
101
Multi platform /Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Faker: Synthetic Data Generator
Migration Guide to Firebird 4.0

PAS2JS Communicating with the webserver (Part 2)
Polygons in the making

Raspberry Pi with Windows 11 / Delphi & Lazarus running
Webassembly for PAS2JS

101
Multi platform /Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Pascal is an imperative and procedural programming language, which Niklaus Wirth designed (left below) in 1968–69 and published in

1970, as a small, efficient language intended to encourage good programming practices using structured programming and data

structuring. A derivative known as Object Pascal designed for object-oriented programming was developed in 1985. The language name

was chosen to honour the Mathematician, Inventor of the first calculator: Blaise Pascal (see top right).

Publisher: PRO PASCAL FOUNDATION in collaboration © Stichting Ondersteuning Programmeertaal Pascal - NetherlandsNiklaus Wirth

Blaise Pascal Magazine 101 2022 2

ADVERTISERS

ARTICLES

Time cristals

In condensed matter phys ics , a t ime cr ysta l i s a

quantum system of part ic les whose lowest-

energy state is one in which the part ic les are in

repet i t ive mot ion. The system cannot lose

energy to the environment and come to rest

because i t i s a l ready in i ts quantum ground

state .

Because of th is the motion of the part ic les

does not real ly represent k inet ic energy l ike

other mot ion, i t has "mot ion without energy" .

Time cr ysta ls were f i rs t proposed theoret ica l ly

by Frank Wi lczek in 2012 as a t ime-based

analogue to common cr ysta ls — whereas the

atoms in cr ysta ls are arranged per iodical ly in

space, the atoms in a t ime cr ysta l are arranged

per iodical ly in both space and t ime.

Several d i f ferent groups have demonstrated

matter with stable per iodic evolut ion in

systems that are per iodical ly dr iven. In terms

of pract ica l use, t ime cr ysta ls may one day be

used as quantum memor ies .

From your Editor: Page 4
Cartoons
By Jerry King Page 5
Faker: Synthetic Data Generator
by Max Kleiner Page 9
Migration Guide to Firebird 4.0
By Michael van Canneyt Page 16
PAS2JS Communicating with the webserver (Part 2)
By Michael van Canneyt Page 20
Polygons in the making
By David Dirkse Page 43
Raspberry Pi with Windows 11 / Delphi & Lazarus running
By Detlef Overbeek Page 55
Webassembly for PAS2JS
By Michael van Canneyt Page82

LIB Stick BlaisepascalMagazine Archive: Page 6/7/8/15
LIB Stick + Subscription Page 19
Lazarus Handbook Pocket Page 40
Lazarus Handbook HardCover Page 41
Lazarus Handbook Pocket + Subscription Page 42
Barnsten Page 54
SuperPack Page 81
kbmFMX Page 99
kbmMW Page 100

CONTENT

ARTICLES

Anton Vogelaar
ajv @ vogelaar-electronics.com

Siegfried Zuhr
siegfried @ zuhr.nl

Bob Swart
www.eBob42.com
Bob @ eBob42.com

Daniele Teti
www.danieleteti.it
d.teti @ bittime.it

B.J. Rao
contact @ intricad.com

Wim Van Ingen Schenau -Editor
wisone @ xs4all.nl

Rik Smit
rik @ blaisepascal.eu

Detlef Overbeek - Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Howard Page Clark
hdpc @ talktalk.net

Heiko Rompel
info @ rompelsoft.de

Kim Madsen
www.component4developers.com

Paul Nauta PLM Solution Architect
CyberNautics
paul.nauta @ cybernautics.nl

Vsevolod Leonov
vsevolod.leonov@mail.ru

Jeremy North
jeremy.north @ gmail.com

Boian Mitov
mitov @ mitov.com

Andrea Magni www.andreamagni.eu
andrea.magni @ gmail.com
www.andreamagni.eu/wp

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

John Kuiper
john_kuiper @ kpnmail.nl

Wagner R. Landgraf
wagner @ tmssoftware.com

Mattias Gärtner
nc-gaertnma@netcologne.de

David Dirkse
www.davdata.nl
E-mail: David @ davdata.nl

Benno Evers
b.evers @ everscustomtechnology.nl

Bruno Fierens
www.tmssoftware.com
bruno.fierens @ tmssoftware.com

Stephen Ball
http://delphiaball.co.uk
@DelphiABall

Michaël Van Canneyt,
michael @ freepascal.org

Dmitry Boyarintsev
dmitry.living @ gmail.com

Marco Cantù
www.marcocantu.com
marco.cantu @ gmail.com

Holger Flick
holger @ flixments.com

Jos Wegman / Corrector / Analyst

Contributors

Danny Wind

dwind @ delphicompany.nl

All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless otherwise noted and may not be copied, distributed
or republished without written permission. Authors agree that code associated with their articles will be made available to subscribers after publication by placing it
on the website of the PGG for download, and that articles and code will be placed on distributable data storage media. Use of program listings by subscribers for
research and study purposes is allowed, but not for commercial purposes. Commercial use of program listings and code is prohibited without the written permission
of the author.

Copyright notice

Editors Correctors
Peter Bijlsma, W. (Wim) van Ingen Schenau, Rik Smit Howard Page-Clark, Peter Bijlsma
Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavour to ensure that what is published in the magazine is correct, we cannot accept responsibility for any errors or omissions.
If you notice something which may be incorrect, please contact the Editor and we will publish a correction where relevant.
Subscriptions (2019 prices)

Subscriptions can be taken out online at www.blaisepascal.eu or by written order, or by sending an email to office@blaisepascal.eu

Subscriptions can start at any date. All issues published in the calendar year of the subscription will be sent as well.
Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
Subscriptions can be paid by sending the payment to:
ABN AMRO Bank Account no. 44 19 60 863 or by credit card or Paypal
Name: Pro Pascal Foundation-Foundation for Supporting the Pascal Programming Language (Stichting Ondersteuning Programeertaal Pascal)
IBAN: NL82 ABNA 0441960863 BIC ABNANL2A VAT no.: 81 42 54 147 (Stichting Programmeertaal Pascal)
Subscription department
Edelstenenbaan 21 / 3402 XA IJsselstein, The Netherlands
Mobile: + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

Editor - in - chief
Detlef D. Overbeek, Netherlands Tel.: Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Internat.
excl. VAT

Internat.
incl. 9% VAT Shipment

WIKIPEDIAMember and donator of
Member of the Royal Dutch Library

Printed Issue
±60 pages

Printed Issue inside Holland (Netherlands)
60 pages

Electronic Download Issue
60 pages

€ 155,96

€ 250,00

€ 250

€ 70 € 64,20

€ 80,00

€ 70,00

3Blaise Pascal Magazine 99/100 2021

From your editor

4

Detlef

Blaise Pascal Magazine 99/100 2021

A happy new year to everybody!
Finally there seems to be some light at the end of this tunnel.
We were able to finalize some very important wishes:
Lazarus had a new update and for Free Pascal we have been able to add some
very special items: Generics (already integrated in the FPC-TrunkVersion),
and Anonymous functions should become available very soon now.

We added WebAssembly as you can read in this issue (Webassembly for PAS2JS

page 85 lessons) and for PAS2JS we have started with a series of article () see page:
“PAS2JS Communicating with the webserver (Part 2) - starting at page 20 that will later
become a book.
We created a new Mini Server for Testing Purposes which will be shown in the
next item. That will make it very easy to built web-sites in PAS2JS and also create
desktop applications which will run in your browser and show you how to do so.

I had in mind to do much more items in this issue but because the articles
already added up to 100 pages,
I decided to publish them in the next issue 102.
Since wee now have WebAssembly we will create a web-store which will be
capable of creating shop-connections with banks and other module providers
() in Pascal and show this sample code so you all could use that. like we use Molly

This is the basis for our new to build website.
I think is ridiculous that we run a site that is not build on Pascal.
It also has a very nice learning aspect which will demonstrate very well what
potential PAS2JS and WebAssembly has.

I am already planning the next real-life meetings. I’ll tell you soon…
Might be beginning April 2022..

I hope this year will become a very interesting and successful year as ever for
you...

From our Technical advisor: Cartoons from Jerry King

5Blaise Pascal Magazine 99/100 2021

- Advertisement -

The new Library stick program has arrived
with some improvements..

u The thumbnails are created in the
 background so they load much faster.
v In the Image you can see a large text
 field where you can search in all the
 text of that issue.
 The pages that are relevant will appear
 at th bottom. By clicking on the item
 you will be guided to the page.

Blaise Library Program

+
USB Librarystick

Containing:
 installer for Windows

Issues 1-100 / 5809 Pages
873 Articles / Code samples

- Advertisement -

The new Library stick program has arrived
with some improvements..

u The thumbnails are created in the
 background so they load much faster.
v In the Image you can see a large text
 field where you can search in all the
 text of that issue.
 The pages that are relevant will appear
 at th bottom. By clicking on the item
 you will be guided to the page.

- Advertisement -

maXboxBlaise Pascal Magazine 101 2022

AUTHOR: MAX KLEINER Try finally begin. — Max

maXbox Starter 91

 SYNTHETIC DATA GENERATOR

Make the fake.

INTRODUCTION
Real data, extracted from the real world, is a gold standard for data science and data

protection, perhaps for obvious reasons. In such a case, synthetic data producing can be
used either in place of real data, protect real user as an avatar or to augment an insufficiently

large dataset. With Python4Delphi scripting.

http://www.softwareschule.ch/examples/pydemo32_2.txt

Faker is a Python library that generates fake data.
Fake data is often used for testing or filling databases with some dummy data.
Faker is strong inspired by PHP's Faker, Perl's Data::Faker, and Ruby's Faker.

We are also able to sample from a model and create synthetic data, hence the name SynDat.
The most obvious way that the use of synthetic data benefits data science is that it reduces

the need to capture data from real-world events, and for this reason it becomes possible
to generate data and construct a dataset much more quickly than a dataset

dependent on real-world events and in addition you don't misuse
data protection.

9

FAKER Python4Delphi

Make Avatar

Enterprise / Government

New kind of Data Protection
SynDat

<<include>>

<<use>>

data_hash1-> GUID
data_hash2-> GUID
data_hash3-> GUID

Syn DatBlockChain

Synthetic Data

KeyValue Table SynDat

Distributed Record

GUID person or
Data RecordDat

Page 1/6

maXbox 10Blaise Pascal Magazine 101 2022

Now I want to show almost step by step how we can
use the Faker Lib. First you had to install faker package, it can be installed with pip:

C:\Users\Max\AppData\Local\Programs\Python\Python36-32>
 python -m pip install faker

Install a 32 bit package module in a 64 bit environment:

 u Change to your 32 bit path with cd:
 C:\Users\Max\AppData\Local\Programs\Python\Python36–32>

 v Call the Pip (e.g. faker module) explicitly with python.exe: python -m pip install faker

And it runs:
Downloading https://files.pythonhosted.org/packages/27/ab/0371598513e8179d9053
911e814c4de4ec2d0dd47e725dca40aa664f994c/Faker-9.9.0-py3-none-any.whl (1.2MB)..

You are using , however version 21.3.1 is available.pip version 9.0.1

You should consider upgrading via the 'python -m pip install --upgrade pip'.
C:\Users\Max\AppData\Local\Programs\Python\Python36-32>

Now we start the program:
The fake.Faker (fake = Faker()) creates and initializes a faker generator, which can generate data by
accessing properties named after the type of data, whether you need to bootstrap your database,
create structured JSON documents or fill-in your storage persistence to stress test.

 sw:= TStopWatch.Create();
 sw.Start;
 eg.execStr('from faker import Faker');
 eg.execStr('import simplejson as json'); //# instead import json
 eg.execStr('import dumper');
 eg.execStr('fake = Faker()');
 fprofile:= eg.evalStr('(fake.profile())')
 fprofile:= StringReplace(fprofile,'\n',CRLF,[rfReplaceAll]);

To clean up the data, we will also replace the newlines as \n in the generated addresses with
commas or CRLF (linefeeds), and remove the newlines from profile generated text completely.

Faker delegates the data generation to providers.
The default provider uses the English locale. Faker supports other locales;

they differ in level of completion, there are lots of ways to artificially manufacture and build data,
some of which are far more complex than others and models real-world distribution with
descriptive statistics.
Check the output with path and list the profile dictionary, the example outputs a
fake name, address, and many more items of a persons profile: (Next page)

maXbox Starter 91

 SYNTHETIC DATA GENERATOR

Page 2/6

maXbox 11Blaise Pascal Magazine 101 2022

maXbox Starter 91

 SYNTHETIC DATA GENERATOR

Oh what as surprise a nurse and she holds a PhD and works by Rogers.
What if, for instance, I'm interested in generating German or Spanish names
and professions of the type one would find in Netherlands, Mexico, Austria or Switzerland?

fake person profile:
{'job': 'Manufacturing engineer', 'company':

'Cunningham-Young',
'ssn': '630-62-0344',

'residence': 'PSC 1590, Box 0125 APO AA 42693',
'current_location': (Decimal('-51.8228245'), Decimal('-61.889364')),

'blood_group': 'A+', 'website': ['http://www.jones-clark.net/',
'https://www.fowler.com/'], 'username': 'garciatina',

'name': 'Roger Nichols', 'sex': 'M',
'address': '51574 Combs Alley Apt. 142, Ryanhaven, AL 82796',

‘mail': 'andrea31@hotmail.com', 'birthdate': datetime.date(1914, 4, 15)}
creditcard#: 213140049750943

Stop Watch Faker Tester1: 0:0:0.636

This is not json as I first assumed, and we can convert it. I tried first with json and simplejson, got
some date and decimals serialize exceptions (Object of type date is not JSON serializable.), then I used
dumper lib, but got a next exception Exception: <class 'AttributeError'>: 'NoneType' object has no
attribute 'write'.: So the profile is a dict type, the misleading {} trapped me first.
Let's generate another avatar:

{'job': 'Nurse, adult',
'company': 'Rogers and Sons',
'ssn': '038-06-4652',
'residence': 'PSC 8856, Box 2882 APO AE 08426',
'current_location': (Decimal('16.4363075'), Decimal('-83.079826')),
'blood_group': 'A-',
'website': ['https://www.white.biz/', 'http://garrett-perez.com/'],
'username': 'xnelson',
'name': 'Ms. Colleen Bowman PhD',
'sex': 'F',
'address': '328 Reeves Estates Apt. 279 Lake Nicholas, MD 31753',
'mail': 'kkhan@yahoo.com',
‘birthdate': datetime.date(1936, 6, 3)}

 fake = Faker(['de_DE'])
 for i in range(10):
 print(fake.name())
 eg.execStr('fake = Faker(["es_MX"])')
 //for i in range(10):
 for it:= 1 to 10 do
 println(UTF8toAnsi(eg.evalStr('fake.name()')));
>>> Alma María José Montañez Dávila ...

Page 3/6

maXbox 12Blaise Pascal Magazine 101 2022

maXbox Starter 91

 SYNTHETIC DATA GENERATOR

except
 . ;eg raiseError
 ((,));writeln ExceptionToString ExceptionType ExceptionParam
 finally
 . ;eg Free
 . ;sw Free
 := ;sw Nil
 . := ;apd position 100
end;

 . () with Nil do beginTPythonEngine Create
 := ;pythonhome PYHOME
 try
 ;loadDLL
 (+Println 'Faker Platform: '

 ());EvalStr '__import__("faker").Faker()'

 except
 ;raiseError
 finally
 ;free
 ;end
end;

The Faker constructor takes
also a performance-related argument called use_weighting.

It specifies whether to attempt to have the frequency of values match real-world
frequencies and distribution shape (e.g. the English name Gary would be much more

frequent than the name Welson). If use_weighting is False, then all items have an equal
chance of being selected, and the selection process is much faster; the default is True.

The next line is a simple demonstration of Faker credit card:

 println('creditcard#: '+eg.evalStr('fake.credit_card_number()')); //}

 Faker also support for dummy hashes and uuids for SynDat:

In the end we close and free all the resources of objects,
including stop-watcher sw and python frame apd:

You can also run the Python Engine script at runtime to get a Faker() object and
if something went wrong you got a raiseError Py exception. Eval() function
accepts a string argument and if the string argument is an expression then eval()
will evaluate the expression as a callback with return (faker.proxy.Faker):

 !/ / / # usr bin env python
from faker import Faker

faker Faker = ()

print f()'md5: {faker.md5()}'

print f()'sha1: {faker.sha1()}'

print f()'sha256: {faker.sha256()}'

print f()'uuid4: {faker.uuid4()}'

Page 4/6

maXbox 13Blaise Pascal Magazine 101 2022

maXbox Starter 91

 SYNTHETIC DATA GENERATOR

CONCLUSION
In this report, we used Python Faker to generate fake or synthetic data

in Python and maXbox with measuring time behaviour.

Finally, synthetic datasets can minimize privacy concerns.
Attempts to anonymize data can be ineffective, as even if sensitive/identifying

variables are removed from the dataset, other variables can act as identifiers when they
are combined. This isn’t an issue with synthetic data, as it was never based on a real person,

or real event, in the first place.

A concept could mean, firms, institutes or simply users don't deal with real person data,
they got an avatar which makes an relationship between a hash and a guid in a worldwide proxy
block-chain (pb1).
A real person is protected behind the SynDat proxy with a guid record.

Python for .NET is also a package that gives Python programmers nearly seamless
integration with the .NET Common Language Runtime (CLR) and provides a
powerful application scripting tool for .NET developers and with Delphi or Lazarus
just found that:

https://i2.wp.com/blogs.embarcadero.com/wp-
content/uploads/2021/07/demo01_Faker2-2809487.png?ssl=1

Page 5/6

maXbox

Page 6/6

14Blaise Pascal Magazine 101 2022

maXbox Starter 91

 SYNTHETIC DATA GENERATOR

SYNDAT TOPICS AND SCRIPT:

¦ https://pypi.org/project/Faker/
¦ https://www.kdnuggets.com/2021/11/easy-synthetic-data-python-faker.html
¦ http://www.softwareschule.ch/examples/pydemo32_2.txt
¦ https://www.unite.ai/what-is-synthetic-data/
¦ http://www.softwareschule.ch/examples/cheatsheetpython.pdf

**
Release Notes maXbox 4.7.6.10 II November 2021 mX476
**
Add 10 Units + 3 Tutorials
1441 unit uPSI_neuralgeneric.pas; CAI
1442 unit uPSI_neuralthread.pas; CAI
1443 unit uPSI_uSysTools; TuO
1444 unit upsi_neuralsets; mX4
1445 unit uPSI_uWinNT.pas mX4
1446 unit uPSI_URungeKutta4.pas ICS
1447 unit uPSI_UrlConIcs.pas ICS
1448 unit uPSI_OverbyteIcsUtils.pas ICS
1449 unit uPSI_Numedit2 mX4
1450 unit uPSI_PsAPI_3.pas mX4
Total of Function Calls: 35078
SHA1: of 4.7.6.10 D4B0A36E42E9E89642A140CCEE2B7CCDDE3D041A
CRC32: B8F2450F 30.6 MB (32,101,704 bytes)

Blaise Library Program

+
USB Librarystick

Containing:
 installer for Windows

Issues 1-100 / 5809 Pages
873 Articles / Code samples

Price: ¤ 75 incl.Shipping

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
 for I := 1 9 to do
 beginbegin
 ...
 end
end;

procedure
var
begin
 for I := 1 9 to do
 begin
 ...
 end
end;

Prof Dr.Wirth, Creator of Pascal Programming language Blaise Pascal, Mathematician

B L A I S E P A S C A L M A G A Z I N E

1
2

3

4
5

6

8

9 1110

12

13

15

17
19

20

18
16

21

29

39

47

40

48

62

63
64

656667
68

69
70

75
76

56

94
95

57

58

59

60

61

49

43
42

41

4477

80

81
82

83

84

85
86

89
9190

92
93

96

97 98

87
88

45
46

37
38

54
55

31
32

50
51 52

53

33

35

34

36

23

24

25
26 27 28

7
14

22

30

71
72

73
74

78
79

100
99

L I B R A R Y 2 0 2 1

https://www.blaisepascalmagazine.eu/product/lib-stick
https://www.blaisepascalmagazine.eu/product/bundle-libstick-download-subscription/

https://www.blaisepascalmagazine.eu/product-category/special-offer/

Blaise Pascal Magazine 99/100 2021 16

BOOKREVIEW

MIGRATION GUIDE TO FIREBIRD 4
First edition – 2021
Author: Carlos Henrique Cantu
Piracicaba – São Paulo – Brazil

Editing, translation, diagramming, finalization:
Carlos Henrique Cantu
Proofreading: Ann Harrison
Revision 1.20
The book is for sail at:

https://www.firebirdnews.org/
migration-guide-to-firebird-4/

By Michaël Van Canneyt
MIGRATION GUIDE TO FIREBIRD 4.0

ABSTRACT
Accompagnying the recent release of
Firebird 4.0, a book about migrating to 4.0 is a

welcome help for Firebird users who wish to use the
latest version of the Firebird 4.0 engine. A review of
the english translation of the book.

1 INTRODUCTION
As the title indicates, the book ’Migration
guide to Firebird 4.0’ by Carlos Henrique Cantu
is meant for people who are already using
Firebird: The book covers migration from version
3.0 of Firebird or earlier versions.
It is not meant as a beginner’s guide to Firebird,
nor is it intended to be a complete reference of
Firebird.

The book gives insight in the isses you can (and
most likely will) encounter when migrating
existing databases and applications to Firebird. It
also gives hints on how to solve or prevent
the issues from occurring.

To this end, the book starts by repeating some
basic firebird concepts: the various available
architectures and their characteristics -
important for choosing the right version to use. It
mentions user-defined functions: these are
deprecated in Firebird. They can still be used in
Firebird, but they are no longer available or
enabled by default.

Blaise Pascal Magazine 99/100 2021 17

BOOKREVIEW

2 INSTALLATION & MIGRATION
A first step in migrating to a new server version
is obviously installing the new version, so
this is covered to some extent for Linux and
Windows: This chapter offers little surprises
to seasoned Firebird users, as the procedure has
not changed significantly.

The migration chapter is arguably the most
important chapter of the book: it explains the
need for a migration process, identifies the
pitfalls that can occur during the migration and
offers workarounds for some commonly found
problems. It also recommends a replication
scheme for migration of systems that must be
available 24/7 but unfortunately, it fails to
explain how to do this - earlier versions of Firebird
do not have this functionality built-in,
making this a non-trivial task which could really
use an in-depth explanation.

A new installation needs to have some users
present to be able to function, so some time
is spent on explaning the new features regarding
user management in Firebird: For users
of firebird 3, this will offer few insights, but users
of older versions of Firebird should read
this chapter carefully, as the user management
has changed significantly in version 3, so
you need to be aware of it if you migrate to
version 4.0.
SQL users are only one component of
database security, and so the book spends
some time
on tips how to further
secure your
databases.

4 Conclusion
People that wish to migrate to Firebird 4.0 from
earlier versions of Firebird will definitely
find this book useful: In fact, people
with older Firebird
versions have more
 reason to buy
this book, since it also discusses changes
introduced in Firbeird 3.0. Written in an informal
style, it is an easy read that will quickly get you up
to speed with the latest version of Firebird.

3 NEW FEATURES OF FIREBIRD 4.0
Good reasons for updating a database server are
improved stability, speed and bug fixes.
Access to new features is an equally valid reason
for migrating to a new version, so naturally the
new features must be discussed in a book about
migration to a new version.

Firebird 4.0 - or more specifically, the client library
that applications use when connecting
to firebird - allows you to specify connection
strings using an URL syntax, the book
naturally explains how to construct these
connection strings.

New in Firebird is how Firebird manages some
aspects of transaction isolation. The book
explains how the transaction isolation works and
what changes were introduced in Firebird
4.0 - This chapter is mostly important for
application programmers: the transaction
isolation levels are usually controlled in application
code.
The consequences of the new transaction isolation
for garbage collection (and the automated sweep)
are also explained.
Every new version of Firebird comes with new
features in SQL, and version 4.0 is no
different in this regard: new keywords are
introduced as well as new data types: the new
data types do not interfere with the migration
process, but the new keywords can cause
problems.

The new time zone capabilities of Firebird are
treated in depth. Last but not least, with Firebird 4,
firebird gets one-way replication capabilities: the
required setup and parameters for database
replication are treated in depth.

Blaise Pascal Magazine 99/100 2021 18

BOOKREVIEW
Index ... 2
Dedication ... 6
Thanks ... 7
About the author ... 12
Preface ... 13
Introduction ... 14
Icons used ... 15
Errata ... 16
Basic but essential concepts! 17
SuperServer vs. Classic vs. SuperClassic 18
Classic (CS) ... 20
SuperServer (SS) .. 21
SuperClassic (SC) ... 22
Embedded ... 22
What architecture to choose? 24
32-bit vs. 64-bit .. 26
User Defined Functions Deprecated 27
Installing Firebird 4 ... 28
Installing Firebird 4 on Linux .. 29
Installing Firebird on Windows® 35
Server architecture ... 38
Service or Application? ... 38
Start automatically ... 39
Client library (fbclient.dll) .. 39
gds32.dll .. 39
Checking whether Firebird is running 42
Installing Firebird using the "Zip Kit" 44
INSTSVC 44
INSTREG ... 46
INSTCLIENT .. 47
Migrating Existing Databases to Firebird 4 48
Why Migration? .. 49
ODS (On Disk Structure) .. 50
Test the database integrity with gbak 52
Problems with character encoding 53
Validating the metadata ... 54
'NOW', 'TODAY', 'TOMORROW', 'YESTERDAY' literals 58
Migrating a database to Firebird 4 59
Migrating 24x7 servers ... 61
Tips to speed up the backup/restore process 61
Users in Firebird 4 .. 63
Local users .. 64
Passwords .. 66
Initializing the security database 68
Managing users using SQL .. 69
Creating users ... 70
Modifying users ... 72
Deleting users ... 73
Sec$users and sec$user_attributes virtual tables 73
Preparing a script to insert users into the new server 76
Protecting your data ... 87
Creating a secure environment 89
Encrypting the database file ... 90
Conclusion .. 92
Wire Protocol Enhancements 93
Traffic encryption .. 94
Traffic compression .. 96
Enhancements for usage in high latency networks ... 98
Connection strings ... 103
Legacy syntax ... 104
URL based syntax ... 106
IPv6 support .. 109
Essential information about Versioning 110
Read committed ... 112
Snapshot ... 113
Snapshot Table Stability 113
TIP ... 114
Concurrency examples .. 115
Read Committed, snapshots & garbage collection in FB4 118
Read Committed inconsistencies 119
Read Consistency ... 120

Conflict management in Read Consistency 122
Garbage collection in Firebird 4 126
New numeric data types 129
INT128 .. 130
Basic theory about floating points 130
DECFLOAT ... 132
Fixed point numeric types 135
Time Zones .. 136
Basic concepts ... 137
Session time zone .. 138
Data types with Time Zones information 139
Expressions and commands specific for time zone... 142
(Command) SET TIME ZONE 142
(Expression) AT ... 142
(Expression) EXTRACT 142
(Expressions) CURRENT_TIME &CURRENT_TIMESTAMP 142
(Expression) LOCALTIME 143
(Expression) LOCALTIMESTAMP 143
(Context variable) SESSION_TIMEZONE 144
Updating the time zones database 144
Retrieving information about supported Time Zones ... 146
RDB$TIME_ZONE_UTIL.DATABASE_VERSION 146
Procedure TRANSITIONS 146
Firebird 4 and legacy applications 148
Distributing fbclient with applications 149
zlib1.dll .. 150
chacha.dll ... 150
Cursors and unnamed columns 151
Sequences .. 152
User Defined Functions (UDFs) 153
Removed parameters .. 154
.NET applications ... 154
Jaybird applications ... 154
Compatibility with new data types 155
SET BIND OF ... 156
Logical data type (Boolean) 161
Connecting to Firebird 4 with an old fbclient library ... 161
Query performance 162
Reserved words ... 163
Manipulating the System tables (RDB$...) 165
Testing application's queries 167
Using mon$attachments to get the number of active
connections.. 170
Default cache size for Classic/SuperClassic 171
Mixing implicit and explicit joins 171
Count() now returns a BIGINT 172
Attention with the aggregate functions (SUM, AVG, etc.) 172
Permission for creating databases 173
Permissions for generators, exceptions, and inserts ... 174
Some other attention points 175
Replication ... 176
Concepts .. 177
Replication in Firebird 4 178
Conflict resolution 179
Replication setup .. 180
sync_replica .. 181
journal_source_directory 181
journal_archive_directory 181
journal_archive_command 182
journal_archive_timeout 182
Replication example 183
Worth mentioning 190
Appendix ... 94
Macros ... 195
Configuration entries 196
Glossary ... 198
Bibliography 205

USB LIB stick +
1 year subscription

for only ¤ 100

101
Multi platform /Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Faker: Synthetic Data Generator
Migration Guide to Firebird 4.0

PAS2JS Communicating with the webserver (Part 2)
Polygons in the making

Raspberry Pi with Windows 11 / Delphi & Lazarus running
Webassembly for PAS2JS

Blaise Library Program
and USB Librarystick

Containing:
 installer for Windows

Issues 1-100 / 5809 Pages
873 Articles / Code samples

Blaise Pascal Magazine 101 2022 20

PAS JS2

starter expert

D11

PART 2
ABSTRACT
In a previous article we showed how to get started with
pas2js, and how to compile a simple program that interacts
with the HTML of the webpage. In this article, we show
how to interact with an application server using JSON-RPC.

u INTRODUCTION
It is important to have a close look at the source code once you start
acting Please read the article completely before working with it.

A webpage almost invariably communicates with services hosted on a
webserver. This can go from downloading a simple file to exchanging
data with an application server. As explained in the previous article
about real-world programming with PAS2JS there are several
communication protocols possible: SOAP, REST, JSON-RPC.

The communication can happen over HTTP(s) or using websockets.
Free Pascal supports all of these with several frameworks – FPC can be
used to write a HTTP server or Websocket server – or even both
at the same time.

In this article, we’ll explain how to use JSON-RPC on the server and in
Pas2JS. The previous article laid the foundations for a login page, and we
will now expand on this foundation to demonstrate how to let a PAS2JS

program communicate with a server.

For this, we’ll implement a Users service with 3 calls:
Login The login call to let a user log in using a username and
 password.
Logout The logout call.
CreateUser A call to create a new user in the user database.

To make our application more secure, we’ll also implement
2-factor authentication (2FA) using the Google Authenticator
application: Free Pascal has a unit that can generate a time-based
token which can be used with the Google Authenticator

application.

This means the login page presented in the previous article
needs to be expanded, so we can ask the user for the
2FA code. At the same time, we’ll expand the
HTML page a little, so it contains a menu bar in
which we will add login and logout
buttons as well as a place to
show the user name.

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 1/20

21Blaise Pascal Magazine 101 2022

v THE APPLICATION SERVER

To be able to create the application server, the WebLaz package package must be installed in
the IDE. If this is not yet the case, you can install it in the same way as the PAS2JSDSGN

package had to be installed for Pas2JS support, using the Packages - Install packages menu.

Figure 1: Choosing HTTP Server Application

Once the
package is installed you can

make several kinds of webserver applications:
CGI, FastCGI, standalone HTTP server or an apache module.
The HTTP server application (see figure 1 on page 2) needs the least setup, and is easiest to
debug, so we’ll take that. For a production environment, it may be better to use FastCGI or
even an apache module - but this can be easily changed later during development. Once you
choose this project type, the new project wizard will then present you with some options,
as seen in figure 2 on page 3.
The ’Port to listen for requests’ is the TCP/IP port on which the server will listen. Any port
can be entered, but take care that the port is not yet in use on your system, and that your
user is allowed to use this port: on Linux, port numbers below 1024 are reserved for the
root user.
If the ’Register location to serve files from’ option is checked, the wizard will insert code
to let the HTTP server automatically serve files. No special code will need to be written
for that, so this is very convenient. In the ’Directory’ edit box, the directory from which
to serve files can be specified: Subdirectories will be handled, but the program will refuse
to handle files outside that directory. For most cases, the base directory will need to be set
correctly in code anyway.
In the ’location’ edit you can enter the start of the URL the server needs to get to serve
files. In the configuration as shown in figure 2 on page 3, the URL

http://localhost:3000/files/css/login.css

will be mapped to the following filename on disk:
/home/michael/logindemo/css/login.css

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 2/20

22Blaise Pascal Magazine 101 2022

The ’Threaded’ checkbox tells the
wizard to generate a program that will use threads to

serve requests in. Special care must be taken when handling database access when you use
threads, so for the moment we’ll leave this unchecked.
When you confirm the settings, the following program source code is generated:

Figure 2: Options for a HTTP Server Application

program ;loginserver

{$mode objfpc}{$H+}

uses sysutils fpwebfile fphttpapp unit1, , , ;

begin
 RegisterFilelocation files home michael logindemo(' ','/ / / /')

 Application Title httpproject1. :=' ';

 Application Port. := ;3000
 Application Initialize. ;

 Application Run. ;

end.

But we will change this to the following:
program ;loginserver

{$mode objfpc}{$H+}

uses sysutils fpwebfile fpmimetypes fphttpapp unit1, , , , ;

Var stringaDir : ;

begin
 MimeTypes LoadKnownTypes. ;

 Application Title Pas2JS demo server. :=' ';

 Application Port. := ;3000
 Application Initialize. ;

 if then . (' ',' ') Application HasOption d directory
 aDir Application GetOptionValue d directory:= . (' ',' ')

 else
 aDir ExtractFilePath ParamStr webwidget:= (())+'../ /';0
 TSimpleFileModule BaseDir ExpandFileName aDir. := ();

 TSimpleFileModule RegisterDefaultRoute. ;

 Application Run. ;

end.

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 3/20

23Blaise Pascal Magazine 101 2022

w THE JSON-RPC SERVICE

Figure 3: Creating a Web JSON-RPC module

 The reason for this change is 2-fold:

u The requirement to use the ’/files/’ prefix in all URLS to serve files is not very convenient.
 It would be better not to have to type this prefix. Instead, it is easier to let the HTTP server

 try to serve as a file any URL it does not recognize as special.
 This is what the call to the TSimpleFileModule.RegisterDefaultRoute class method does:
 it will register the TSimpleFileModule class (this class is a HTTP route handler made available

 by FPC) as the default route handler of the server:
 any non-recognized route will be treated as a file.

v We set the TSimpleFileModule.BaseDir class variable to the directory where the
 TSimpleFileModule must look for files. The location can be set with the -d
 command-line option. Because of the location of the login page client project, a default of
 ../webwidget/ relative to the server project directory is used.
 NOTE that in the trunk version of Lazarus, the ’New HTTP application’ wizard has been
 improved, so the above changes do not have to be made: the wizard now can be used to
 configure the TSimpleFileModule for you.

The "New HTTP application" wizard has generated a
first WebModule (a TFPWebModule descendent) in unit1. We don’t need this webmodule, so we
remove unit1 and the webmodule from the project and save the resulting project as ’loginserver’.
Instead, we use the File-New menu dialog to create a Web JSON-RPC module (see figure 3 on page

4). This module is the basis for the RPC server.
The RPC server in FPC is currently implemented using 3 components:
u TJSONRPCModule This is a WebModule descendent that will serve JSON-RPC requests.
 You need at least 1 TJSONRPCModule in your application.
v TJSONRPCHandler This is a component which will handle exactly 1 JSON-RPC method.
 For each method you want to create in your JSON-RPC server, you
 must drop 1 TJSONRPCHandler component on a TJSONRPCModule
 descendent or a Tdatamodule.
w TJSONRPCDispatcher This is a component that can will dispatch a JSON-RPC call to the correct
 TJSONRPCHandler component. The TJSONRPCModule WebModule will
 automatically create an instance of TJSONRPCDispatcher if you didn’t
 specify one in its Dispatcher property.

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 4/20

24Blaise Pascal Magazine 101 2022

unit ;dmRPC

{$mode ObjFPC}{$H+}

interface

uses
 , , , , , , Classes SysUtils HTTPDefs websession fpHTTP fpWeb
 fpjason fpjsonrpc webjsonrpc, , ;

type
 { TUsersModule}
 TUserModule TUsersModule = ()class
 private
 public
end;

 implementation
 initialization
 RegisterHTTPModule RPC TUsersModule(' ',);

 JSONRPCHandlerManager RegisterDatamodule TUsersModule RPC. (, ' ',);

end.

Again, several options can (or must) be set to control the
generated code, they are shown in figure 4 on page 5.

 The ’Register JSON-RPC handlers in factory’ option can be left unchecked.

If checked, it will insert code that registers all TJSONRPCHandler components on the
module in the JSON-RPC registry (the factory pattern is used to find TJSONRPCHandler

instances). When doing so, it will use the ’JSON-RPC class’ as the class name for the RPCJSON

registration: This is an extension in FPC which allows to have various ’classes’ with
methods in the JSON-RPC service.
The ’Register web module’ will associate this web module with a HTTP route.
The value ’RPC’ shown in figure 4 on page 6 means that the following URL:
http://localhost:3000/RPC

will be considered the entry point for the JSON-RPC service:
all requests to this URL will be handled by the TJSONRPCModule.

If you create multiple TJSONRPCModule modules, it is important you only register 1 of them as
the handler for the RPC route, unless you want to create multiple routes for RPC calls.
For the other TJSONRPCModule modules, it is sufficient to use the ’Register

JSON-RPC handlers in factory’ option.
When you click OK in the new JSON-RPC module wizard and save the new unit as dmRPC,

the following code will be generated:

Figure 4: Options for the JSON-RPC module

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 5/20

25Blaise Pascal Magazine 101 2022

In your code is TJasonrpcmodule has been replaced by TUserModule. There was a bug
which has already been fixed in the trunk version of Lazarus.
Start by renaming the webmodule to TUsersModule, and then the initialization
section code must be changed to the following:

initialization
 RegisterHTTPModule RPC TUsersModule(' ',);

end.

To add methods to our JSON-RPC server, we must drop a
component on the datamodule: one component per method.

The TJSONRPCHandler class has the following important properties:

¦ Name The component name serves also as the method name.
 The most recent version of the component in allows you to FPC

 specify an alternate name.
¦ Options There are several options that can be set here:
 jroCheckParams The type and number of incoming parameters is checked
 against the parameter definitions in ParamDefs.

 jroObjectParams The parameters must be specified as a JSON object.
 jroArrayParams The parameters must be specified as a JSON array.
 jroIgnoreExtraFields If the call has extra parameters on top of the parameter
 definitions in ParamDefs they are ignored.

¦ ParamDefs This collection property serves 2 purposes:
 It is used when generating the description of the full JSON-RPC API.
 This collection has one item for each expected parameter to the
 method, in the order that they should be passed to the method.
 Every item in the collection has 3 properties: Name, DataType
 (one of the valid JSON types) and Required.

And the following event handlers exist:

¦ OnExecute This is the most important event handler:
 this event handler is called whenthe JSON-RPC method must be
 executed. It will get passed the parameters received from the client,
 and must return a JSONData value that is the result parameter.
¦ BeforeExecute This is an event handler that is called before actually executing the
 method. Here you can implement authentication or logging.
¦ AfterExecute This is an event handler that is called after the method was executed.
¦ OnParamError This event handler is called when the jroCheckParams option is
 specified and there is a parameter mismatch in the received
 parameters.

For most applications, it is sufficient to set the OnExecute event handler.
For our application, we need to implement a login call and a call to create a new user. For
this, we’ll store the allowed users in the database. For simplicity we will use a Firebird

database, with the following definition for the users table:

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 6/20

26Blaise Pascal Magazine 101 2022

CREATE SEQUENCE GEN_USERS;
CREATE TABLE USERS (
 U_ID BIGINT NOT NULL ,
 U_NAME VARCHAR(50) NOT NULL,
 U_PASSWORD VARCHAR(50) NOT NULL,
 U_2FASEED VARCHAR(32) NOT NULL,
 CONSTRAINT PK_USERS PRIMARY KEY (U_ID)
);
CREATE UNIQUE INDEX UDX_USERS ON USERS(U_NAME);

set term ^;

CREATE TRIGGER TR_INSERTID FOR USERS
BEFORE INSERT
AS
BEGIN
 IF (NEW.U_ID IS NULL) THEN
 NEW.U_ID=GEN_ID(GEN_USERS,1);
END^

Figure 5: Parameters for the login call

procedure . (: ;TUsersModule LoginExecute Sender TObject
const : ;Params TJSONData
out :);Res TJSONData
Var absoluteA TJSONArray Params : ;

 aUserName aPassword, : ; String
 aTwofactorCode Integer OK Boolean : ; : ;

begin
 aUserName A Strings:= . [];0
 aPassword A Strings:= . [];1
 aTwoFactorCode A Integers:= . [];2
 OK CheckUser aUserName aPassword aTwoFactorCode:= (, ,);

 Res TJSONBoolean Create OK:= . ();

 if then OK
 Session Variables User aUserName. [' ']:= ;

end;

The U_2FASEED field serves to store a shared secret for 2-factor authentication.
The login call needs 3 parameters: username, password and the 2-factor authentication
code. These can be entered in the ParamDefs property, as shown in figure
5 on page 7. Now we can actually implement the Login call. For this we assign the
OnExecute handler, and enter the following code:

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 7/20

27Blaise Pascal Magazine 101 2022

The QGetUser is a TSQLQuery component which was dropped on the RPCModule.
We enter the following SQL command in its SQL property:

SELECT
 U_ID, U_PASSWORD, U_2FASEED
FROM
 USERS
WHERE
 (U_NAME=:NAME)

function const String . (, : ; :): ;TUsersModule CheckUser aName aPassword ACode Integer Boolean
Var stringDBPassword Secret, : ;

begin
 ConnectDB;

 With do QGetUser
 begin
 ParamByName AsString aName(' '). := ;NAME
 Open;

 try
 Result IsEmpty:= ;Not
 if then Result
 begin
 DBPassword FieldByName U_PASSWORD AsString:= (' '). ;

 Secret FieldByName U_2FASEED AsString:= (' '). ;

 Result aPassWord DBPassword:= (=);

 If Then Result
 Result Check2FA Secret aCode:= (,);

 end;

 finally
 Close;

 end;

 end;

end;

The first 3 lines simply save the values of the parameters, and in the 4th line the call to
CheckUser will actually check the passed parameters with the contents of the database.

If the call returns True, we store the username in the browser session: this way we can
verify whether the browser user is authenticated or not in future calls.

The CheckUser method is actually pretty standard code to run a query and compare the
contents of the password with the password stored in the database: The routine starts by
connecting to the database, using the ConnectDB call. The details of this method we will
not describe here; the interested user can consult the source code.

If the query does not return a result, we know the
username is not known and authentication should fail.
If the query returns a result, we verify the password in code.
To be really safe, it would of course be better to save the password in
hashed form and compare the hashed form of the incoming password
with the hash stored in the database.

If the username was correct and the password matched the password
stored in the database, the 2FA shared secret stored in the database
is used to check the 2-factor authentication code:

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 8/20

28Blaise Pascal Magazine 101 2022

It is important to always set the res result, even if it is Nil:
failing to do so will lead to unpredictable behaviour.
To create a user, we require a username and password, and simply insert a record in the
database. This can be done again with very little code. We start by verifying whether the
current user is allowed to do so.
For the current demonstration application, we check that the user is the Admin user, and
we raise an exception when the user is not the administrator user. The exception will be
caught by FPC’s JSON-RPC implementation, and translated to a valid JSON-RPC error
response:

After collecting the username and password from the passed parameters, the DoCreateUser
method is called to actually create the user in the database.
The response of the DoCreateUser call is the ID of the new user record in the database;
For Firebird (or other databases that support sequences), this ID can be fetched separately,
this is implemented in the GetNewUserID method using a simple query.

function const String . (: ; :) : ;TUsersModule Check2FA aSeed aCode Integer Boolean
Var O Integer : ;

begin
 Result TOTPValidate aSeed aCode O:= (, , ,);1
end;

The TOTPValidate function is implemented in the onetimepass unit, part of FPC.

function const const (: ; : ;TOTPValidate aSecret AnsiString Token LongInt
 const : ;WindowSize LongInt
 var :): ;Counter LongInt Boolean

It requires a secret, the token to verify code, a maximum allowed deviation (the windowsize,

measured in seconds). It will return a counter – the counter can be used to implement
a counter-based verification token, but we will not use that and stick to a time-based token.
The logout call is very simple. It does not need any parameters at all, and the code is quite
simple.

procedure const out . (: ; : ; :);TUsersModule CreateUserExecute Sender Tobject Params TJSONData Res TJSONData
Var
 A TJSONArray Params : ; absolute
 aUserName aPassword, : ;String
 aID Int64 : ;

begin
 if then . [' ']<>' ' Session Variables User Admin
 Raise . (' ');Exception Create Only admins can create users
 aUserName A Strings:= . [];0
 aPassword A Strings:= . [];1
 aID DoCreateUser aUserName aPassword:= (,);

 Res TJSONInt64Number Create aID:= . ();

end;

procedure const out . (: ; : ; :);TUsersModule LogoutExecute Sender Tobject Params TJSONData Res TJSONData
begin
 Session Variables User ’’. [' ']:= ;

 Res TJSONNull Create:= . ;

end;

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 9/20

29Blaise Pascal Magazine 101 2022

function const String . (, :): ;TUsersModule DoCreateUser aName aPassword Int64
Var
 aSeed : ;String
begin
 aSeed TOTPSharedSecret:= ();

 Result GetNewUserID:= ;

 ConnectDB;

 With do QInsertUser
 begin
 ParamByName ID AsLargeInt Result(' '). := ;

 ParamByName AsString aName(' '). := ;NAME
 ParamByName SEED AsString aSeed(' '). := ;

 ExecSQL;

 end;

end;

The Google authenticator works using a shared key: the application that wishes to
authenticate a user using 2FA generates a shared secret and stores this somewhere,
associated with the user.

The user registers this shared key in the google authenticator. The app uses this secret to
generate a secret code every 30 seconds. When asked for it, the user enters this code in
the web application. The web application server also generates the secret code using the
shared key associated with the user, and compares it with the code given by the user:
if they match, it confirms the identity of the user.

Obviously, the shared secret for 2-Factor authorization must be communicated by some safe
means to the user when the new user record is inserted in the database. The application as
it is now does not provide any method to communicate this secret – it would lead too far to
discuss that. Converting it to a QR code is one way, sending the code by text or some other
means is another.

To use the shared secret, the Google Authenticator application must be installed on a device
(smartphone, tablet) owned by the user: this can be an IOS or Android device.
In the Google authenticator app, the user must add a new key using the ’Add’ button and
selecting either ’Scan a QR code’ or ’Enter key’, after which a description and the shared
secret can be entered as in figure 6 on article page 11.
When it is time to authenticate, the application asks for the authentication code, and the
user has 30 seconds to enter the code displayed in the Google authenticator app in the
website, see figure 7 on article page 11, after 30 seconds, a new code is generated.

4 2FA AND THE GOOGLE AUTHENTICATOR APP

The TOTPSharedSecret call (also implemented in the

onetimepass unit) creates a new(random) shared secret
usable in the Google Authenticator. It is stored in the
database together with the new user record.

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 10/20

30Blaise Pascal Magazine 101 2022

5 MODIFYING THE CLIENT
Now that we have the server programmed, it is time to enhance the client application.
In the previous article 2 applications were presented: one programmed with plain
HTML classes, one with WebWidget components.
Here we will only enhance the application programmed with WebWidget components,
but the sample client application written using plain HTML classes can be adapted in
much the same way. We’ll start by adding a menu (a navbar in web parlance,

using the <nav> tag). The HTML for the navbar can be found in the code
accompanying this article, but the resulting nav bar is shown in figure 8 on article page 11.

The navbar CSS in Bulma is quite simple, is responsive, and features a hamburger menu
– the three little lines that appear hen the CSS hides the menu on small screens.
When clicking the hamburger menu, the menu itself must be shown or hidden in code.

Contrary to CSS frameworks such as Bootstrap, Bulma does not offer some standard
Javascript file to perform this task, but the task is programmed easily enough: We assign an
ID to the hamburger menu tag, and to the menu itself. This allows us to create webwidgets
that reference these tags, and we can attach a OnClick handler to the hamburger <div> tag.
As shown in the previous article, this is done in the BindElements routine:

Figure 7: Adding the shared secretFigure 6: Adding the shared secret

space search

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 11/20

31Blaise Pascal Magazine 101 2022

divMenuHamburger TTagWidget Create Self:= . ();

divMenuHamburger elementID navbar burger. :=' - ';

divMenuHamburger Refresh. ;

divMenuHamburger OnClick ClickNavBar. :=@ ;

divMenu TTagWidget Create Self:= . ();

divMenu elementID navbar main. :=' - ';

divMenu Refresh. ;

The method is then simply:ClickNavBar

procedure . (: ; :);TMyApplication ClickNavBar Sender Tobject Event TJSEvent
 begin
 if is then (' - ', .)<> Pos active divMenu Classes 0
 DivMenu RemoveClasses active. (' - ')is
 else
 DivMenu AddClasses active. (' - ');is
end;

divMenuLogin TTagWidget Create Self:= . ();

divMenuLogin elementID mnuLogin. :=' ';

divMenuLogin OnClick DoLoginMenuClick. :=@ ;

divMenuLogin Refresh. ;

divMenuLogout TTagWidget Create Self:= . ();

divMenuLogout elementID mnuLogout. :=' ';

divMenuLogout Refresh. ;

divMenuLogout OnClick DoLogoutClick. :=@ ;

 procedure . (: ; :);TMyApplication DoLoginMenuClick Sender Tobject Event TJSEvent
 begin
 divDlgLogin RemoveClasses hidden. (' - ');is
 ShowLogin('');

 end;

 procedure . (: ; :);TMyApplication DoLogoutClick Sender Tobject Event TJSEvent
 begin
 ShowLogout;

 DoLogout;

 end;

The AddClasses
and RemoveClasses methods

add or remove CSS classes to the
HTML tag of a widget.
Applying the CSS class is-active shows the menu, if it is absent, the menu is hidden.
The result can be seen in figure 9 on article page 12.

In the navbar, we add some menu items (not functional at this time), and also buttons to log
in or log out and a small section to display the user name once the user is logged in.
The log in button will display the login dialog, and the log out button will log out the user and
then displays the login dialog.
For each of these elements, a TTagWidget is made and associated with the corresponding
HTML tag using the ID in the BindElements call:

Figure 8: The navigation bar in a large screen

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 12/20

32Blaise Pascal Magazine 101 2022

The DoLogout method will do the actual logout call to the server.
The showLogin and ShowLogout methods simply hide or show various HTML tags:

Figure 9: The navigation bar in a small screen

 . ;procedure TMyApplication ShowLogout
begin
 divDlgLogin RemoveClasses hidden. (' - ');is
 ShowLogin('');

 divMenuUser AddClasses hidden. (' - ');is
 divMenuLogin RemoveClasses hidden. (' - ');is
 divMenuLogout AddClasses hidden. (' - ');is
end;

The is-hidden CSS
class is provided by Bulma

and will hide the element to which it is applied.
The ShowLogin does a little more work. Because we wish to have 2-Factor Authorization,
the login dialog is split in 2 parts:
the first part asks for the user name and password,

and the second part asks for the 2FA code.
Each part is contained in a Bulma "box" tag, having an ID of div2FA and Login.

Again each tag will be represented by a webwidget and bound to the HTML tag in the
BindElements method. The ShowLogin method shows the Login box, but hides the 2FA box.
Additionally, ShowLogin will be called after a failed login attempt, to allow the user to start over:
in that case an error message is passed in the aError parameter. If it is non-empty, an Error div
is shown or hidden beneath the username entry.

procedure const String . (:);TMyApplication ShowLogin aError
begin
 div2FA AddClasses hidden. (' - ');is
 divLogin RemoveClasses hidden. (' - ');is
 if then <>'' aError
 begin
 divError RemoveClasses hidden. (' - ');is
 divError TextContent aError. := ;

 end
 else
 begin
 divError AddClasses hidden. (' - ');is
 divError TextContent. :='';

 end;

end;

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 13/20

33Blaise Pascal Magazine 101 2022

As can be seen in figure 8 on article page 12, the login button from the first version of
the application has been changed so it displays the Continue text. When pressed,
it hides the login box, and displays the 2FA Box:

The result of this is that the user sees the following part of the login dialog,
where he must ented the 2FA authentication code, as shown in figure 10 on

article page 14. After that, the login actually can be performed.

procedure . (: ; :);TMyApplication doContinueClick sender Tobject event TJSEvent
begin
 divLogin AddClasses hidden. (' - ');is
 div2FA RemoveClasses hidden. (' - ');is
end;

Figure 10: The 2-Factor authentication code

6 ACTUALLY TALKING TO THE SERVER: THE RPC CLIENT

Our server can handle the JSON-RPC protocol.
By definition, this means of course we must send JSON to the server. To send JSON to a
server is easily done in a browser: the required JSON is easily constructed, and the
XMLHTTPRequest class or the Fetch call can be used for sending it to the server and
handling the response.
JQuery offers a ajax method. All these can be used in Pas2JS.

But Pas2JS. comes with a TRPCClient class which is geared specially towards JSONRPC:

it will automatically create the correct envelope, it assigns the required keys such as id and
jsonrpc, and takes care of error responses:
all kind of things that one would expect. But it also offers batching: you can batch calls
explicitly, or let the client perform automatic batching; calls are batched, and after a
configurable time, the batch is sent to the server.
This can be used to improve performance:
by sending several method calls in 1 HTTP request, the time spent on network
communication is reduced. This class is defined as follows, with only the relevant methods
and properties:

2FA code

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 14/20

34Blaise Pascal Magazine 101 2022

TRPCClient TComponent = ()class
Public
 Constructor override (:); ;Create aOwner TComponent
 Destructor override ; ;Destroy
 Function : ;CreateRequestParamsBuilder TRPCRequestParamsBuilder
 Function const String (, : ; : ;ExecuteRequest aClassName aMethodName aParams TJSArray
 aOnSuccess TRPCResultCallBack : = ;Nil
 aOnFailure TRPCFailureCallBack NativeInt: =) : ;nil
 Function const String (, : ; : ;ExecuteRequest aClassName aMethodName aParams TJSObject
 aOnSuccess TRPCResultCallBack : = ;Nil
 aOnFailure TRPCFailureCallBack NativeInt: =) : ;nil
 Procedure ;CloseBatch
Published
 Property String : ;URL
 Property : ;Options TRPCoptions
 Property : ;BatchTimeout Integer
 Property String : ;JSONRPCversion
 Property : ;CustomHeaders TStrings
 Property : ;OnConfigRequest TRPCConfigRequest
 Property : ;OnCustomHeaders TRPCHeadersRequest
 Property : ;OnUnexpectedError TRPCUnexpectedErrorCallback
end;

The 2 ExecuteRequest methods will be treated below. The URL property is the URL
for the RPC server. For our application, this will be something like /RPC
Or, equivalently
 http://localhost:3000/RPC

The Options property is a combination of the following values:
roParamsAsObject create a parameter builder (see below) that creates the parameters as
an object.

¦ roFullMethodName
 Combine classname and method name into a single name, using a
 dot as the separator. The effect of this option is that the name of the RPC method
 becomes ’classname.methodname’. The default is to send the classname in a separate
 ’class’ key.
¦ roUseBatch
 ExecuteRequest will not send the JSON-RPC request to the server at once. Instead,
 calls are batched and sent when CloseBatch is called.
¦ roAutoBatch
 If roUseBatch is specified together with this value, the first call to ExecuteRequest
 that starts a batch sets a timer: when the timer expires, CloseBatch is called automatically.
¦ roForceArray
 In case only 1 RPC method call is sent, force use of an array. By default,
 if only a single method is executed, only the object describing the call is sent.
 With this option enabled, the object is wrapped in an array.
 You can use this option if the JSON-RPC server is only capable of receiving arrays.

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 15/20

35Blaise Pascal Magazine 101 2022

To execute methods on the server, the following 2 calls are important:

The aClassName, aMethodName parameters are used to select the method to execute:
they map directly to the classname, methodname used on the server. The parameters to the
calls can be passed as an Javascript array or object.

The last 2 parameters are callbacks (event handlers) which will be called in case of success
or failure to execute the call. Since every request to the server is asynchronous, a callback
mechanism is needed (a second mechanism using Javascript promises is in the works).
The result of these functions is the id of the method call in the JSON-RPC protocol.

For example, to execute the Login call, we could create the following code:

 var
 Params TJSArray : ;

begin
 Params TJSArray New Michael Secret:= . (' ',' ',);123
 RPCClient ExecuteRequest Users Login Params DoOK DoFail. (' ',' ', ,@ ,@);

end;

The aUser variable contains the user name. Note that the DoOK call uses a JSValue

parameter (equivalent to a Variant).
In the above code you can see the use of the ShowLogin method introduced earlier,

and also how an error is reported by the TRPCClient class: a TRPCError record is used.

In this code, we assume that the RPCClient is set up appropriately elsewhere.
The DoOK and DoFail methods could look like this:

procedure (:);DoOK aResult JSValue
begin
 if not then () Boolean aResult
 ShowLogin Invalid combination username password(' / ')of
else
 StartLogin aUser();

end;

procedure const (: ; :);DoFail Sender TObject aError TRPCError
begin
 ShowLogin Error during login aError(' : '+ .);Message
end;

TRPCError = record
ID NativeInt : ;

Code NativeInt : ;

Message String : ;

ErrorClass : ;String
end;

// Execute a request. Params can be passed as object or array
Function const String (, : ;ExecuteRequest aClassName aMethodName
 aParams TJSArray : ;

 aOnSuccess TRPCResultCallBack : = ;Nil
 aOnFailure TRPCFailureCallBack NativeInt: =) : ;nil

Function const String (, : ;ExecuteRequest aClassName aMethodName
 aParams TJSObject : ;

 aOnSuccess TRPCResultCallBack : = ;Nil
 aOnFailure TRPCFailureCallBack NativeInt: =) : ;nil

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 16/20

36Blaise Pascal Magazine 101 2022

This structure is used both for server errors as for communication errors. The meaning of
the fields should be clear from their names: the Code and Message are taken from the
JSON-RPC protocol. In case of HTTP protocol errors, they will contain the HTTP status
code and text. If an exception class name is available, it is reported in the ErrorClass

field. ID contains the ID from the call.
The StartLogin method simply displays the user name in the navbar and hides the
login dialog and login button, and shows the logout button instead, a matter of adding or
removing the is-hidden CSS class:

 . (:);procedure Const StringTMyApplication StartLogin aUser
begin
divdlgLogin AddClasses hidden. (' - ');is
divMenuLogout RemoveClasses hidden. (' - ');is
divMenuLogin AddClasses hidden. (' - ');is
divMenuUser RemoveClasses hidden. (' - ');is
divLblUser TextContent aUser. := ;

FLoggedInUser aUser:= ;

end;

TUserService TRPCCustomService = ()Class
 Protected
 Function string override : ; ;RPCClassName
 Public
 Function Const String (, : ;Login aUserName aPassword
 aCode Integer : ;

 aOnSuccess TBooleanResultHandler : = ;Nil
 aOnFailure TRPCFailureCallBack NativeInt : =) : ;Nil
 Function Nil (: = ;Logout aOnSuccess TEmptyResultHandler
 aOnFailure TRPCFailureCallBack NativeInt : =) : ;Nil
 Function Const String (, : ;CreateUser aUserName aPassword
 aOnSuccess TNativeIntResultHandler : = ;Nil
 aOnFailure TRPCFailureCallBack NativeInt : =) : ;Nil
end;

7 USING A SERVICE CLASS
As can be seen from the above code sample, a login call is not difficult to code, but this
method does have some drawbacks:
¦ It is not type safe. Both parameters and return value are not checked.
¦ If you must do the same call in different places in the application, it would be better
 to have a single, typed call that can be reused.
These 2 problems can be solved easily. The TRPCCustomService class (part of the
fprpcclient unit) is meant to act as a base class with which a proxy class can be constructed
for the ’Classes’ defined by the JSON-RPC server. It introduces some auxiliary methods that
help in building the parameters for the ExecuteRequest class. For our login RPC server,

this proxy could be defined as follows:

As you can see, the public methods here mimic exactly the definition of the methods
defined in out JSON-RPC server. The success handler is also typed: instead of a JSValue

return, a Boolean return is expected. The RPCClassName must return the name of the
class on the server:

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 17/20

37Blaise Pascal Magazine 101 2022

The StartParams and EndParams methods of the TRPCCustomService class respectively
create an instance of the TRPCRequestParamsBuilder class, and return the final parameters for use
in the ExecuteRequest call. The TRPCRequestParamsBuilder class will create the parameters for
the call as required by the settings of the TRPCClient class: as a JSON array or a JSON object.

The AddParam method of the TRPCCustomService class adds a parameter to the list of parameters:
an overloaded version of this call exists for every supported JSON type.
Finally, ExecuteRequest is called and the success callback is re-routed through a local
method, which will typecast then result to the appropriate type for the Login success
callback (in this case, a boolean).
The result of all this is that now you can instantiate an instance of TUserService and do:

function string . : ;TUserService RPCClassName
begin
 Result Users:=' ';

end;

 . (, : ;function const StringTUserService Login aUserName aPassword
 aCode Integer: ;

 aOnSuccess TBooleanResultHandler: ;

 aOnFailure TRPCFailureCallBack NativeInt:): ;

Procedure const (: ; :);DoSuccess Sender TObject aResult JSValue
begin
 If then () Assigned aOnSuccess
 aOnSuccess Boolean aResult(());

end;

Var
 _ : ;Params JSValue
begin
 StartParams;

 AddParam UserName aUserName(' ',);

 AddParam Password aPassword(' ',);

 AddParam Code aCode(' ',);

 _ := ;Params EndParams
 Result ExecuteRequest RPCClassName Login Params:= (,' ',_ ,

 @ ,);DoSuccess aOnFailure
end;

procedure const String . (, : ; :);TMyApplication doServerLogin aUser aPassword aCode Integer
 procedure (:);DoOK aResult Boolean
 begin
 if not then aResult
 ShowLogin Invalid combination username password(' / ')of
 else
 StartLogin aUser();

 end;

 procedure const (: ; :);DoFail Sender TObject aError TRPCError
 begin
 ShowLogin Error during login aError(' : '+ .);Message
 end;

begin
 FUserService Login aUser aPassword aCode DoOK DoFail. (, , ,@ ,@);

end;

And the implementation of the login call can be done as follows:

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 18/20

38Blaise Pascal Magazine 101 2022

procedure . ;TMyApplication SetupServices
begin
 FRPCClient TRPCClient Create Self:= . ();

 FRPCClient URL RPC. :='/ ';

 FUserService TUserService Create Self:= . ();

 FUserService RPCClient FRPCClient. := ;

end;

The FUserService variable is an instance of the TUserService class.
This code is reusable and type-safe.
The setup of the service and RPC client is very simple:

This code can be called for example in the constructor of the application object.
It is possible to code the TUserService class manually. But even this is not necessary:
The FPC JSON-FPC server can generate a description of the available services and method
calls in JSON format: an extension of the Ext.Direct format used by ExtJS.

Figure 11: Automatically generating service code

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 19/20

39Blaise Pascal Magazine 101 2022

COMMUNICATING WITH THE WEBSERVER (PART 2) PAS JS2 PAGE 20/20

Using the class TAPIClientCodeGen from the fprpccodegen unit (available in
native

FPC and in pas2js) the JSON description can be consumed and a unit with the above
service code can be automatically generated. The generated unit will contain a service class
for every class exposed by the FPC JSON-RPC server.

The pas2js distribution contains a demo project (apiclient) that uses this unit and allows
you to generate the service classes exposed by a server, 100% automatically. All that is
required is the URL where the FPC JSON-RPC server is listening for requests.
It is shown in figure 11 on article page 19.

Better yet, the trunk version of the FPC JSON-RPC server code can generate this code
automatically, you can get it by entering the following URL in the browser:

http://localhost:3000/RPC/API?format=pascal&unitname=services

This way, your service description can be regenerated at any moment, and will always
reflect exactly what the server is expecting as input and what data it is returning.
Since the JSON RPC server only supports JSON types, the generated code can only use the
generic JSON types when generating code. An extension is planned where type hints can be
given and for example a record type can be specified instead of a generic TJSONObject
class, or a TDateTime instead of a string.

8 CONCLUSION

In this article we have shown how to construct a server using a click-and-point mechanism.RPC

We’ve also shown how to call the server and how to generate a service description. RPC

The of our application has been expanded, and when you look at the BindElements method, you’ll GUI

see that this has become quite large. In the next article, we’ll show how to generate this code
automatically, and how to load the for the dialogs dynamically.HTML

ADVERTISEMENT

Including the PDF and Code Examples

 POCKET 934 Pages
written by the makers of FPC and Lazarus

ONLY € 40

https://www.blaisepascalmagazine.eu/product/lazarus-handbook-pocket/

+ +

https://www.blaisepascalmagazine.eu/product/lazarus-handbook-hardcover/

ADVERTISEMENT

Including the PDF and Code Examples

+ +

 HARDCOVER, SEWN
 BY THE CREATORS OF FPC AND LAZARUS

934 PAGES IN TWO BOOKS
 INCL. SHIPPING¤ 65

ADVERTISEMENT

Combination
Subscription

+ Lazarus Handbook
 (Pocket + PDF)

 ¤ 75
normal price: 40 + 70= ¤ 110

Ex Vat 9% including shipment
https://www.blaisepascalmagazine.eu/product/lazarus-handbook-pocket-subscription/

101
Multi platform /Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Faker: Synthetic Data Generator
Migration Guide to Firebird 4.0

PAS2JS Communicating with the webserver (Part 2)
Polygons in the making

Raspberry Pi with Windows 11 / Delphi & Lazarus running
Webassembly for PAS2JS

+

43

Page 1/11

starter expertstarter expert

By David Dirkse Figure 1: The Cats Eye

Blaise Pascal Magazine 101 2022

ABOUT REGULAR POLYGONS

INTRODUCTION
In Euclidean geometry, a regular polygon is a polygon that is

equiangular (all angles are equal in measure) and equilateral (all
sides have the same length). Regular polygons may be either convex or

star. In the limit, a sequence of regular polygons with an increasing number
of sides approximates a circle, if the perimeter or area is fixed, or a
regular apeirogon (effectively a straight line), if the edge length is

fixed. Below are pictured some (3 to 8 edged) regular
polygons.

WIKIPEDIA

A regular N polygon may be considered as N identical
isosceles triangles which top angle equals 360/N.

This Delphi project originated from a geometric problem.
Asked is to find the value of angle x in the picture below:

Firgure 2

Firgure 1

PAGE 2/11

The algebraic solution presented here needs a pocket calculator.
In plane geometry problems are solved by the application of theorems and analytic reasoning.

A geometrical solution however is difficult until we realize that all angles are multiples of three.
Angles of 3 degrees on a circle perimeter span arcs of 6 degrees of the circle according to the
theorem of Thales (Greek mathematician, 500BC) Painting the triangle in the circumscribed
circle of a 60 angled regular polygon shows the answer right away: (polygon edges not painted)

Each
arc between points

corresponds to 360/60
= 6 degrees. X spans 5*6
degrees so x = 30/2 = 15
degrees.
In many other cases also this approach has
been useful. So I decided to build a project to
investigate regular polygons.

INTERMEZZO 1
Angles may be measured as circle arcs. In the
picture below, arc AB is expressed as angle � at the
circle center.

The theorem of Thales states that an angle
(such as Firgure 4) on a circle

ABOUT REGULAR POLYGONS

Figure 4

Figure 3

Blaise Pascal Magazine 101 2022 44

In geometry, states that if A, B, and C are distinct points on a circle where the line AC is Thales' theorem
a diameter, the angle ABC is a right angle. is a special case of the inscribed angle Thales's theorem
theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's
Elements Thales of Miletus, Pythagoras. It is generally attributed to but it is sometimes attributed to .
There is a very good example on the site: Wiki
https://en.wikipedia.org/wiki/Thales%27s_theorem#:~:text=In%20geometry%2C%20Thales
'%20theorem%20states,book%20of%20Euclid's%20Elements.

WIKIPEDIA

PAGE 3/11ABOUT REGULAR POLYGONS

Buttons allow for
u Saving the image to a file or to the clipboard
v Showing statistics about intersecting diagonals
w Selecting the number of edges (3 to 60)
x Shifting a magnifying glass over the image to clearly observe the intersection of diagonals.
y Coloring an intersection according to the number of diagonals crossing
z Drawing lines with selected color and pen width
This article is about calculation and painting of the polygon, it's diagonals and intersections and also
the operation of the magnifying glass. Added to that the readers high school math may be refreshed.

THE PROJECT
Below is a reduced picture of the project showing an 18 edged polygon with

its diagonals and the circumscribed circle. Colored dots are painted at the intersection
of diagonals. Their color indicate the number of diagonals crossing.

u

v

w

z

y

x

Figure 5

Blaise Pascal Magazine 101 2022 45

PAGE 4/11

EDGE SELECTION
A TLabel component is used as a button. TLabel has OnEnter and OnLeave
events, allowing background color change on action.

procedure . (:);TForm1 Label1MouseEnter Sender TObject
begin
 . := ; label1 Color $00c0ff
end;

procedure . (:);TForm1 Label1MouseLeave Sender TObject
begin
 . := ; label1 color $00ffff
end;

A left mouseDown event on the “edges” label increases the number of edges, a
right mouseDown event decreases. To do the job a timer is started which runs as
long as the button is pressed. This avoids clicking the button many times.
Checkbox2.checked causes the edgecount to be limited to integer arcs.

function : ; IncEdges boolean //increment edgecount
var : ;E byte
begin
 = := if thenedgecount maxEdge result false
 else
 begin
 := + ; E edgecount 1
 . . if thenform1 CheckBox2 checked
 (<) (mod >) (); while and doE maxEdge E inc E360 0
 (); setEdgecount E
 := ; result true
 ; end
end;

procedure (:);setEdgeCount newcount byte
const = ;ff '0.##'

begin
 := ;edgecount newCount
 := * / ; arc pi edgecount2
 := (); tanArc tan arc //values needed later
 with doform1
 begin
 . := (); label1 Caption inttostr edgecount //show edgecount
 . := (, /);label3 Caption formatfloat ff edgecount360 //show arc
 ; end
end;

ABOUT REGULAR POLYGONS

Blaise Pascal Magazine 101 2022 46

PAGE 5/11ABOUT REGULAR POLYGONS

INTERMEZZO 2
Traditionally, angles are measured in degrees where 360 degrees indicate a full circle

turnaround. Reason for 360 is that this number has many divisors. The calculation of sine
and cosine ratios is done by polynomials where the angle is expressed in radians.
360 degrees equals 2 x π radians, which is the perimeter of a circle with a radius of 1.
Note that the constant π always is an approximation. There does not exist a number or
fraction which is exactly π.

An angle of] radians at the center of a circle with radius R

spans an arc (AB) of length]R.

CALCULATING THE POLYGON
Painting is done in a 1001 * 1001 pixels bitmap.

An odd number, so pixel[500,500] is the exact center.

The circumscribed circle has [500,500] as center, its radius is 480 pixels.

After painting, the bitmap is made visible by copying it to paintbox1 on form1.

A bitmap has coordinates [0,0] at the left top. In the case of painting we need the exact and
absolute position of a pixel which is relative to the left top. These points however are rounded
floating point values. Calculating intersections of diagonals requires precision, so floating point
variables have to be used for the coordinates. Calculations become more simple regarding
center pixel [500,500] as origin [0,0]. Here we use both methods.
The edges of the polygon are stored in the Alist array: { Alist[1] is the top, angles 2,3,..

run clockwise} The Alist array both holds integer and floating point values for the
polynomial edge positions. The floating point values are relative to the

center [500,500].

Figure 6

Blaise Pascal Magazine 101 2022 47

PAGE 6/11

 = ;Const maxEdge 60
type record = TCpoint
 , : ; x y word //absolute pixel position
 , : ; rx ry single //real value relative to screen center
 ;end
var array of : [] ;Alist maxEdge TCpoint1.. //list of polygon angles

procedure var (, : ; :);Arc2XY x y single a byte //a= 0,1,2….
 //supply x,y coordinates of polygon angle
var : ;na single
begin
 := *(-); na arc a 1
 := * (); x sin na480
 := * (); y cos na480
end;

 Filling the Alist [] :array
 var : ;i byte
 , : ;x y word
 , : ;rx ry single
begin
 for to do := i edgecount1
 begin
 (, ,); arc2XY rx ry i
 []. := ()+ ; Alist i x round rx 500
 []. := - (); Alist i y round ry500
 []. := ;Alist i rx rx
 []. := ;Alist i ry ry //UP + DOWN – ; center relative
 ; end

ABOUT REGULAR POLYGONS

Please refer to the source code for painting of the edges and diagonals.

Two identical bitmaps are used:

 Map1 holds the polygon, diagonals and circle.

 Map2 is a copy of map1 and adds intersection points and also holds lines during drawing.

During the drawing process or while moving the magnifying glass, modified parts of Map2 are

erased by copying part of Map1 to Map2. Modified parts of Map2 are copied to paintbox1 to

become visible. This technique avoids erasing the paintbox which would cause flickering.

INTERMEZZO 3
The calculation of intersections is done with vector calculus.
Below is shown the vector equation of a line (AB):

Figure 7

Figure 8

Blaise Pascal Magazine 101 2022 48

PAGE 7/11

Variable naming (such as a1x):
//1 : begin of line, 2: end of line
//a : line through point A. b : through point B

To find the intersection point of two lines:

ABOUT REGULAR POLYGONS

PROGRAM:
function GetIntersection(var x,y : single; a1,a2,b1,b2 : byte) : boolean;
// return intersection of diagonal a1—a2 and b1—b2 ;
 a1,2 b1,2 = 1,2,3…Alist index
// Return “false” in case of parallel lines (d = 0)

Saving time
An n- angled polygon has n(n-1)/2 lines (edges plus all diagonals).
A regular 60 angled polygon counts 1710 diagonals. To investigate intersections would require the
examination of 1,461,195 line pairs. However, polygons have rotation symmetry.
All sections are the same. Only the diagonals that cross section 1 have to be examined.
Once knowing these intersection points the similar points in other sections may be calculated by
rotation.

Figure 9

Blaise Pascal Magazine 101 2022 49

PAGE 8/11

const := ;INSTlistmax 10000
type record = TIntersection
 : ;count byte
 , : ;x y single
 ;end
var array of : [] ; INTSlist INTSlistmax TIntersection1.. //list of intersections in section 1

Intersection points are added to above INTSlist. In case the (x,y) coordinates are

already in the list , count is incremented.

ABOUT REGULAR POLYGONS

INTERMEZZO(4)
Rotation of points.
A point A(x,y) is regarded the addition of its x and y coordinates.
X and Y are rotated separately, then the results are added. Rotation is clockwise.

Figure 10

Firgure 11

Blaise Pascal Magazine 101 2022 50

PAGE 9/11ABOUT REGULAR POLYGONS

procedure (, : ; :);paintIntersections sx sy single count byte
 //paint intersection point (sx,sy) of chords in all segments
 //count : number of intersecting lines per point
var : ; , : ; : ; , , , , : ;r Trect x y word i byte a sina cosa rx ry single
 : ;clr dword
begin
 clr getDotColor count := ();

 . with domap2 Canvas
 begin
 . := ; pen Color clr
 . := ; brush color clr
 . := ; brush Style bsSolid
 := - for to doi edgecount0 1
 begin
 := * . ; a i unit1 arc //not arc procedure but variable
 := (); sina sin a
 := (); cosa cos a
 := * + * ; rx sx cosa sy sina
 := * - * ; ry sy cosa sx sina
 := ()+ ; x round rx 500
 := - (); y round ry500
 := (- , - , + , +); r rect x y x y2 2 3 3
 (); ellipse r
 . . . (, . ,); form1 PaintBox1 Canvas CopyRect r map2 canvas r
 ; end //with
 ; end //for
end;

Procedure :
function (:) : ;GetDotColor c byte dword
begin
 case ofc
 : := ; 2 $808080result //grey
 : := ; 3 $0000ffresult //red
 : := ; 4 $00b000result //dark green
 : := ; 5 $ff8000result //blue
 : := ; 6 $ffff00result //light blue
 : := ; 7 $00c0ffresult //orange
 : := ; 8 $ff00ffresult //purple
 := ; else result $00000000 //black
 ;end //case
end;

THE MAGNIFYING GLASS
The magnifying glass shows its portion of the screen 2, 5 or 10 times enlarged.

This is obtained by multiplying all coordinates by m (2,5,10)
while calculating possible intersections with the magnifying
glass circle. There is no actual enlargement of the picture at
all, lines are recalculated. The magnifying glass radius is 55
pixels. To simplify calculations, all coordinates are shifted to
make the magnifying glass center the origin [0,0] of the
coordinate system. After calculations off course the
coordinates are shifted back in place.
The picture on the next page shows the calculation of the
intersection of a line and a circle.

]becomes x.cos(])

 and also decreases y by x.sin(])

Y becomes y.cos(])

 and increases x by y.sin(])

 Added together:
A(x,y) becomes A'(x',y').
X becomes x'= x.cos(]) + y.sin(])

Y becomes y'= y.cos(]) – x.sin(])

Figure 12

Blaise Pascal Magazine 101 2022 51

PAGE 10/11ABOUT REGULAR POLYGONS

The result is line ST.
While moving, the magnifying glass center is [magX,magY] which are absolute pixel
coordinates.

Before calculations:
Xoffset = (magX-500)*m
Yoffset =(magY-500)*m
X0 = m*Alist[i].rx – Xoffset
Y0 = m*Alist[i].ry – Yoffset

Now origin [0,0] is at the center of the magnifying glass.
For all diagonals a check is made for intersection with the glass.
If the root is negative in above calculations there is no
intersection.
See procedure paintmagnifierglass; for details.

Keep in mind that the real rx,ry values in Alist[] are relative to paintbox center
[500,500].

Of course there is more to say. Such as the conditions for 3,4,…diagonals intersecting at one point,
which must be based on symmetry.
But these considerations I save for other times. To use the magnifying glass, select the magnification,
click on the glass which places it at the paintbox center. Shift the glass by placing the mousepointer
over the glass, press mouse button and move mouse.

To remove the magnifying glass, click again on the button.
When the glass is not selected lines may be drawn by mouse movement. This may be useful in
solving geometry puzzles which was the reason for this small project.

Figure 13

Blaise Pascal Magazine 101 2022 52

PAGE 11/11

USING FLOATING POINT ARITHMETIC

Floating point values that are a power of 2 (such as 0.5 , 0.25) are exact values.

0.1 or π are approximations. Calculations using these values add inaccuracy.

In this project 32 bit “single” floating point variables are used. Their accuracy is 6 to 7 (decimal) digits.

Example:

 , : ;Var a b single
Begin
……..

 = …………………If thena b //this will probably never be "true"
// Instead this works
 (-) < - ……………..If thenabs a b 1e 6 // a almost equal to b

So at all times the programmer has to realize the amount of inaccuracy.

ABOUT REGULAR POLYGONS

Figure 14

Blaise Pascal Magazine 101 2022 53

 Phone number: +31 23 542 22 27

Blaise Pascal Magazine 101 2021 55

WINDOWS11 ON RASPBERRY P 4/8 GIG
 RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1

PAGE 1/26

Windows 11

ABSTRACT
Because my opinion
is that we will go smaller
and smaller with computers,
having better CPU's and even more
memory on board I wanted to show how
far we have come already: It is now possible running Delphi 11 on Windows 11

on Raspberry. Lazarus runs of course as well. If you want to try: take your time
it will cost a few hours (4). But it works. For those who are interested we have a
complete ISO prepared for you.

INTRODUCTION
In this article I try to explain how to install a Raspberry Pi OS for your Raspberry

Pi 4 card. It must be the 4 with 8 gig memory version because I want to install Win

11 on it and then install Delphi and Lazarus. Do not try Windows 10!
This article is about Windows 11. The Raspberry PI is very hard to find so I’ll give
an address where you can order it.
https://www.okdo.com/nl/p/okdo-raspberry-pi-4-8gb-basic-kit-
universal-version/

It is a trustworthy address from the UK. They only have the pack available: the
PI itself is sold out for now, this kit contains an SD card which you will need
to start with. For the windows version you will need a much faster card or
rather a disk. I chose an SSD disk: they are fast booting and that’ s what

we want. 250 Gig should be working but you could try bigger.
Do not try this with an older version of the Raspberry Pi because

there are chances you will raise errors because of time out.

Blaise Pascal Magazine 101 2021 56

PAGE 2/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

To get
started you will
need some software
which you can find at:
https://www.raspberrypi.co
m/software/

there is a video that might be helpful.
https://www.youtube.com/watch?v=ntaXWS8Lk34

RASPBERRY PI OS
Your Raspberry Pi needs an operating system to work. This is it.
Raspberry Pi OS (previously called Raspbian) is the official
supported operating system.

Download and install Raspberry Pi Imager to a computer with an
SD card reader. You can download the images for Windows, Ubuntu

and Mac So what you need to install Windows 11 on a Raspberry

Pi 4:

¦ Raspberry Pi 4 - 8 GB memory on board – no less!

¦ 6GB or larger microSD card (available already in the kit)

¦ Windows 11 PC

¦ USB to Ethernet or Wi-Fi dongle

 Wi-Fi does not work with Windows on installing,
 even though there is ‘WiFi’ on board.
 Maybe we can find a way later to handle this ,
 but for now you you would need a WiFi dongle.

¦ Bluetooth is available

¦ Keyboard, mouse, HDMI cable (available already in
 the kit) and power supply 3Volt (available already in
 the kit) for your Raspberry Pi.

Figure 1: The Raspi Kit in parts

Figure 2: The Raspi Kit is very easy to build, and later on quite helpfull

Blaise Pascal Magazine 101 2021 57

PAGE 3/26

EXPLANATION OF THE ARM
WORKINGS FOR PROGRAMS.
(ARM(previously an acronym for
Advanced RISC Machines and originally Acorn RISC Machine) is a family of reduced
instruction set computing (RISC) architectures for computer processors, configured for
various environments. Arm Ltd. develops the architecture and licenses it to other companies,
who design their own products that implement one of those architectures — including systems-
on-chips (SoC) and systems-on-modules (SoM) that incorporate different components such as
memory, interfaces, and radios. It also designs cores that implement this instruction set and
licenses these designs to a number of companies that incorporate those core designs into

their own products.)

WINDOWS 11
is compatible with most ARM devices
made today except Snapdragon 835 devices.

Through Windows 11, Microsoft has made it easier for developers to create apps that
run natively on ARM.
The main problem with Windows 10 devices equipped with ARM processors is the lack of apps.
This is because these devices only support 32-bit emulation.
That’s actually a significant limitation for many users.

Now Windows 11 brings support for 64-bit apps as well!
Windows 10 on ARM uses a special ARM64 system called CHPE, acronym for “Compiled Hybrid

Portable Executable”.
CHPE is rather complex and thus not easy to understand and use.
Windows 11 makes x64 Emulation on ARM possible.
Windows 11 replaces CHPE with ARM64EC (Emulation Compatible).

Thanks to this new application binary interface, all plug-ins are compatible with the ARM64EC code.
It doesn’t matter if they’re ported to ARM64 or not. For more information, see Using ARM64EC to
build apps for Windows 11 on ARM devices:

https://docs.microsoft.com/en-us/windows/uwp/porting/arm64ec

WIKIPEDIA

This means that programs that need third-party plug-ins, can be ported to Windows on
ARM without any problem. Developers do not need to remove extra plug-ins when porting their apps.
ARM32 apps run just fine on Windows 11.
Windows 11 is compatible with the majority of the ARM-based devices. The OS relies on a new application
binary interface called ARM64EC (Emulation Compatible), making it easier to develop apps that run natively
on ARM.
Microsoft signalled the importance of compatibility for Windows on Arm and turned on 64-bit emulation
in Insider builds. With Windows 11, it is possible to create run and test through developers their already
designed apps. Because the system recognizes arm or emulates “normal” windows apps it is a

platform which can be easily deployed from now on. I will test the system by creating native ARM
and run them on the same platform: Windows11 on Raspberry Pi.

WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Blaise Pascal Magazine 101 2021 58

PAGE 4/26

So the plan to
install all this is:

u Set up the Raspberry Pi OS – the first time on Mini SD Card.
 We need that to be able to make installer (BootSequence) arrangements for the
 Windows 11 OS
v Create the installer for windows.
w Unzip the windows environment to a disk, so you can start to install it.
x Create your very own Windows environment. All you nee is to have
 either already a version of Windows 10 or 11and have a Microsoft
 account.

Once all is done you can start on loading – (installing) your windows programs that you want
in our case Delphi and Lazarus. We will start with Lazarus because that is a quick install.

u
RASPBERRY PI OS

Your Raspberry Pi needs an operating system to work. That is it. Raspberry Pi OS

(previously called Raspbian) is the official supported operating system.

https://www.raspberrypi.com/software/

There are three downloads on this page:
https://www.raspberrypi.com/software/

Download for macOS
Download for Windows

Download for Ubuntu for x86

WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

INSTALLING
RASPBERRY PI OS

USING RASPBERRY PI IMAGER
Raspberry Pi Imager is the quick and easy way to install Raspberry Pi OS and

other operating systems to a microSD card, ready to use with your Raspberry Pi.
 Watch the45-second video to learn how to install an operating system using Raspberry Pi Imager.

https://www.youtube.com/watch?v=ntaXWS8Lk34

Download and install the Raspberry Pi Imager to a computer with an SD Card Reader. Put the
SD card you'll use with your Raspberry Pi into the reader and run Raspberry Pi Imager.

The package containes already an SD Card:

Figure 3: The SD Card Reader
and the included SD Card

Blaise Pascal Magazine 101 2021 59

PAGE 5/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Figure 4: The installation starts

Figure 5: The OS has been written to
the DS card. The RPi Imager has a
hidden advanced options screen to set WiFi, press CTRL + SHIFT + X
https://www.tomshardware.com/news/raspberry-pi-imager-now-comes-with-advanced-options

Blaise Pascal Magazine 101 2021 60

PAGE 6/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Figure 6: The os starts up and shows
the necessary steps to make selections

Figure 7: Create a password: don't forget
 to write it down for later

Figure 8: Localisation

Figure 10: The wifi works,
but later under WIN11 it
does NOT

Figure 9: Set up screen

Because the OS is not yet available I made some
screenshots with a camera...

Blaise Pascal Magazine 101 2021 61

PAGE 7/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Figure 14: You can try the speed test but it is not necessary

Figure 11: press restart

Figure 12: Updating to the latest version

Figure 13: Running the updates

Blaise Pascal Magazine 101 2021 62

PAGE 8/26

WIKIPEDIA

WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

The
The Raspberry

is no Microsoft product and thus there
are no guarantees for the security and stability of the

installation. The OS does work surprisingly well, but is missing a
number of important parts.

The built-in Wi-Fi, Bluetooth and GPIO * connectivity do not yet work under Windows, so you
best use Ethernet or a USB dongle for Wi-Fi should be used for an internet

connection.

(*A general-purpose input/output (GPIO) is an uncommitted digital signal pin on an integrated
circuit or electronic circuit board which may be used as an input or output, or both, and is

controllable by the user at runtime.
GPIOs have no predefined purpose and are unused by default. If used, the purpose and
behaviour of a GPIO is defined and implemented by the designer of higher assembly-level
circuitry: the circuit board designer in the case of integrated circuit GPIOs, or system

integrator in the case of board-level GPIOs.)

Aud

HDMI (audio)
is also not available, but it does work via the 3.5mm jack.

(High-Definition Multimedia Interface (HDMI) is a proprietary audio/video interface for
transmitting uncompressed video data and compressed or uncompressed digital audio data
from an HDMI-compliant source device, such as a display controller, to a compatible computer
monitor, video projector, digital television, or digital audio device. HDMI is a digital
replacement for analog video standards.)

PREPARATION
To start with, you must check whether the latest firmware and bootloader of the Raspberry Pi
are installed in order to boot from USB. This can only be updated via the official OS, not

Windows. If you choose to use an SD card instead of an SSD, you can skip this section.

WIKIPEDIA

Figure 15: 6 Advanced options Configure advanced settings

 6 Advanced Options Configure advanced settings

Blaise Pascal Magazine 101 2021 63

PAGE 9/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Boot the Pi 4 from an SD card with Raspberry Pi OS
and open a terminal. Enter the following to update
the operating system and firmware:

sudo apt update
sudo apt full-upgrade
sudo rpi-update

sudo rpi-eeprom-update -d -a

sudo raspi-config

u Reboot the Pi and install the latest bootloader
 as follows:

v Reboot again and open raspi-config:

w Select Boot Order, press Enter, choose network or USB device boot and press enter

x Now select USB Boot, boot from usb if available.Otherwise boot from SD crd .

6. Select Finish, then No when prompted to reboot.

Figure 16: The terminal window

Figure 17: Boot Order - USB

Figure 18: Boot from USB, where your drive is connected to (SSD)

Figure 19: Do Not Reboot! (yet)

Blaise Pascal Magazine 101 2021 64

PAGE 10/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Go to this site
https://uupdump.net/

see details on page 11/12/13/14

u Search UUP dump for "Windows 11 arm"
 and choose the latest version. (See page 11 of this article)

v Select the desired language and choose the edition you want to install,
 in this case Pro has been chosen. (See page Figure 12 top)

w Set the download method as "Download and convert to ISO",
 then click "Create download package".(See page Figure 13)

x Extract the download to a new folder named 'Win11'
 and navigate there. You will probably need to create this directory.

y Double click on the uup_download_windows.cmd file, (See page Figure 13)
 this will display a security warning.
 Choose More Info/More information, then Run Anyway/Run Anyway.
 Finally, allow the app to make changes to your device.

z Now a command prompt will open showing the output of a program.

 This downloads and patches the Windows 11 image and then prepares the iso.
 When the process is complete, you can press 0 to close the prompt.
 (See page Figure 14last line)

Figure 20: Running the download of the Microsoft packages.

Blaise Pascal Magazine 101 2021 65

PAGE 11/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Figure 20: The choice to make: windows Insider Preview xxxxx (rs_prerelease) arm 64

PAGE 12/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Figure 21: Choose the language you prefere.

Figure 22: Choose your Edition

Feature On Demand

Blaise Pascal Magazine 101 2021

PAGE 13/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Figure 24: Microsoft One core

Figure 25: Ending the dowload:
Press 0 to exit

Figure 23: download and Convert

Blaise Pascal Magazine 101 2021 68

PAGE 14/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Now you have an ISO
image that you can put on an SD

card or USB disk.
(For extra information see next page).

This works as follows:
Put your storage medium of choice into the computer and check
that it is ready for use.
Please note, the drive will be formatted and all data on it will be deleted.

u Download the Windows on Raspberry imager and extract the zip file
 to the previously created win11 folder.
v Open WoR (Windows on Raspberry) and allow the application to make changes
 to your system. Choose a language and press Next.
w Select the drive you want to use and the device type, in this case a Raspberry Pi 4/8 gb mem.
 Press Next to continue.
x Select the new Windows 11 iso and continue. Choose the latest drivers and firmware available
 on the server, these will be stored locally. Continue to use the chosen configuration.
y In the installation overview, verify that the correct disk and device type are selected.
 Click Install to start the process. This takes about 10 minutes with a USB SSD, for a microSD
 card it takes a bit more time.
z When the installation is complete, WoR can be closed. Eject the drive and connect it to your
 Raspberry Pi. Also connect your peripherals and boot the Pi.

Blaise Pascal Magazine 101 2021 69

PAGE 15/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

It might be interesting for you to
look at some extra information:
Here are the URLs to get some more information, but I hope

this all will not confuse you.

(A Uniform Resource Locator (URL), colloquially termed a
web address, is a reference to a web resource that specifies its location on a

computer network and a mechanism for retrieving it. A URL is a specific type of Uniform
Resource Identifier (URI), although many people use the two terms interchangeably. URLs occur most

commonly to reference web pages (http) but are also used for file transfer (ftp), email (mailto),
database access (JDBC), and many other applications)

WIKIPEDIA

For the USB connection it is
advisable to use a special cable that has a USB connector and at the other end a SSD Data connector.

Difficult to find? Probably you have the solution already at home:
if you have a USB Backup system (see Figure 26) or what I had was an enclosure external Drive connection

(see Figure 27) where you could mount your SSD.

Figure 27: Sweex USB enclosure for 2.5'' SATA HDD Figure 26: Ewent dockingstation

https://www.ewent.com/en-us/products/usb-hard-drive-enclosures/

https://www.ewent.com/en-us/usb-3-0-hdd-dual-docking-station-
ew7014?returnurl=%2fen-us%2fproducts%2fusb-hard-drive-enclosures%2f%3fcount%3d20

https://www.microsoft.com/en-us/software-download/windowsinsiderpreviewarm64

https://www.tomshardware.com/how-to/install-windows-10-raspberry-pi

https://www.techrepublic.com/article/
what-windows-11-means-for-windows-on-arm-and-why-it-will-bring-more-big-name-apps/

Blaise Pascal Magazine 101 2021 70

PAGE 16/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

With the drive
connected and the Raspberry Pi 4

booted up, you should now go through the
standard setup sequence.

After the installation process and a few tweaks, your Pi is
then ready to use with Windows 11.

u Boot the Raspberry Pi and press ESC when prompted.
v Scroll to Device Manager and press Enter, then go to
 Raspberry Pi Configuration, then to àAdvanced

 Configuration.

w Set "Limit RAM to 3 GB" to "disabled" and press F10 to save,
 go back with Escape.
x Open Display Configuration and set the correct resolution by scrolling to it and
 pressing Enter. Use F10 again to save and press Escape.

y In CPU configuration the processor can be overclocked,

 make sure the frequency is now set to Default otherwise Windows 11 cannot boot!

z Press ESC until you are back in the first menu,

 then choose CONTINUE to exit the UEFI and REBOOT.

Figure 28: Installing Win11

WIKIPEDIA
The is a Unified Extensible Firmware Interface (UEFI)

publicly available specification that defines a software interface between an operating
system and platform firmware. replaces the legacy UEFI Basic Input/Output System (BIOS)

firmware interface originally present in all IBM PC-compatible personal computers, with most UEFI
firmware implementations providing support for legacy BIOS services. can support remote UEFI

diagnostics and repair of computers, even with no operating system installed.

Blaise Pascal Magazine 101 2021 71

PAGE 17/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Figure at the top 30:
Downloading Windows 11
Windows On Raspberry imager (WOR)

Figure at the left 31:
Installation Guide

Figure at left bottom 32:
Choose your operation system

Blaise Pascal Magazine 101 2021 72

PAGE 18/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Now follow the instructions

Figure 33:

Blaise Pascal Magazine 101 2021 73

PAGE 19/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Figure 34:

Figure 35:

Figure 36:

Figure 37:
 New driver s for

 11 are the same or
 not yet available

PAGE 20/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Figure 38:

Figure 39:

Figure 40:

Blaise Pascal Magazine 101 2021 75

PAGE 21/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Figure 41:

Figure 43:

Figure 45:

Figure 42:

Figure 44:

Figure 46:

Blaise Pascal Magazine 101 2021 76

PAGE 22/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Figure 47: Starting Windows 11 on the the Raspberry Pi

Figure 48: License Agreement

Figure 49: Country and Region

Figure 51: Updates

Figure 52 : adding the Microsoft account:

Figure 50: Choose the personal use or work or school

Blaise Pascal Magazine 101 2021 77

PAGE 23/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Figure 53: let Microsoft use location?

Figure 54: Final setting

Figure 55: Possibel apps to install t
hat are already available

Figure 56: Finding your device if you loose it

Figure 57: Installing Lazarus

From here on some screenhotsrus of
the installment of Lazarus and Ddelphi

Figure 59:
Opening Lazarus for the first time

Figure 58: Configuring and checking Lazarus installment

Blaise Pascal Magazine 101 2021 78

PAGE 24/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING DELPHI 11 AND LAZARUS 2.2.0RC1 Windows 11

Figure 60: Lazarus is installed and ready for first use

Figure 61: The first progam: Hello Raspberry

Blaise Pascal Magazine 101 2021 79

PAGE 25/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING AND LAZARUS 2.2.0RC1 DELPHI 11 Windows 11

Figure 62: Starting Delphi 11

Figure 63: The first step

Figure 64: Platform Selection

Figure 53:

Blaise Pascal Magazine 101 2021 80

PAGE 26/26WINDOWS11 ON RASPBERRY PI 4/8 GIG
RUNNING AND LAZARUS 2.2.0RC1 DELPHI 11 Windows 11

Figure 65: The logo of Delphi appears...

Figure 66: The last step Deelphi opens with its “Welcome Menu”

1. One year Subscription
2. The newest LIB Stick
 - including Credit Card USB stick
3. Lazarus Handbook - Personalized
 -PDF including Code

4. Book Learn To Program using Lazarus PDF
 including 19 lessons and projects
5. Book Computer Graphics Math & Games

 book + PDF including ±50 projects

Advertisement
BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
 for I := 1 9 to do
 beginbegin
 ...
 end
end;

procedure
var
begin
 for I := 1 9 to do
 begin
 ...
 end
end;

Prof Dr.Wirth, Creator of Pascal Programming language Blaise Pascal, Mathematician

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
 for I := 1 9 to do
 beginbegin
 ...
 end
end;

procedure
var
begin
 for I := 1 9 to do
 begin
 ...
 end
end;

Blaise Pascal, MathematicianProf Dr.Wirth, Creator of Pascal Programming language

Editor in Chief: Detlef Overbeek
Edelstenenbaan 21 3402 XA
IJsselstein Netherlands

editor@blaisepascalmagazine.eu
https://www.blaisepascalmagazine.eu

Prof Dr.Wirth, Creator of Pascal Programming language

BLAISE PASCAL MAGAZINE

COMPUTER (GRAPHICS)
MATH & INGAMES
 PASCAL

DAVID DIRKSE

www.blaisepascal.eu

procedure ;
var
begin
 := for i 1
to do 9
 begin

 ;end
end;

L
E
A

R
N

 T
O

 P
R

O
G

R
A

M

U
S
IN

G
 L

A
Z
A

R
U

S
H

O
W

A
R

D

P
A

G
E
-C

L
A

R
K

LAZARUS
HANDBOOK
FOR PROGRAMMING WITH FREE PASCAL AND LAZARUS

934 PAGES

SUPER
PACK

5 Items
€ 150

ex Vat

including
30 example

projects

including
19 example

projects

including 50 example projects

https://www.blaisepascalmagazine.eu/product-category/special-offer/

Normal Price € 280
75+60+50+35+50

101
Multi platform /Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Faker: Synthetic Data Generator
Migration Guide to Firebird 4.0

PAS2JS Communicating with the webserver (Part 2)
Polygons in the making

Raspberry Pi with Windows 11 / Delphi & Lazarus running
Webassembly for PAS2JS

Blaise Pascal Magazine 101 2022 82

By Michaël Van Canneyt

starter expert

The Free Pascal and Lazarus foundation sponsored
development of aWebAssembly backend for FPC.
The backend is now usable in production, and we’ll show how to
work with it in this article

WebAssembly (Wasm) is gaining traction:
Starting out as a way to make Javascript run faster in the browser
(Asm.js), it has now become a full description of a runtime engine,
designed to run bytecode in a safe way, regardless of where the code is
running:
https://webassembly.org/

All Major browsers support the running of WebAssembly byte code,
Node.JS and Deno. Not only that, but major languages (C/C++,Rust, C#) -
can be compiled to WebAssembly using a special libc library, thus allowing a
C#, C/C++ program to run in the browser.

The developers at Mozilla took it even a step further:
because WebAssembly is designed to be safe, sensitive parts of the browser are
converted to WebAssembly, and then converted back to C++, thus
guaranteeing that the resulting code is completely sandboxed and will not be able
to penetrate into the rest of the browser.
A webassembly program can now be run in the browser, but also on a server, as
part of Javascript runtimes such as Node.JS or Deno, or using a dedicated
runtime:

wasmtime https://wasmtime.dev/ *is used creating the .exe file

or wasmer: https://wasmer.io/

Both provide a command-line runtime engine that can load a WebAssembly file
and run the code in it. They allow access to the filesystem and interaction with
the console through a common API to allow the WebAssembly code to
interact with the host environment. This API is called WASI (which is an

acronym for WebAssembly System Interface):
https://wasi.dev/

Since some time, the Free Pascal compiler can emit Webassembly code,
which also relies on the WASI API to talk to the host environment.
The WebAssembly backend is meanwhile sufficiently mature to
compile many of the packages and units supplied with Free

Pascal.

The Goto statement is not yet implemented, but this
is a matter of time before it is implemented. In
this article, we explore how to make
use of this new compiler

backend.

GETTING STARTED WITH FPC AND WEBASSEMBLY

u INTRODUCTION

ABSTRACT

PAGE 1/17

D11

T
h

e
 L

 a
 z

 a
 r

 u
 s

 F
 a

 c
 t

 o
 r

 y

PAS
2 JS

FREE PASCAL

83

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 2/17

The Free Pascal WebAssembly compiler is not yet officially released.
 This means that you must build it yourself if you wish to use it. The Free Pascal

WebAssembly compiler makes use of the linker of the LLVM project.
So, the first step is to install the LLVM linker. The LLVM linker is part of LLVM, and can be

downloaded here for Windows:

https://github.com/llvm/llvm-project/releases/download/llvmorg-12.0.1/LLVM-12.0.1

The installer will ask you if it must add the folder with binaries to the path: you must instruct it to do so.
When it is done, you must copy the application wasm-ld.exe to wasm32-wasi-wasm-ld.exe,

as the latter is what the compiler expects to find. For Linux and MacOS, the package manager can be
used to install llvm. For example, on Linux Ubuntu 20.04 this is done using:

apt install lld-12
ln -sf /usr/lib/llvm-12/bin/wasm-ld ~/bin/wasm32-wasi-wasm-ld

cd fpc
make all OS_TARGET=wasi CPU_TARGET=wasm32 BINUTILSPREFIX= OPT="-O-" PP=fpc
cd compiler\utils
make all
cd ..\...

v INSTALLATION

If all goes well, you will have built a ppcrosswasm32.exe compiler.
This new compiler can be installed with the following command:

make install OS_TARGET=wasi CPU_TARGET=wasm32 BINUTILSPREFIX= OPT="-O-"
PP=fpc
cd compiler\utils
make install
cd ..\..

For MacOS, the macports system can be used to install llvm-12.

Obviously, you need to have the latest Free Pascal compiler installed. If you have the latest
version of the Lazarus IDE installed, then you will have an up-to date compiler installed as well.

The following commands assume that the Free Pascal compiler is installed on your system,
and that the fpc.exe binary is in your PATH.

Using the installed compiler the Free Pascal webassembly cross-compiler must be built.
This must be done with the latest sources of FPC. somewhere on your system, use git to
clone the latest sources (the following must be executed in a command-line window):
git clone https://gitlab.com/freepascal.org/fpc/source.git fpc.
It shows a list where you can choose the operating system

When git has completed the clone operation, build the cross compiler. This can be done with
the following commands:

This will install a newer version of the fpc binary.
More detailed information on building and installing the Free Pascal compiler can be found on

https://wiki.freepascal.org/Installing_the_Free_Pascal_Compiler

Blaise Pascal Magazine 101 2022

84

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 3/17

w COMPILING FOR WEBASSEMBLY

program ;helloworld
begin
Writeln Hello world(' , !');

end.

To compile this program from the command-line, the following can be done:

fpc -Twasi -Pwasm32 helloworld.pas

The compiler will compile and if all went well, you’ll see some output as in figure 1 on page
3. Alternatively, the following completely equivalent command can be used:

ppcrosswasm32 helloworld.pas

To compile for WebAssembly in Lazarus, there are several options, depending on which
version of Lazarus you are using.

For all options, you must disable the generation of debug information in the Project Options Dialog
under the page compiler options - debugging.

For the officially released version, there are 2 options to choose from. The first one is easiest,
but has a drawback: In the Tools-Options dialog, select the ppcrosswasm32.exe
from the following directory:

C:\FPC\3.2.2\bin\i386-Win32

This is shown in figure 2 on page 4.
After doing this, every project you compile will be compiled for WebAssembly.
(and that includes the IDE itself if you decide to rebuild it)
Obviously this is normally not desirable, in practice only certain projects will be compilable
for WebAssembly. The better way is to use the Compile commands from the project

options, as shown in figure 3 on page 5.

Compiling with the Free Pascal Webassembly Compiler is not
different from compiling for any other supported platform. We’ll start with the simplest Free

Pascal program, which we’ll save somewhere in a file called helloworld.pas:

Figure 1: Compiling a webassembly program

Blaise Pascal Magazine 101 2022

(or helloworld.pas)

(or helloworld.pp)

85

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 4/17

Figure 2: Selecting the webassembly compiler

The Execute Before command can be used to run the cross-
compiler. For this all options after Call on must be set, and the command must

be set to
C:\FPC\3.2.2\bin\i386-Win32\ppcrosswasm32 $(ProjFile)

You can add any other command-line options that you wish to have. Under Parsers,
select FPC. This tells the IDE to parse the output of the command as it would parse FPC

output. Then, under the Compiler section, disable all the CALL on options.
After this, when you compile, it will be as if you compile a program for the native OS on which
the IDE is running, see figure 4 on page 5.
If you are using the development version of Lazarus, the above options will still work.
However, with the development version it is even easier to compile for webassembly with
the development version. It is sufficient to select wasm32 as the target processor, and
wasi as the target OS, as shown in figure 5 on page 5. The compiled file will also have the correct
extension (.wasm) for Lazarus sources of December 28 2021 or later. Or version of Lazarus 2.2.0

Now that we’ve succesfully compiled a simple webassembly program, we of course will
want to run it. For this, we can use the wasmer or wasmtime command-line WebAssembly

runtimes. The runtime command can be downloaded from:

https://github.com/bytecodealliance/wasmtime/releases/tag/v0.32.0

Once installed, running the generated webassembly is easy. In a command-line
terminal, run the following command in the WEBASSEMBLY project directory:
wasmtime helloworld.wasm

x RUNNING A WEBASSEMBLY PROGRAM NATIVELY

Blaise Pascal Magazine 101 2022

86

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 5/17

Figure 3: Using the webassembly compiler for a single project

Figure 4: Compilation with the webassembly compiler

Figure 5: Using the
webassembly compiler
for a single project

87

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 6/17

Figure 6: Running the webassembly programs with wasmtime

Or, you can compile and
run the sums.pp demo project, which is part of the pas2js demos for

Webassembly (you can find it in the folder demos/wasienv/terminal):

ppcrosswasm32 sums.pp
wasmtime sums.wasm

And the result will look like figure 6 on page 6, where you can see that the sums program
actually reads input from the terminal.

A webassembly program can be loaded and run in the browser. The browser offers APIs to
do so, and using Pas2JS, you can easily create a hosting environment for your webassembly

program. There are currently 2 options to do so:

u Manually load and run the webassemly file using the provided WASI environment
 class TPas2JSWASIEnvironment.

v Use the Pas2js-provided TWASIHostApplication application class and let it do
 the heavy lifting for you – it uses the TPas2JSWASIEnvironment class in the background.

We’ll start with the former method. Let’s start by explaining what the TPas2JSWASIEnvironment class
is for: WebAssembly standards do not make any assumptions about the environment in which the
WebAssembly code is executed. Yet, WebAssembly would not be interesting if it could not interact
with the environment.

To interact with the outside world, WebAssembly code relies on imported routines:
the specifications do point out the mechanism to call external routines.
The FPC RTL for WebAssembly currently follows the WASI standard to interact with the
host environment. The WASI standard describes a minimal set of import routines, and is
used by the WasmTime and Wasmer runtime environments.
The TPas2JSWASIEnvironment class is implemented in Pas2JS, and offers all the
callbacks needed for the WebAssembly runtime generated by FPC: These are the callbacks
specified by the WASI standard. Although all callbacks are present, they are currently not

all implemented. The class offers also the possibility to hook additional APIs and catch
input and output. The following is the public API of this class:

y RUNNING A WEBASSEMBLY PROGRAM IN THE BROWSER

Blaise Pascal Magazine 101 2022

88

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 7/17

constructor . (:);TMyApplication Create aOwner TComponent
begin
 inherited ();Create aOwner
 FWasiEnv TPas2JSWASIEnvironment Create FWasiEnv OnStdErrorWrite DoWrite:= . ; . :=@ ;

 . :=@ ;FWasiEnv OnStdOutputWrite DoWrite
end;

procedure const String . (: ; :);TMyApplication DoWrite Sender TObject aOutput
begin
 Writeln aOutput();

end;

The GetUTF8StringFromMem method is a utility call that will
retrieve an UTF8 string from the WebAssembly memory (indicated by a

location and length), and returns it as a Javascript string. The AddImports call

will add the WASI imports to the passed object, as well as any additional APIs

you have defined (more about that later).

The following properties are also available:
 IsLittleEndian A property describing whether the WebAssembly memory is
 little-endian or big-endian.
 OnStdOutputWrite Called when the WebAssembly program writes to standard
 output.
 OnStdErrorWrite Called when the WebAssembly program writes to standard error.
 OnGetConsoleInputBuffer

 Called when the WebAssembly program tries to read from
 standard input. Use this event if you wish to pass binary data.
 OnGetConsoleInputString

 Called when the WebAssembly program tries to read from
 standard input. Use this event if you wish to pass textual data.
 Instance This is the currently running TJSWebAssemblyInstance.
 ExitCode This is the exit code of the WebAssembly program.
 WASIImportName This is the name for the import object for the WASI API: the default
 is wasi_snapshot_preview1.

So, how to use this class to run a webassembly file ?

To demonstrate this, we create a small Pas2JS program in the Lazarus IDE (see the
article on writing real-world Pas2JS applications on how to get started with Pas2JS),
and we instruct the IDE to use the TBrowserApplication for the program source.

In the application class’ constructor, we create

TPas2JSWASIEnvironment TObject = ()class
 Function String (, :) : ;GetUTF8StringFromMem aLoc aLen Longint
 Procedure (:);AddImports aObject TJSObject
 Property : ;ImportObject TJSObject
 Property : ;IsLittleEndian Boolean
 Property : ;OnStdOutputWrite TWASIWriteEvent
 Property : ;OnStdErrorWrite TWASIWriteEvent
 Property : ;OnGetConsoleInputBuffer TGetConsoleInputBufferEvent
 Property : ;OnGetConsoleInputString TGetConsoleInputStringEvent
 Property : ;Instance TJSWebAssemblyInstance
 Property : ;Exitcode Nativeint
 // Default is set to the one expected by FPC runtime:
 // wasi_snapshot_preview1
 Property String : ;WASIImportName
end;

Blaise Pascal Magazine 101 2022

 . ;procedure TMyApplication doRun
begin
Terminate;

InitWebAssembly;

end;

89

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 8/17

procedure . ;TMyApplication InitWebAssembly
Var : ; : ;mDesc TJSWebAssemblyMemoryDescriptor tDesc JSWebAssemblyTableDescriptor
 ImportObj TJSObject : ;

begin
 // Setup memory
 mDesc initial. := ;256
 mDesc maximum. := ;256
 FMemory TJSWebAssemblyMemory New mDesc:= . ();

 // Setup table
 tDesc initial. := ;0
 tDesc maximum. := ;0
 tDesc element anyfunc. :=' ';

 FTable TJSWebAssemblyTable New tDesc:= . ();

 // Setup ImportObject
 ImportObj new:= ([

 ' ', ([js new
 ' ', ,mem FMemory
 ‚ ', tbl FTable
])
]);

 FWasiEnv AddImports ImportObj. ();

 CreateWebAssembly helloworld wasm ImportObj initEnv(' . ',)._ (@)then
end;

destructor . ;TMyApplication Destroy
begin
 FreeAndNil FWasiEnv();

 inherited ;Destroy
end;

The DoRun method of the application object must be overriden to implement the
actual program logic. In our case, we simply call InitWebAssembly:

The InitWebAssembly method is where we set up the WebAssembly environment. The
environment for a WebAssembly program is simply a Javascript object that contains various
configuration objects as well as routines to be imported in the WebAssembly runtime. You can
provide more routines than the environment needs, but all routines that the environment needs
must be present in the import object. Two important (but optional) objects in this regard are:

¦ The TJSWebAssemblyMemory object with memory that can be made available to the
 webassembly runtime.
¦ a TJSWebAssemblyTable object may be specified that will contain a list of callable functions
 (or imported functions): These are functions that are defined in the WebAssembly module,
 and which can be called directly from Javascript.

The memory object takes a descriptor record for the constructor. This descriptor specifies the initial
and maximum memory for the WebAssembly memory object. The values are specified in
WebAssembly pages with 64Kb size. Similarly, the table uses a descriptor which allows to set
initial and maximum sizes for the table, and what table you want: the ’anyfunc’ value tells the
WebAssembly engine to fill the table with all available functions.

As you can see, we use the Pascal Writeln
function to write the standard&error output of the webassembly program. Because

we’re using the BrowserConsole unit, the output will be written in the HTML page.
What was created in the constructor must be destroyed in the destructor,
 so we implement that too:

Blaise Pascal Magazine 101 2022

90

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 9/17

function string . (: ; :): ;TMyApplication CreateWebAssembly Path ImportObject TJSObject TJSPromise
begin
 Result window fetch Path:= . ()._ (then
 Function (:) : res jsValue JSValue
 begin
 Result TJSResponse Res arrayBuffer:= (). ._ (then
 Function (:) : res2 jsValue JSValue
 begin
 Result TJSWebAssembly instantiate TJSArrayBuffer res2 ImportObject:= . ((),);

 end,

 Nil)

 end,

 Nil);

end;

Note that the current implementation of FPC WebAssembly does not import the js.mem
or js.tbl memory objects, but you can import them manually, so the above is just for

demonstration purposes in case you wish to use additional memory.
The important call here is to the FWasiEnv.AddImports method: this method will add
all necessary WASI and additional optional exports to the WebAssembly import object.
After the call to AddImports, the ImportObject object is ready to be used in the
CreateWebassembly call: This call returns a promise, which will result in a
TJSInstantiateResult object. We let the promise resolve in the InitEnv method:

The Module variable is just a declaration to avoid typecasts. The TWASIExports class is an
extension of the TJSModulesExports class: this class exports the memory of the WebAssembly

object, and contains the Start symbol. The Start symbol is the name of the program entry point,
the only symbol the FPC runtime exports by default.

With this definition, it will be clear that the Exps.Start statement actually calls the program’s main
pascal function (the begin of the program). It’s important to realize that this function does not return as
long as the WebAssembly program is running, thus potentially blocking the browser.

The CreateWebAssembly call loads the wasm file, and calls all the necessary WebAssembly

functions to compile and instantiate the WebAssembly instance:

The following happens:
u The Fetch call will fetch the webassembly file, and retuns a promise.
v The promise resolves to a TJSResponse result, and this is converted to an JSArrayBuffer

 – this conversion is again returning a promise.
w The converted array buffer contains the webassembly bytecode wich is then passed to the

 TJSWebAssembly.instantiate function which creates a WebAssembly runtime instance.

The result of the CreateWebAssembly function is a promise, which resolves to the result of the
TJSWebAssembly.instantiate function (a promise in itself). When the instantiated WebAssembly

runtime instance is ready, the function resolves to a TJSInstantiateResult instance.

function . (:): ;TMyApplication InitEnv aValue JSValue JSValue
Var absoluteModule TJSInstantiateResult aValue exps TWASIExports : ; : ;

begin
 Result True:= ;

 Exps TWASIExports TJSObject Module Instance exports_ := ((. .));

 FWasiEnv Instance Module Instance. := . ;

 Exps Start. ;

end;

Blaise Pascal Magazine 101 2022

91

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 10/17

function string . (: ; :): ;TMyApplication CreateWebAssembly Path ImportObject TJSObject TJSPromise
begin
 Result TJSWebAssembly instantiateStreaming Fetch Path ImportObject:= . ((),);

end;

 ;program Project1

{$mode objfpc}

uses browserapp wasihostapp JS Classes SysUtils Web, , , , , ;

type
 TMyApplication TWASIHostApplication = ()class
 procedure override ; ;doRun
 end;

procedure . ;TMyApplication doRun
 begin
 StartWebAssembly helloworld wasm(' . ');

 Terminate;

 end;

var Application TMyApplication : ;

begin
 Application TMyApplication Create:= . ();nil
 Application Initialize. ;

 Application Run. ;

end.

A shorter (and faster) version of this call is:

The difference between InstantiateStreaming and Instantiate calls is that the
former starts compiling the WebAssembly as the bytes come in from the fetch operation.
However, you may wish to instantiate a WebAssembly runtime multiple times: in that case it may
be better to keep the WebAssembly in memory as soon as it is loaded.

We can add some HTML to beautify the page in which this program is embedded, and after the
PAS2JS program has finished running, this leads to a page such as can be seen figure 7 on page 10.
Since the program is loaded as soon as the HTML page is loaded, this is also the initial view of the page.
You can easily check this by adding a button to the page, and use its OnClick event to call the
InitWebAssembly function.
We mentioned earlier that there are 2 ways to run your WebAssembly program. As all long-time users
know, PAS2JS and the Lazarus IDE continuously try to make things easier for the developer. That is
why PAS2JS provides the TWASIHostApplication object:
a descendent of TBrowserApplication. In the development version of Lazarus, the New Project
dialog’s Web Browser Application entry has an additional option called Host WebAssembly
program (see figure 8 on page 13): When checked, you can enter the URL of the wasm file you wish
to load. In that case, the new project wizard generates the following code, which makes use of

the TWASIHostApplication class:

Figure 7: Running the webassembly
program in the browser

Blaise Pascal Magazine 101 2022

92

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 11/17

z EXTENDING THE WEBASSEMBLY ENVIRONMENT
As mentioned before, the WebAssembly specification does not contain an API for

interacting with the outside world. In the context of the browser, this means that there is no
standard API for accessing the DOM and changing the web page. However, the specification does
describe how to import functions. This mechanism is used in the WASI specification to enable
low-level access to the host environment: The API caters mainly for file and directory access.

So, if we want to manipulate the webpage in the browser, we’ll have to provide an API to
the WebAssembly environment. The API can be anything we want: we have complete control
over what we allow the WebAssembly environment to do. The TJSWasiEnvironment
class has support for easily adding additional APIs to the webassembly environment.

This support comes in the form of the TImportExtension class. This class serves as a parent
class for classes to extend the standard WASI environment. It has the following public

declaration:

Figure 8: The enhanced new pas2js program dialog

 = ()TImportExtension TObjectclass
Public
 Constructor virtual (:); ;Create aEnv TPas2JSWASIEnvironment
 Procedure virtual abstract (:); ; ;FillImportObject aObject TJSObject
 Function String virtual abstract : ; ; ;ImportName
 Property : ;Env TPas2JSWASIEnvironment Read FEnv
end;

This project is ready to run: on startup it will use the StartWebAssembly method to
load the helloworld.wasm webassembly in a standard TPas2JSWASIEnvironment

environment. This environment writes output to the browser console, and input is obtained using the
Prompt call of the window (a blocking call). The environment can be modified using properties of the

application object.

Blaise Pascal Magazine 101 2022

93

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 12/17

 __ (function wasi_clock_res_get
id wasi_clockid_t: __ ;

resolution P__wasi_timestamp_t:

): __ ; ' ' ' ';wasi_errno_t wasi_snapshot_preview1 clock_res_getexternal name

The constructor has a single argument: the TPas2JSWASIEnvironment instance
which must be extended; The TImportExtension class will register itself in the environment.

When the AddImports method of the TPas2JSWASIEnvironment instance is called to initialize
the imports for the webassembly instance, all registered TImportExtension classes will be
asked to create an import object, which will be added to the import object passed to the
WebAssembly instance. The environment is available later in the Env property, this will allow the
implementation to access the instance.

There are two abstract functions which must be implemented by a descendent:

FillImportObject this method must add all import methods to the aObject parameter;
Note that this object is not the WASI enviroment which is extended: each extension
object will be imported with a unique object.

ImportName this is the name that is used to add the object passed in FillImportObject

to the global WebAssembly impory object. Now we know how to pass additional functions to a
WebAssembly runtime. But how must the code running in the WebAssembly engine import such a
function? Well, this happens in exactly the same manner as one would import a function from an
external library.

 Let’s analyse the following call, which is part of the FPC RTL, and is used in the system unit:

This declares a function __wasi_clock_res_get which accepts 2 arguments, an ID and
a pointer. The key elements here are the external and name modifiers:
¦ The external specifies the name of the import object in which to find the function
 (in this case wasi_snapshot_preview1).
¦ The name is the name of the function that must be present in the object.

In the TPas2JSWASIEnvironment class we find a function called clock_res_get:

function clock_res_get(clockId, resolution: NativeInt): NativeInt; virtual;

Note that the ID (an integer) and resolution (a pointer) are both converted to an integer: the
reason is that every address is just an index in the global memory array of the WebAssembly engine.

Seeing that the name of the method is the correct name expected by the WebAssembly

runtime, does this mean we can simply attach the TPas2JSWASIEnvironment instance
to the import object? Unfortunately not.

When the webassembly code calls this function, the this variable (known in pascal as Self) is
empty. That is a problem because all methods (static methods excepted) of a class expect a Self
pointer.
So we must register a function that does supply the this.

Fortunately, this is easy. Like all extensions, the functions that TPas2JSWASIEnvironment
exposes are

Blaise Pascal Magazine 101 2022

94

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 13/17

unit ;webcanvas

interface

Type
 TCanvasError longint = ;

 TCanvasID longint = ;

 PCanvasID ^TCanvasID = ;

Const
 ECANVAS_SUCCESS = ;0
 ECANVAS_NOCANVAS = ;1
 ECANVAS_UNSPECIFIED = - ;1

function __ (webcanvas_allocate
 SizeX Longint : ;

 SIzeY Longint : ;

 aID PCanvasID TCanvasError web_canvas allocate:): ; ' ' ' '; external name

function __ (: ;webcanvas_moveto aID TCanvasID
 X Longint : ;

 Y Longint TCanvasError web_canvas moveto :): ; ' ' ' ';external name

function __ (: ;webcanvas_filltext aID TCanvasID
 X Longint : ;

 Y Longint : ;

 aText PByte : ;

 aTextLen Longint TCanvasError web_canvas filltext :): ; ' ' ' ';external name

 // ...

implementation

end.

TWebCanvas TObject = ()class
private
 FCanvasID Longint : ;

 FHeight Longint: ;

 FWidth Longint: ;

Protected
 Procedure const String (: ; : = '');Check aError TCanvasError aMsg
Public
 Constructor (, :);Create aWidth aHeight Longint
 (: ; :); Procedure moveto X Longint Y Longint
 Procedure (: ; : ; :);FillText X Longint Y Longint S UTF8String
end;

 . (:);procedure TPas2JSWASIEnvironment GetImports aImports TJSObject
begin
aImports args_get args_get[' ']:=@ ;

aImports args_sizes_get args_sizes_get[' ']:=@ ;

aImports clock_res_get clock_res_get[' ']:=@ ;

// ...
end;

As you can see, the clock_res_get is attached to the aImports objects with the correct
name. The @ operator will bind this to the actual function in the object, so when
clock_res_get is called, Self will be available. Note that because of this, the function name must
not necessarily equal the name used in the WebAssembly runtime: the name can always be
corrected in the GetImports call.

To demonstrate how this can be used, we’ll add the possibility to let the webassembly draw
on a HTML canvas. The first thing to do is to create the import functions. We create a unit for this,

we’ll call it WebCanvas. The following is part of the unit:

As you can see, there is no implementation for these methods:
the implementation will be imported from the Javascript host environment.

From the declarations, you can see that these methods must be part of an
import object called web_canvas. We can use this to create a canvas class that

can be used in the webassembly runtime:

Blaise Pascal Magazine 101 2022

95

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 14/17

The Check method serves to check the return of the imported functions: all functions
return - an arbitrary convention - an error code. The Check function converts this to an exception:

procedure const String . (: ; :);TWebCanvas Check aError TCanvasError aMsg
begin
 if then <> aError ECANVAS_SUCCESS
 if then ='' aMsg
 Raise . (' % ',[])Exception CreateFmt Canvas Operation failed d aError
 else
 Raise . ('% : % ',[,]);Exception CreateFmt s Error code d aMsg aError
end;

We can use this function to construct the other methods in the class:

constructor . (, :);TWebCanvas Create aWidth aHeight Longint
begin
 Check webcanvas_allocate aWidth aHeight FCanvasID Failed create web canvas(__ (, ,@), ' ');to
 FWidth aWidth:= ;

 FHeight aHeight:= ;

end;

procedure . (: ; :);TWebCanvas moveto X Longint Y Longint
begin
 Check webcanvas_moveto FCanvasID X Y(__ (, ,));

end;

procedure . (: ; : ; :);TWebCanvas FillText X Longint Y Longint S UTF8String
begin
 Check webcanvas_filltext FCanvasID X Y PByte PAnsichar S Length S(__ (, , , (()), ()));

end;

Var
 aCanvas TWebCanvas : ;

begin
 aCanvas TWebCanvas Create:= . (,);150 150
 With do aCanvas
 try
 BeginPath;

 MoveTo(,);25 25
 (,); LineTo 125 125
 FillText Greetings the WebAssembly Canvas(, ,' !');8 8 on
 finally
 free;

 end;

end.

The complete code can be found in the demos of Pas2JS.

This concludes the WebAssembly side of things. So how do we go about creating the
implementation in Javascript? We create a descendent of TImportExtension called
TWACanvas - we present only the relevant calls here:

As you can see, this is not such difficult code.
Note how the string is passed to the imported __web_canvas_filltext function:

This resembles the way strings are passed to C APIs:
as a pointer to a null-terminated memory buffer, and a string length.
The class is now ready be used, and it can be used just as any class would be used in the

browser itself:

Blaise Pascal Magazine 101 2022

96

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 15/17

TWACanvas = class(TImportExtension)

Protected
 function (:) : ;GetCanvas aID TCanvasID TJSCanvasRenderingContext2D
 function (, : ; :): ;allocate SizeX SizeY Longint aID Longint TCanvasError
 function (: ; , :): ;moveto aID TCanvasID X Y Longint TCanvasError
 function (: ; , : ;FillText aID TCanvasID X Y Longint
 aText Longint aTextLen Longint TCanvasError : ; :): ;

Public
 Constructor override (:); ;Create aEnv TPas2JSWASIEnvironment
 Procedure override (:); ;FillImportObject aObject TJSObject
 Function String override : ; ;ImportName
 Property : ;CanvasParent TJSHTMLELement
end;

function . (: ;TWACanvas allocate SizeX Longint
 SizeY Longint : ;

 aID Longint TCanvasError:): ;

Var
 : ; C TJSElement
 V TJSDataView : ;

 SID : ;String
begin
 C window document createElement CANVAS:= . . (' ');

 CanvasParent AppendChild C. ();

 Inc FCurrentID();

 SID IntToStr FCurrentID:= ();

 FCanvases SID TJSHTMLCanvasElement c getcontext d[]:= (). (' ');2
 V getModuleMemoryDataView:= ;

 v setUint32 aID FCurrentID env IsLittleEndian. (, , .);

 Result ECANVAS_SUCCESS:= ;

end;

The ImportName and FillImportObject methods must be overridden and this looks like this:

procedure . (:);TWACanvas FillImportObject aObject TJSObject
begin
 aObject allocate allocate[' ']:=@ ;

 aObject moveto moveto[' ']:=@ ;

 aObject filltext FillText[' ']:=@ ;

end;

function String . : ;TWACanvas ImportName
begin
 Result web_canvas:=' ';

end;

You can see that the names used are the same names as used to import the
functions. This is very important: if one of the names is missing, the Javascript

WebAssembly runtime will raise a LinkError exception when instantiating the
WebAssembly runtime.

The Allocate function is called to create a new canvas.

It creates a new CANVAS html element, and attaches it to the HTML Element specified in the
CanvasParent property. It is then stored with a unique ID in a map with allocated
canvas elements, so later on the canvas can be retrieved using this unique ID. This mechanism is
arbitrary, in a real-world application, the canvas element to use would probably be communicated to
the WEBASSEMBLY runtime.
The interesting thing here is how the ID is communciated to the WebAssembly runtime:
the WebAssembly definition of the __webcanvas_allocate call uses a pointer to an

address where the ID must be stored (i.e. it is a var parameter):

Blaise Pascal Magazine 101 2022

97

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 16/17

 __ (function webcanvas_allocate
SizeX Longint : ;

SIzeY Longint : ;

aID PCanvasID:

) : ;TCanvasError

The pointer is converted to an integer (the index in memory). The memory of the webassembly

runtime is exposed to the Javascript environment. The getModuleMemoryDataView call returns
the memory as a class (a standard Javascript class): TJSDataView

in essence an object that can be used to read and write to an underlying array.

This is then also how the is communicated to the webassembly runtime, it is written directly to the ID

WebAssembly memory using the setUint32 method of TJSDataView.
The MoveTo function is actually quite easy. It gets 3 integers as parameters, and does not

need memory access. It starts by mapping the canvas ID to an actual canvas renderingcontext,

FWasiEnv TPas2JSWASIEnvironment Create:= . ;

FWasiEnv OnStdErrorWrite DoWrite. :=@ ;

FWasiEnv OnStdOutputWrite DoWrite. :=@ ;

FWACanvas TWACanvas Create FWasiEnv:= . ();

FWACanvas CanvasParent GetHTMLElement canvases. := (' ');

The WebAssembly program uses a UTF8-encoded ansistring to communicate a string.
The TPas2JSWASIEnvironment class has a convenience function that reads an UTF8

string from the WebAssembly memory, given a location and length: GetUTF8StringFromMem.
This function is used here to retrieve the string to be written on the canvas.
To use this class and have it imported in the WebAssembly runtime, we just need to create

it after we have created the environment:

That’s all there is to it. To remove the extension, it is sufficient to destroy it.
The result of the test program can be seen on
https://www.freepascal.org/~michael/pas2js-demos/wasienv/canvas/

it will look like figure 9 on page 17.

function . (: ; : ; :): ;TWACanvas moveto aID TCanvasID X Longint Y Longint TCanvasError
Var
C TJSCanvasRenderingContext2D : ;

begin
Result ECANVAS_NOCANVAS:= ;

C GetCanvas aID:= ();

if then () Assigned C
begin
C moveto X Y. (,);

Result ECANVAS_SUCCESS:= ;

 ;end
end;

Blaise Pascal Magazine 101 2022

98

GETTING STARTED WITH FPC AND WEBASSEMBLY Page 17/17

In this article, we’ve shown how Free Pascal can be used to write WebAssembly programs.
We also demonstrated how Pas2JS can be used to host the WebAssembly program in
a browser, and how to extend the WebAssembly environment with custom functions.

The compiler support for webassembly is quite stable, but support for the Browser hosting using
PAS2JS is quite new (for example standard file support needs still to be added to it), and will
surely need some time to mature: we’ll report about the progress in future contributions.

7 CONCLUSION

Figure 9: The canvas demo

Blaise Pascal Magazine 101 2022

COMPONENTS
DEVELOPERS4

COMPONENTS
DEVELOPERS4

 kbmFMX Std/Pro v. 1.50.00 released
 JAN 1, 2022 KIMBOMADSEN

We are happy to announce an update to
kbmFMX Standard

and Professional Edition.
 kbmFMX Standard Edition

is bundled with kbmMemTable…

D11

EESB, SOA,MoM, EAI TOOLS FOR INTELLIGENT SOLUTIONS. kbmMW IS THE PREMIERE N-TIER PRODUCT FOR DELPHI / C++BUILDER

kbmMemTable is the fastest and most feature rich in
memory table for Embarcadero products.
● Easily supports large datasets with millions of records
● Easy data streaming support
● Optional to use native SQL engine
● Supports nested transactions and undo
● Native and fast build in M/D, aggregation/grouping,
 range selection features
● Advanced indexing features for extreme performance

● RAD Studio XE5 to 11 Alexandria supported
● Win32, Win64, Linux64, Android, IOS 32, IOS 64 and
 OSX client and server support
● Native high performance 100% developer defined
 application server
● Full support for centralized and distributed load
 balancing and failover
● Advanced ORM/OPF support including support of
 existing databases
● Advanced logging support
● Advanced configuration framework
● Advanced scheduling support for easy access to
 multithread programming
● Advanced smart service and clients for very easy
 publication of functionality
● High quality random functions.
● High quality pronouncable password generators.
● High performance LZ4 and Jpeg compression
● Complete object notation framework including full
 support for YAML, BSON, Messagepack, JSON and XML
● Advanced object and value marshalling to and from
 YAML, BSON, Messagepack, JSON and XML
● High performance native TCP transport support
● High performance HTTPSys transport for Windows.
● CORS support in REST/HTML services.
● Native PHP, Java, OCX, ANSI C, C#, Apache Flex client
 support!

● High speed, unified database access (35+ supported
 database APIs) with connection pooling, metadata and
 data caching on all tiers
● Multi head access to the application server, via REST/AJAX,
 native binary, Publish/Subscribe, SOAP,
 XML, RTMP from web browsers, embedded devices, linked
 application servers, PCs, mobile devices, Java systems
 and many more clients
● Complete support for hosting FastCGI based applications
 (PHP/Ruby/Perl/Python typically)
● Native complete AMQP 0.91 support (Advanced Message
 Queuing Protocol)
● Complete end 2 end secure brandable Remote Desktop with
 near realtime HD video, 8 monitor support,
 texture detection, compression and clipboard sharing.
● Bundling kbmMemTable Professional which is the fastest
 and most feature rich in memory table for Embarcadero
 products.

COMPONENTS
DEVELOPERS4

= New I18N context sensitive internationalization framework to
 make your applications multilingual.
= New ORM LINQ support for Delete and Update.
= Comments support in YAML.
= New StreamSec TLS v4 support (by StreamSec)
= Many other feature improvements and fixes.

Please visit
http://www.components4developers.com

for more information about kbmMW

KBMMW PROFESSIONAL AND ENTERPRISE EDITION RELEASED! V. 5.18.00

D11

	1: Coverpage
	2: Content-Articles
	3: Addresses
	4: From your editor
	5: From our technical advisor
	6: AD: the libstick- explanation
	7: Ad: Libstick package
	8: AD: The libstick thumbnails
	9: Faker Introduction
	10: Start the program
	11: Profile
	12: Python Egine
	13: Conclusion
	14: Syndat Topics & Scipts
	15: Advertisement
	16: Migration Guide Firebird
	17: Migration / New features
	18: Index Firebird Migration Guide
	19: Ad: Book + LIBstick
	20: PAS2JS Part 2 Introduction
	21: PAS2JS Application Server
	22: PAS2JS New HTTP application
	23: PAS2JS Jason - RPC Service
	24: PAS2JS Rgeister Json handlerss
	25: PAS2JS Json Handler Listed
	26: PAS2JS 2 Factor Authencication
	27: PAS2JS Check User
	28: PAS2JS Do Create User
	29: PAS2JS 2FA & Google Authencicat.
	30: PAS2JS Modifying the Client
	31: PAS2JS ClickNavBar Method
	32: PAS2JS Login
	33: PAS2JS ActuallTalking to server
	34: PAS2JS Options Prperty
	35: PAS2JS DoOK
	36: PAS2JS Using a Service Class
	37: PAS2JS Implem. the Login Call
	38: PAS2JS TUserService
	39: PAS2JS Conclusion
	40: AD: Pocket
	41: AD: Hardcover
	42: AD: Combination
	43: POLYGONS Introduction
	44: POLYGONS Theorem of Thales
	45: POLYGONS The Project
	46: POLYGONS Edge Seselection
	47: Intermez. 2 Calculating polgon
	48: Intermez. 3 Calculatg Intersect.
	49: POLYGONS The Program
	50: Polygons Intermez. 4 Rotation
	51: POLYGONS The Magnifying Glass
	52: Polygons The result
	53: Using Float.Point Arithmetic
	54: AD: Barnsten
	55: RASP 4 Run Delphi and Laz
	56: RASP 4 Operating System
	57: RASP 4 Windows 11
	58: RASP 4 Installing Raspberry OS
	59: RASP 4 Witten to the DS card
	60: RASP 4 Settings for Rasp Desktop
	61: RASP 4 Welcome to the RBerry
	62: RASP 4 Special Preps
	63: RASP 4 Boo the Raspberry on SDCa
	64: RASP 4 Go to UUPdump
	65: RASP 4 Choices to make
	66: RASP 4 Feature on Demand
	67: RASP 4 Download src to ISO
	68: RASP 4 The ISO
	69: RASP 4 USB Connection
	70: RASP 4 Tweaking
	71: RASP 4 Wind.on Rasberry Imager
	72: RASP 4 Prerequisites
	73: RASP 4 The steps
	74: RASP 4 Config/ Inst.Overview
	75: RASP 4 Completeing the Install.
	76: RASP 4 First Time Setup Win 11
	77: RASP 4 Installing Lazarus
	78: RASP 4 Hello Lazarus
	79: RASP 4 Install Delphi11
	80: RASP 4 First Time Run Delphi11
	81: Advertisement
	82: WebAsssembly Intro
	83: WebAssembly: Installation
	84: WebAssembly: Compiling
	85: WebAssembly: Run Native
	86: WebAssembly: Illustrations
	87: WebAssembly: Run in the brwoser
	88: WebAssembly: Properties
	89: WebAssembly: Browser Cotrol Unit
	90: WebAssembly: Fetch call
	91: WebAssembly: keep in memory
	92: WebAssembly: Extending
	93: WebAssembly: Fill Import Object
	94: WebAssembly: The @ operator
	95: WebAssembly: Error Check
	96: WebAssembly: Canvas
	97: WebAssebly: UTF8
	98: Webassembly: Canvas
	99: AD: kbmFMX 1.50.00
	100: AD: KBMMW Pro & Enterprise

	Cartoons:
	Barnsten:
	LIBStick:
	LIBStick+Subscription:
	LH Pocket:
	LH HardCover:
	LH Handbook Pocket+Subscription:
	SuperPack:
	kbmFMX:
	kbmMW:
	Faker:
	Migration Guide:
	Pas2js 2:
	RaspBerry Pi:
	WebAssembly:
	Editor:

