple set of programs:
● A test program to be executed.
 It is used for demonstration purposes only.
● A HTTP server program that allows to serve
 HTML files and that offers an
● RPC mechanism to start the test program and
 handle status requests. A Simple PAS2JS program
 that will run in the browser and which will remotely
 execute the test program. It will show the output of
 the test program in the browser.
We’ll start with the test program.

Starter
Expert

ARTICLE PAGE 1 / 18

� INTRODUCTION
When using a web-based program, not everything can be done in the
browser.
Often,tasks are executed through some RPC (Remote Procedure Call)
mechanism on the webserver. This can be a simple task such as executing
an SQL statement on a database and returning a result. Or it can be a more
complicated and time-consuming task such as making a backup of a
database, indexing PDF files, compiling a software project and running a
test suite, or even installing software on the server. Ideally, the output of
these remote programs should also be presented to the user.
To keep programs scalable, these tasks should be short-lived. A return time
of 1second for a HTTP request is already a long time, so executing a time-
consuming task and waiting for the return using a single HTTP request is
not a good idea:
the HTTP server is occupied with the request, the browser or any proxy
servers between the HTTP server and the browser may decide to time-out
your request.
Much better is to start the process using a HTTP request, and use a
mechanism to poll the status of the executed process. In this article we
present one such mechanism.

55Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 2 / 18

❸ THE TEST PROGRAM
To demonstrate the workings, the test program needs to do 3 things:

� It must run for some time, several seconds at least.
 This is done with a simple loop and a call to sleep.

� needs to show that it receives command-line arguments:
 we will simply output the program parameters.
❸ It must demonstrate that it is run in a specific directory.

 We’ll just print the working directory.
❹ It needs to produce some output.

All this is easily accomplished with a trivial program:

uses sysutils;

var
 i : integer;
 D : TDateTime;
begin
 Writeln(’Current dir: ’, GetCurrentDir);
 Write(’Args:’);
 For I:=1 to ParamCount do
 Write(’ ’,ParamStr(i));
 Writeln();
 D:=Now;
 For I:=1 to 150 do
 begin
 Sleep(100);
 Writeln(’Tick ’,i);
 Flush(output);
 end;
 Writeln(SecondsBetween(Now,D), ’ seconds elapsed’);
 flush(output);
end;

The only noteworthy thing about this program is that it flushes standard
output after writing a line: By default, Free Pascal buffers output of writeln
statements if it detects that it is not writing to a console. Since our program
will be run with the output redirected, the buffering will be activated, and
so, in order to send the output faster to the browser, we flush standard
output manually.

❹ THE SERVER COMPONENT
Before explaining the server component, it is a good idea to explain why a
new component is needed. After all, Free Pascal ships since ages with the
TProcess component, which can be used to start a process and read its
output using a stream. So why not simply use that ? This component is not
really suitable for our task, for several reasons:
● A web server process (e.g. cgi, fastcgi) can be ended before the
 process has finished. All information about the executed process would
 be lost.
● The component cannot be used to redirect output to a file. It would
 require reading all data from the file in a separate thread, save it
 somewhere etc. This complicates matters considerably,
 and if the HTTP program ends, all further input/output
 would stop. Similarly, no input file can be specified, it would
 require similar handling as the output file.
● Item since the TProcess component is confined
 to a single process, there is no way to scale
 your web application.

56Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 3 / 18

In essence, the TProcess component is stateful, and we need a stateless
component in order to work in a web environment.
So, a new component is needed.
The server component TProcessCapture has the following declaration:
TProcessCapture = Class(TComponent)
Public
 Function Execute(Exe : String; Args: Array of string) : string;
 Function Execute(Exe : String; Args: TStrings) : string;
 Function CleanupProcess(Const AProcess : String) : Boolean;
 Function GetOutputFile(Const AProcess : String) : String;
 Function GetPidFile(Const AProcess : String) : String;
 Function GetStatusFile(Const AProcess : String) : String;
 Function GetProcessID(Const AProcess : String) : Integer;
 Function IsProcessRunning(Const AProcess : String) : Boolean;
 Function GetProcessExitStatus(Const AProcess : String) : Integer;
 Function GetProcessOutput(Const AProcess : String; Var AOffSet : Integer) : RawByteString;
Published
 Property LogDir : String Read FLogDir Write FLogDir;
 Property InputFile : String Read FInputFile Write FInputFile;
 Property Working-Dir : String Read FWorkingDir Write FWorkingDir;
 Property OutputCodePage : TSystemCodePage Read FOutputCodePage Write FOutputCodePage;
end;

The main methods are almost self-explanatory:
● Execute - executes the program Exe, passing it the arguments Args,
which can be given as an array of strings, or a stringlist. The return of this
function is a process identifier.
● CleanupProcess - will clean up the output and status files for the
process identified by AProcess. You should call this only after the process
has exited.
● IsProcessRunning - returns True if the process identified by AProcess
is still running.
● GetProcessExitStatus - returns the exit status of the process
identified by AProcess. If the process is still running, -1 is returned.
● GetProcessOutput - returns the output of the process identified by
AProcess, starting at byte offset AOffSet (zero based) till the end of
available output. There are some auxiliary methods that you do not need
under ordinary circumstances:
● GetOutputFile - returns the name of the output file associated with
the process aProcess.
● GetPidFile - returns the name of the process ID file associated with
the process aProcess. This file will be created as soon as the process starts.
● GetStatusFile - returns the name of the status file associated with
the process aProcess. This file will only exist after the program has exited.
● GetProcessID - returns the process ID of the process AProcess.
Lastly, there are some properties:
● LogDir - the directory where all log and status files are created. The
directory will be created if it does not exist.
● InputFile - a file with prepared input for the process.
NOTE that this does not allow you to interact with the process.
This property is only used when starting the program.
● WorkingDir - The working directory for the started program.
This property is only used when starting the program.
● OutputCodePage - The codepage in which the program
writes its output.

57Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 4 / 18

To work with this component, you will typically perform the following steps:
� Set appropriate values for LogDir, InputFile, WorkingDir and OutputCodePage.
 They contain sensible defaults, but it is better to be explicit.
� Start the program using the Execute method,
 and save the resulting ProcessID string.
❸ Initialize an offset variable to zero.
❹ Check if the process is still running with IsProcessRunning, passing it ProcessID.
❺ Get the output of the process using GetProcessOutput, passing it ProcessID
 and the current offset. Update the offset.
❻ Repeat the last 2 steps till the program exits.

It should be noted that you can free the TProcessCapture after every step
and recreate it before performing a call: it is stateless. This is necessary if
the component is to work in a web environment where the different steps
will be performed as part of different HTTP requests: the steps may be
performed by different instances of the application server.
To work correctly, the LogDir and OutputCodePage properties must be set
to the same values between invocations.
It also means that the same component can be used to control different
processes. Although this is not recommended if you use threads: the
component is not re-entrant.
To do its work, the TProcessCapture component executes a small helper
program called taskhelper: this program does the work of launching the
actual program that needs to be executed with redirected in and output. It
also takes care of registering the exit status of the program.
On Unix platforms, it is possible to do without this program, but on
Windows, the mechanism to start a new process CreateProcess
necessitates the use of an extra program.
To make the behavior across platforms consistent, the taskhelper
program is used everywhere.Its sources are distributed with the trunk
version of FPC, but the source has been included in the sources of this article.

❺ THE SERVER PROGRAM
To demonstrate the working of the component, we’ll make a small HTTP
server that executes the test program when it receives a StartProcess
command from the browser through JSON-RPC, and which has a GetStatus
command to get the status of the process.
The process will also serve the files for the client application.
To do this, in the ’New project’ dialog we select ’HTTP Server application’, and
in the wizard that is shown we select ’Server files from default location’ and
under ’Web module to create’ we select ’Web JSON-RPC Module’, as shown in
figure 1 on page 5 of the article.
In the next dialog which creates the module to JSON-RPC Module, we only
need to register the web module
(we have only 1 module in the server application),
(see figure 2 on page 6) and we’ll use the /RPC URL path to serve JSON-RPC
requests from.
Once that is done, we need 2 JSONRPCHandler components from the
FPWeb tab in the component palette, one for each request:

58Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 5 / 18

StartProcess - this call takes 2 arguments: 2 strings, which we must
 define in the Params property of the component. We’ll give them the
 names A and B. The call will return the process identifier to the client
 application.
GetStatus this call also takes 2 arguments:
 a string (the ProcessID), and an Int64 number (an offset), we also
 define them in the Params property. The call will return the process
 exit code (-1 if the process is still running), the available output
 starting at the given offset identifier to the client application. It also
 returns the new offset.
These 2 RPC calls are the API we expose to the browser to control our
process.
The actual work is done by the TProcessCapture component.
The TProcessCapture component is not (yet) on the component palette of
Lazarus, so we create it in code in the OnCreate handler of the
datamodule, and destroy it in the OnDestroy handler:

Figure 1: The start of the server application

Figure 2: Creating the JSON-RPC web module

59Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 6 / 18

procedure Tprocesscontrol.DataModuleCreate(Sender: TObject);
begin
 Capture:=TProcessCapture.Create(Self);
end;

procedure Tprocesscontrol.DataModuleDestroy(Sender: TObject);
begin
 FreeAndNil(Capture);
end;

The latter is strictly speaking not necessary since the component is owned
by the datamodule and will be destroyed when the datamodule is
destroyed, but for clarity we destroy it manually anyway.
In the OnExecute event of the StartProcess handler, we collect the 2
arguments A and B and start the test program:

const
 LongProcess = ’longprocess’ {$ifdef windows} + ’.exe’ {$endif} ;

var
 arr : TJSONArray absolute Params;
 a, b, Exe, PID : string;
begin
 Res:=Nil;
 a:=Arr.Strings[0];
 b:=Arr.Strings[1];

Exe:=ExtractFilePath(ParamStr(0))+longprocess;
 PID:=Capture.Execute(Exe,[a,b]);
 Res:=TJSONString.Create(PID);

Figure 3: The finished JSON-RPC web module

As you can see in this code, we use the Execute method of the
TProcessCapture class to start the process.
For the GetStatus call, the code is a little longer, but not so much.
The code starts by getting the arguments, and checking the whether the
process is still running. If the process is no longer running, then the exit
status is retrieved.

60Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN
By Michael Van Canneyt

ARTICLE PAGE 7 / 18

procedure Tprocesscontrol.GetStatusExecute(Sender: TObject;
 const Params: TJSONData; out Res: TJSONData);
var
 arr : TJSONArray absolute Params;
 PID,aOutput : string;
 Offset,Status : Integer;
begin
 Res:=Nil;
 PID:=Arr.Strings[0];
 OffSet:=Arr.Int64s[1];
 if Capture.IsProcessRunning(PID) then
 Status:=-1
 else
 Status:=Capture.GetProcessExitStatus(PID);
 aOutput:=Capture.GetProcessOutput(PID,Offset);
 Res:=TJSONObject.Create([’status’,Status,’output’,aOutput,’offset’,offset]);
end;

THTTPApplication = Class(fphttpapp.THTTPApplication)
 constructor Create(aOwner : TComponent); override;
private
 procedure DoConnect(Sender: TObject; ASocket: Longint; var Allow: Boolean);
end;

{ THTTPApplication }

constructor THTTPApplication.Create(aOwner: TComponent);
begin
 inherited Create(aOwner);
 OnAllowConnect:=@DoConnect;
end;

procedure THTTPApplication.DoConnect(Sender: TObject; ASocket: Longint;
 var Allow: Boolean);
{$IFDEF UNIX}
const
FD_CLOEXEC = 1;
 {$ENDIF}
begin
 {$IFDEF UNIX}
FpFcntl(aSocket, F_SETFD, FD_CLOEXEC);
 {$ENDIF}
 Allow:=True;
end;

Regardless of whether the process was still running or not, finally the
available output is retrieved and all 3 elements (status, output, new offset)
are returned to the client in a JSON object.
The data module will look like figure 3 on page 6 of this article.
Before the program can be used, there are two last things to be done when
using the release version of FPC on Linux. The HTTP connection on which
requests arrive is passed to the task helper, and as a consequence the
connection is not closed
when the StartProcess call returns, causing the browser to wait till the
process exits. This of course defeats the purpose of the whole exercise.
To remedy this, we must set the Close-On-Exec flag on the socket handle.
This can be done easily by handling the OnAllowConnect handler of the
HTTP server.
To do so, we add the following to the project file:

61Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 8 / 18

Lastly, to serve the files of the client program, we set the base directory for
the file serving module to the directory with the client program files:

Function GetBaseDir : String;
begin
 Result:=ExtractFilePath(ParamStr(0));
 Result:=Result+’..’+PathDelim+’client’;
 Result:=ExpandFileName(Result);
end;

(this code assumes there are 2 directories: one for the server, one for the
client.) Finally, we load all known mime types, and create our own HTTP
application:

Var
 Application:THTTPApplication;
begin
 MimeTypes.LoadKnownTypes;
 TSimpleFileModule.BaseDir:=GetBaseDir;
 TSimpleFileModule.RegisterDefaultRoute;
 Application:=THTTPApplication.Create(Nil);
 Application.Title:=’Process server’;
 Application.Port:=8060;
 Application.Initialize;
 Application.Run;
 Application.Free;
end;

NOTE that we set the HTTP port to port 8060

6 THE BROWSER CLIENT-SIDE COMPONENT
In the browser the TProcessCapturePoller component is used to help
working with the TProcessCapture component on the server. It does not
start the actual process, it just takes care of polling the server for the status
of the started process, and triggers a series of events based on results. It
also handles the state of the output offset parameter. There are properties
to control how often and how long the polling mechanism must try, and
how many errors can be tolerated before the polling is abandoned.
To be agnostic of the actual RPC mechanism used, the actual poll is also
achieved using an event. It is the responsibility of the programmer to
implement this event, and to use the ReportProgress mechanism to
communicate the server results to the component.
This component has the following declaration:

Type
 TProcessStatus = (psRunning, // Process still running
 psExited, // Process has exited
 psError // Too many errors
);

 TOnGetProcessStatusEvent =
 Procedure (Sender : TObject; aProcessID : String; aOffset : NativeInt)
 TOnProcessDoneEvent =
 Procedure (Sender : TObject; aStatus : TProcessStatus; aExitCode : Integer)
 TOnProcessOutputEvent =
 Procedure (Sender : TObject; aOutput : String) of object;
 TOnStatusFailEvent =
 Procedure (Sender : TObject; aError : String) of object;

TProcessCapturePoller = class(TComponent)

62Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 9 / 18

Public
 Procedure Start;
 Procedure Cancel;
 Procedure ReportProgress(aStatus : TProcessStatus;
 aOutput : String;
 aExitCode : Integer;
 aOffSet : NativeInt);
 Procedure ReportProgressFail(const aMessage : string);
 Property Canceled : Boolean ;
 Property FailCount : Integer;
 Property StatusCheckCount : Integer;
 Property OutputOffset : NativeInt;
Published
 Property ProcessID : String;
 Property OnGetProcessStatus : TOnGetProcessStatusEvent;
 Property OnProcessDone : TOnProcessDoneEvent;
 Property OnProcessOutput : TOnProcessOutputEvent;
 Property OnStatusFail : TOnStatusFailEvent;
 Property LinebasedOutput : Boolean;
 Property PollInterval : Integer;
 Property MaxFailCount : Integer;
 Property MaxCheckCount : Integer;
end;

The methods perform the following tasks
● Start - this starts the polling process.
● Cancel - this cancels the polling process.
● ReportProgress - this method must be used when the
OnGetProcessStatus event handler received the status of the process from
the server. The aStatus parameter is one of the available statuses, aOutput
is the output of the process.
Parameter aExitCode is the exit code (in case status is psExited) and
aOffset is the new offset (as reported by the server).
● ReportProgressFail - this method must be used when the server
call to get the process status failed. The aMessage status parameter can be
used to indicate what exactly failed.
The following events can be handled:
● OnGetProcessStatus - This is the only event that must be
implemented. It is triggered at regular intervals, when the poller needs to
inquire the status of the server process. The poller will pass the process ID
and current output offset to the event, so the user does not need to track
the state of these parameters.
● OnProcessDone - This is called when the process has exited or the
polling was canceled. It reports the status (psError in case of error) and
the exit code of the process.
● OnProcessOutput - This is called when output of the process
was received: The aOutput parameter contains the reported
output. This event will be called multiple times.
● OnStatusFail - This is called when the ReportProgressFail was
called to signal a failure of the call to get the status of the process. It can
be called multiple times, depending on the value of MaxFailCount.
The behavior of the component is controlled by
the following properties:
● LinebasedOutput - If set to True the component will split
the received output in lines, and will call OnProcessOutput
for each line instead of reporting the whole received output
in one call (if set to False)

63Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 10 / 18

● PollInterval the time period (in milliseconds) after which
OnGetProcessStatus event is triggered. Default is 500ms. NOTE that the
event is only retriggered after the result (success or failure)
of the previous event has been reported. This is done in order to avoid
overlapping getstatus calls.
● MaxFailCount The maximum number of failures that may be reported
before polling is abandoned. Default is 1.
● MaxCheckCount The maximum number of times the component will
poll before reporting a timeout.
Finally, the following properties can be used to get some information about
the polling process:
● Canceled The polling process was canceled.
● FailCount - The number of failures since the polling was started.
● StatusCheck - Count The number of times the status will still be
checked.
● OutputOffset - The current output offset.
It may seem strange to have the OnProcessDone, OnStatusFail and
OnProcessOutput events if the fetching of the process status must be
implemented in an event: surely the event handler can display the output,
decide when the process has ended etc.
The reason is twofold: first of all, the state logic for the output can be
handled by the component, but more importantly: by having these events
available, the component can easily be used as a parent for descendents
that incorporate the polling RPC mechanism in the component. (as will be
demonstrated below).

❼ THE CLIENT PROGRAM
Armed with this component, we can now start the client side program.
In the ’Project - New project’ dialog we select the ’Web browser program’
item, and enter the correct settings, as shown in figure 4 on page 13.
The html file is best saved as index.html.
The HTML needs 5 elements:
� A button to start the process.
� A button to cancel the polling process.
❸ An edit for parameter A for the started program.
❹ An edit for parameter B for the started program.
❺ An HTML element in which the output of the program will be shown.
 We will use the browser console unit output mechanism for this:
 a simple Writeln statement will result in the appending of the output
 to this element.

64Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 11 / 18

The following simple HTML (using Bulma CSS) will do the job just fine:
<h3 class="title is-3">Process output demo</h3>
<div class="box">
 <h4 class="title is-4">Start parameters</h4>
 <div class="field">
 <label class="label">Argument A</label>
 <div class="control">
 <input id="edtA" type="text" class="input"
 placeholder="Enter argument A">
 </div>
 </div>
<div class="field">
 <label class="label">Argument B</label>
 <div class="control">
 <input id="edtB" type="text" class="input"
 placeholder="Enter argument B">
 </div>
</div>
<div class="field is-grouped">
 <div class="control">
 <button id="btnStart" class="button is-primary">
 Start process
 </button>
 </div>
 <div class="control">
 <button id="btnCancel" class="button is-warning is-light">
 Cancel
 </button>
 </div>
 </div>
</div>
<div class="box">
 <h4 class="title is-4">Process output</h4>
 <div id="pasjsconsole">
 </div>
</div>

Figure 4: Creating the client program

65Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 12 / 18

To interact with this HTML, we first create a HTML Fragment module using
the ’File - new’ dialog. We name it ’frmIndex’ and set the ’UseProjectHTML’
property to True. On this module, we drop a THTMLElementActionList
component from the component palette. Using the component context
menu ’Create actions for HTML tags’, we can create actions for all tags in the
above HTML, as shown in figure 5 on page 12 of the article.
We need a TPas2jsRPCClient from the Pas2JS tab in the component
palette: this component will handle the RPC requests, and we’ll name it RPC
for short. The component can only do its work correctly if it knows where
the server is: We need to enter the URL property. As shown in an earlier
article, we can now generate a service proxy: this is a class which has
correct method definitions, reflecting the methods defined in our RPC
server. Calling these service methods will actually execute the methods on
the server. Right-clicking on the RPC component and selecting ’Create Service
Client component’ shows the service generation dialog as shown in figure 6
on page 13 of the article. We name the unit ’processservice’ and tell the
IDE to add it to the project.

Now we can start coding the application. We will create the
TProcessCapturePoller and service client in the OnCreate event of our
index form module:

procedure TfrmIndex.DataModuleCreate(Sender: TObject);
begin
 Service:=TprocesscontrolService.Create(Self);
 Service.RPCClient:=RPC;
 FPoller:=TProcessCapturePoller.Create(Self);
 FPoller.OnProcessOutput:=@DoDoutput;
 FPoller.OnGetProcessStatus:=@DoGetStatus;
 FPoller.OnProcessDone:=@DoProcessDone;
 FPoller.OnStatusFail:=@DoStatusFail;
end;

Figure 5: The HTML form tags

66Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 13 / 18

Note that we assign the RPC client to our service definition, and that we
assign events to all event handlers of the poller component.
To start the process, we add an OnClick event handler to the actbtnStart
action.In it, we collect the values for the A and B parameters from the
respective input boxes, and use these to call StartProcess on our Service
component.
We take care to handle the OnSuccess and OnFail handlers of this method
- remember, the calls to the server are asynchronous:

procedure TfrmIndex.actbtnStartExecute(Sender: TObject; Event: TJSEvent);

 procedure DoStartFail(Sender: TObject; const aError: TRPCError);
 begin
 Writeln(’Failed to start process : ’,aError.Message);
 end;

 procedure DoStartOK(aResult: JSValue);
 begin
 FJobID:=String(aResult);
 FPoller.ProcessID:=FJobID;
 FPoller.Start;
 end;

var
 a,b : string;

begin
 a:=actedtA.Value;
 b:=actedtB.Value;
 Service.StartProcess(A,B,@DoStartOK,@DoStartFail);
end;

Figure 6: The service generation dialog

67Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 14 / 18

All that remains to do is to handle the 4 events of the TProcessCapturePoller
component.
We’ll start with the simple ones, the OnProcessOutput and OnStatusFail events. In it,
we just need to output the messages that are passed to the event handler:

procedure TfrmIndex.DoStatusFail(Sender: TObject; aError: String);
begin
 Writeln(’Error getting status: ’,aError);
end;

procedure TfrmIndex.DoDoutput(Sender: TObject; aOutput: String);
begin
 Writeln(aOutput);
end;

The OnProcessDone event handler is equally simple, we print the status and exit code
(if there is one)

procedure TfrmIndex.DoProcessDone(Sender: TObject;
aStatus: TProcessStatus;
aExitCode: Integer);

Const
Exits : Array[TProcessStatus] of string

= (’Running’,’Exited’,’Error’);
begin

Write(’Process ’,Exits[aStatus]);
if aStatus=psExited then

Writeln(’ with exit code ’,aExitCode)
else

Writeln();
end;

Last but not least, we must handle the OnGetProcessStatus event.
This simply calls the GetStatus procedure from our service component, and handles
the result handlers: in each handler the appropriate method of the
TProcessCapturePoller component is called with the received result:

procedure TfrmIndex.actbtnCancelExecute(Sender: TObject; Event: TJSEvent);
begin
 Writeln(’Canceled wait for process.’);
 FPoller.Cancel;
end;

If the start call fails, we simply log the fact. If the start call succeeds, we record the
result (a process ID) in the poller ProcessID property and start the poller. The onclick
handler for the ’Cancel’ button is much simpler:
We just need to cancel the poller.

68Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

With this, the logic of our application is ready.
Remains to write the main program
routine, which is very short indeed: All we need
to do is create our module and call Show:

var
 frm : TfrmIndex;
begin
 MaxConsoleLines:=15;
 frm:=TfrmIndex.Create(Nil);
 Frm.Show;

Setting the MaxConsoleLines to 15 will make
sure you can see the messages scroll over the
screen as the output of the server process
comes in. The result of this code is shown in
figure 7 on page 15 of the article.

ARTICLE PAGE 15 / 18

procedure TfrmIndex.DoGetStatus(Sender: TObject;
 aProcessID: String;
 aOffset: NativeInt);

procedure DoStatusFail(Sender: TObject; const aError: TRPCError);
begin
 FPoller.ReportProgressFail(aError.Message);
end;

procedure DoStatusOK(aResult: JSValue);

const statuses : array[Boolean] of TProcessStatus
= (psError,psRunning);

Var
 D : TJSObject absolute aResult;
 aExitCode : Integer;
 aNewOffset : NativeInt;
 aOutput : string;
 aStatus : TProcessStatus;

begin
 aOutput :=String(D[’output’]);
 aExitCode :=NativeInt(D[’status’]);
 aNewOffset :=NativeInt(D[’offset’]);
 aStatus :=Statuses[aExitCode=-1];
 FPoller.ReportProgress(aStatus,
 aOutput,aExitCode,aNewOffset)
end;

begin
 Service.GetStatus(FJobID,aOffset,
 @DoStatusOK,@DoStatusFail);
end;

Figure 7: The program in action

69Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 16 / 18

8 CREATING A SERVER PROCESS EXECUTION COMPONENT
Earlier in the article we mentioned that it could seem strange that there are
events to report status and output when the actual call to get the status is
executed in the form module: at that point you will already know the
status, so why still report it to the component ?
Part of the answer is that what we have shown above is just one way to use
the component. A second way is that you can also create a descendent of
this component which handles the getting of the status all by itself. In that
case, the events are the only way to get notifications of the status of the
process. In the following we show how to make such a descendent.
The TProcessCapturePoller component is actually a simple descendent
of the TCustomProcessCapturePoller component, which simply
implements the method to get the status of the process using an event.
What we can do is create a descendent of the
CustomProcessCapturePoller component which has the
TprocesscontrolService class built-in. This component will know all by
itself how to execute a process on the server. This component would look
as follows:

TRemoteExecutor = class(TCustomProcessCapturePoller)
Protected
 procedure DoStatusCheck; override;
Public
 Procedure Execute(a,b : String);
Published
 Property RPCClient : TRPCClient Read GetClient Write SetClient;
 Property OnProcessDone;
 Property OnProcessOutput;
 Property OnStatusFail;
 Property LinebasedOutput;
 Property PollInterval;
 Property MaxFailCount;
 Property MaxCheckCount;
end;

We left out the constructor and destructor, which simply create and destroy
the TprocesscontrolService.

constructor TRemoteExecutor.Create(aOwner: TComponent);
begin
 inherited Create(aOwner);
 FService:=TprocesscontrolService.Create(Self);
end;
destructor TRemoteExecutor.Destroy;
begin
 FreeAndNil(FService);
 inherited Destroy;
end;
The Service field is used to get and set the RPCClient property:

function TRemoteExecutor.GetClient: TRPCClient;
begin
Result:=FService.RPCClient;

end;

procedure TRemoteExecutor.SetClient(AValue: TRPCClient);
begin
 FService.RPCClient:=aValue;
end;

70Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 17 / 18

procedure TRemoteExecutor.Execute(a, b: String);

 procedure DoStartFail(Sender: TObject; const aError: TRPCError);
 begin
 SetFailCount(MaxFailCount);
 ReportProgressFail(aError.Message);
 end;

 procedure DoStartOK(aResult: JSValue);
 begin
 ProcessID:=String(aResult);
 Start;
 end;

 begin
 Service.StartProcess(A,B,@DoStartOK,@DoStartFail);
 end;

Note that if the process failed to start, the fail count is set to the
maximum, this will cause the ReportProgressFail method not to
schedule a new check. The DoStatusCheck method contains simply the
code that was present in the form in our first implementation:

procedure TRemoteExecutor.DoStatusCheck;

 procedure DoStatusFail(Sender: TObject; const aError: TRPCError);
 begin
 ReportProgressFail(aError.Message);
 end;

 procedure DoStatusOK(aResult: JSValue);

 const statuses : array[Boolean] of TProcessStatus
 = (psError,psRunning);
Var
 D : TJSObject absolute aResult;
 aExitCode : Integer;
 aNewOffset : NativeInt;
 aOutput : string;
 aStatus : TProcessStatus;
 begin
 aOutput :=String(D[’output’]);
 aExitCode :=NativeInt(D[’status’]);
 aNewOffset :=NativeInt(D[’offset’]);
 aStatus :=Statuses[aExitCode=-1];
 DoReportProgress(aStatus,aOutput,aExitCode,aNewOffset)
 end;
begin
 service.GetStatus(ProcessID,OutputOffset,@DoStatusOK,@DoStatusFail);
end;

The form code is now much simpler. We only need to create the
TRemoteExecutor component, and set its 3 events:

procedure TfrmIndex.DataModuleCreate(Sender: TObject);
begin
 FRemote:=TRemoteExecutor.Create(Self);
 FRemote.OnProcessOutput:=@DoDoutput;
 FRemote.OnProcessDone:=@DoProcessDone;
 FRemote.OnStatusFail:=@DoStatusFail;
end;

The Execute method takes the correct parameters, and in essence does
what was done in the form in our original code:

71Blaise Pascal Magazine 112 2023

EXECUTING PROGRAMS
ON THE SERVER IN

ARTICLE PAGE 18 / 18

The event handler for the ’Start’ button is now a simple one-liner:

procedure TfrmIndex.actbtnStartExecute(Sender: TObject; Event: TJSEvent);

begin
 FRemote.Execute(actedtA.Value,actedtB.Value);
end;

The event handler to get the status is no longer needed.
The functional working of the program is not different, but if you have a lot of
locations in your program where you need to execute programs on the server, it
makes sense to abstract away the remote execution in this manner.

❾ CONCLUSION
In this article we’ve shown that executing programs on a HTTP Server from a Pas2JS
program does not need to be difficult. The component to automate the process is
independent of a RPC mechanism, and as such can be used as-is, or it can be used as
the parent for a more elaborate component which handles all communication by itself.

72Blaise Pascal Magazine 112 2023

BARNSTEN

ONLY AT
BARNSTEN
ENDING 30
SEPTEMBER

Delphi & C++Builder are the best development tools on the
market to design and develop modern, cross-platform native apps

and services. Also for Windows 11! It’s easier than ever to create
stunning, high performing apps for Windows, macOS, iOS,

Android and Linux Server (Linux Server is supported in Delphi
Enterprise or higher), using the same native code base.

Share visually designed UIs across multiple platforms that make
use of native controls and platform behaviors, and leverage

powerful and modern languages with enhancements that help you
code faster.

30% discount on all licenses. This offer is valid until September 30,
2023

Order online or ask us for a quote.

Tel.: +31 23 542 22 27 Web: www.barnsten.com
Info: info@barnsten.com

sten

73Blaise Pascal Magazine 112 2023 Blaise Pascal Magazine 107/108 2022

A very great friend, collaborator, translator and proofreader
as well as an important author who helped us greatly over
the years - as he was always ready to help everyone - has

nevertheless been extremely quickly overwhelmed by a final
irrevocable stage of Cancer after a long history of illness.

We had always hoped for a recovery as he had had before.
Sadly, he has now passed away.

We will certainly miss him extremely with his incredible
power of expression in the English language and wonderful

phrasing.

Howard Page Clark

74Blaise Pascal Magazine 112 2023

LE
AR

N
TO

PR
O

GR
AM

U
SI

N
G

LA
ZA

RU
S

H
O
W

AR
D

PA
G
E
-C

LA
R
K

LE
AR

N
TO

PR
O

GR
AM

U
SI

N
G

LA
ZA

RU
S

H
O
W

AR
D

PA
G
E
-C

LA
R
KLAZARUS

HANDBOOK
FOR PROGRAMMING WITH F PASCAL AND LAZARUSREE

934 PAGES

LAZARUS
HANDBOOK

LAZARUS
HANDBOOK
PDF

SUMMER
SUPER
 PACK

6 ITEMS
2023

1

3
4

5 6
1. One year Subscription
2. The newest LIB Stick
 - All issues 1-111
 - On Credit Card
3. Lazarus Handbook Pocket
4. LH PDF including Code
5. Book Learn To Program
 - using Lazarus PDF including
 19 lessons and projects
6. Book Computer Graphics
 Math & Games
 - PDF including ±50 projects PRICE € 120

NORMAL PRICE € 275

ADVERTISEMENT

POCKET
Edition
+shipment

DIRECT SEARCH
OVER 6.500 PAGES OF ARTICLES AND CODE

2

75Blaise Pascal Magazine 112 2023
COMPONENTS

DEVELOPERS4

COMPONENTS
DEVELOPERS4

D11

Donate for Ukraine and get a free license at:
https://components4developers.blog/2022/02/26/

donate-to-ukraine-humanitarian-aid/

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Blaise Pascal

D U :onat e f o r kr ai ne and get a f r ee l i cense at
https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

If you are from Ukrainian origin you can get a free Subscription for Blaise Pascal
Magazine, we will also give you a free pdf version of the Lazarus Handbook. You need to
send us your Ukrainian Name and Ukrainian email address (that still works for you), so
that it proofs you are real Ukrainian. please send it to editor@blaisepascal.eu and
you will receive your book and subscription

76Blaise Pascal Magazine 112 2023

 RAD Alexandria supported
● Win32, Win64, Linux64, Android, IOS 32, IOS 64 and
 OS X client and server support
● Native high performance 100% developer defined
 application server
● Full support for centralised and distributed load
 balancing and fail-over
● Advanced ORM/OPF support including support of
 existing databases
● Advanced logging support
● Advanced configuration framework
● Advanced scheduling support for easy access to
 multi thread programming
● Advanced smart service and clients for very easy
 publication of functionality
● High quality random functions.
● High quality pronounceable password generators.
● High performance LZ4 and J peg compression
● Complete object notation framework including full
 support for YAML, BSON, Messagepack, J SON and XML
● Advanced object and value marshalling to and from
 YAML, BSON, Messagepack, JSON and XML
● High performance native TCP transport support
● High performance HTTPSys transport for Windows.
● CORS support in REST/HTML services.
● Native PHP, Java, OCX, ANSI C, C#, Apache Flex client
 support!

D U :onat e f o r kr ai ne and get a f r ee l i cense at
https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

5.22.00 is a release with containing new stuff, refinements and bugfixes., O p en SSL v3 sup p o rt,
WebSo cket sup p o rt, further imp ro vements to SmartB ind , new high p erfo rmance hashing algo rithms,
imp ro ved Remo teD esk to p samp le and much mo re.
This release req uires the use o f v. 7. 9 7 .0 0 o r newer.kbmMemTab le

kbmMemTable is the fastest and most feature rich in memory table
 for Embarcadero products.
● Easily supports large datasets with millions of records
● Easy data streaming support
● Optional to use native SQL engine
● Supports nested transactions and undo
● Native and fast build in M/D, aggregation/grouping
 range selection features
● Advanced indexing features for extreme performance

COMPONENTS
DEVELOPERS4

kbmMW Professional and Enterprise
Edition v. 5.22.10
kbmMemTable v. 7.98.00
Standard and Professional Edition

● New: full Web-socket support.
 The next release of kbmMW Enterprise Edition will
 include several new things and improvements.
 One of them is full Web-socket support.
● New I18N context sensitive internationalisation framework to
 make your applications multilingual.
● New ORM LINQ support for Delete and Update.
 Comments support in YAML.
● New StreamSec TLS v4 support (by StreamSec)
 Many other feature improvements and fixes.

Please visit http://www.components4developers.com
for more information about kbmMW

● High speed, unified database access (35+ supported
 database APIs) with connection pooling, metadata and
 data caching on all tiers
● Multi head access to the application server, via REST/AJAX,
 native binary, Publish/Subscribe, SOAP, XML, RTMP from
 web browsers, embedded devices, linked
 application servers, PCs, mobile devices, Java systems
 and many more clients
● Complete support for hosting FastCGI based applications
 (PHP/Ruby/Perl/Python typically)
● Native complete AMQP 0.91 support (Advanced Message
 Queuing Protocol)
● Complete end 2 end secure brandable Remote Desktop with
 near realtime HD video, 8 monitor support,
 texture detection, compression and clipboard sharing.
● Bundling kbmMemTable Professional which is the fastest
 and most feature rich in memory table for Embarcadero
 products.

D11
ADVERTISEMENT

